Search results for: eco-friendly concrete
1079 Ingenious Use of Hypo Sludge in M25 Concrete
Authors: Abhinandan Singh Gill
Abstract:
Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.Keywords: concrete, sludge waste, hypo sludge, supplementary cementitious material
Procedia PDF Downloads 3151078 Development of Impervious Concrete Using Micro Silica and GGBS as Cement Replacement Materials
Authors: Muhammad Rizwan Akram, Saim Raza, Hamza Hanif Chauhan
Abstract:
This paper describes the aim of research to evaluate the performance of ordinary Portland concretes containing cement replacement materials in both binary and ternary system. Blocks of concrete were prepared to have a constant water-binder ratio of 0.30. The test variables included the type and the amount of the supplementary cementious materials (SCMs) such as class of Silica Fume (SF) and ground granulated blast furnace slag (GGBS). Portland cement was replaced with Silica Fume (SF) upto 7.5% and GGBS up to a level of 50%. Then physical properties are assessed from the compressive strength and permeability tests.Keywords: silica fume, GGBS, compressive strength, permeability
Procedia PDF Downloads 3811077 Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes
Authors: P. Parthiban, J. Karthikeyan
Abstract:
This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.Keywords: Alccofine, compressive strength, RCPT, wood ash pellets
Procedia PDF Downloads 1871076 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge
Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti
Abstract:
Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis
Procedia PDF Downloads 1871075 Dynamic Properties of Recycled Concrete Aggregate from Resonant Column Tests
Authors: Wojciech Sas, Emil Soból, Katarzyna Gabryś, Andrzej Głuchowski, Alojzy Szymański
Abstract:
Depleting of natural resources is forcing the man to look for alternative construction materials. One of them is recycled concrete aggregates (RCA). RCA from the demolition of buildings and crushed to proper gradation can be a very good replacement for natural unbound granular aggregates, gravels or sands. Physical and the mechanical properties of RCA are well known in the field of basic civil engineering applications, but to proper roads and railways design dynamic characteristic is need as well. To know maximum shear modulus (GMAX) and the minimum damping ratio (DMIN) of the RCA dynamic loads in resonant column apparatus need to be performed. The paper will contain literature revive about alternative construction materials and dynamic laboratory research technique. The article will focus on dynamic properties of RCA, but early studies conducted by the authors on physical and mechanical properties of this material also will be presented. The authors will show maximum shear modulus and minimum damping ratio. Shear modulus and damping ratio degradation curves will be shown as well. From exhibited results conclusion will be drawn at the end of the article.Keywords: recycled concrete aggregate, shear modulus, damping ratio, resonant column
Procedia PDF Downloads 4031074 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)
Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi
Abstract:
The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco
Procedia PDF Downloads 1391073 Use of Coconut Shell as a Replacement of Normal Aggregates in Rigid Pavements
Authors: Prakash Parasivamurthy, Vivek Rama Das, Ravikant Talluri, Veena Jawali
Abstract:
India ranks among third in the production of coconut besides Philippines and Indonesia. About 92% of the total production in the country is contributed from four southern states especially, Kerala (45.22%), Tamil Nadu (26.56%), Karnataka (10.85%), and Andhra Pradesh (8.93%). Other states, such as Goa, Maharashtra, Odisha, West Bengal, and those in the northeast (Tripura and Assam) account for the remaining 8.44%. The use of coconut shell as coarse aggregate in concrete has never been a usual practice in the industry, particularly in areas where light weight concrete is required for non-load bearing walls, non-structural floors, and strip footings. The high cost of conventional building materials is a major factor affecting construction delivery in India. In India, where abundant agricultural and industrial wastes are discharged, these wastes can be used as potential material or replacement material in the construction industry. This will have double the advantages viz., reduction in the cost of construction material and also as a means of disposal of wastes. Therefore, an attempt has been made in this study to utilize the coconut shell (CS) as coarse aggregate in rigid pavement. The present study was initiated with the characterization of materials by the basic material testing. The casted moulds are cured and tests are conducted for hardened concrete. The procedure is continued with determination of fck (Characteristic strength), E (Modulus of Elasticity) and µ (Poisson Value) by the test results obtained. For the analytical studies, rigid pavement was modeled by the KEN PAVE software, finite element software developed specially for road pavements and simultaneously design of rigid pavement was carried out with Indian standards. Results show that physical properties of CSAC (Coconut Shell Aggregate Concrete) with 10% replacement gives better results. The flexural strength of CSAC is found to increase by 4.25% as compared to control concrete. About 13 % reduction in pavement thickness is observed using optimum coconut shell.Keywords: coconut shell, rigid pavement, modulus of elasticity, poison ratio
Procedia PDF Downloads 2391072 An Analytical Approach for the Fracture Characterization in Concrete under Fatigue Loading
Authors: Bineet Kumar
Abstract:
Many civil engineering infrastructures frequently encounter repetitive loading during their service life. Due to the inherent complexity observed in concrete, like quasi-brittle materials, understanding the fatigue behavior in concrete still posesa challenge. Moreover, the fracture process zone characteristics ahead of the crack tip have been observed to be different in fatigue loading than in the monotonic cases. Therefore, it is crucial to comprehend the energy dissipation associated with the fracture process zone (FPZ) due to repetitive loading. It is well known that stiffness degradation due to cyclic loadingprovides a better understanding of the fracture behavior of concrete. Under repetitive load cycles, concrete members exhibit a two-stage stiffness degradation process. Experimentally it has been observed that the stiffness decreases initially with an increase in crack length and subsequently increases. In this work, an attempt has been made to propose an analytical expression to predict energy dissipation and later the stiffness degradation as a function of crack length. Three-point bend specimens have been considered in the present work to derive the formulations. In this approach, the expression for the resultant stress distribution below the neutral axis has been derived by correlating the bending stress with the cohesive stresses developed ahead of the crack tip due to the existence of the fracture process zone. This resultant stress expression is utilized to estimate the dissipated energydue to crack propagation as a function of crack length. Further, the formulation for the stiffness degradation has been developed by relating the dissipated energy with the work done. It can be used to predict the critical crack length and fatigue life. An attempt has been made to understand the influence of stress amplitude on the damage pattern by using the information on the rate of stiffness degradation. It has been demonstrated that with the increase in the stress amplitude, the damage/FPZ proceeds more in the direction of crack propagation compared to the damage in the direction parallel to the span of the beam, which causes a lesser rate of stiffness degradation for the incremental crack length. Further, the effect of loading frequency has been investigated in terms of stiffness degradation. Under low-frequency loading cases, the damage/FPZ has been found to spread more in the direction parallel to the span, in turn reducing the critical crack length and fatigue life. In such a case, a higher rate of stiffness degradation has been observed in comparison to the high-frequency loading case.Keywords: fatigue life, fatigue, fracture, concrete
Procedia PDF Downloads 1011071 Monitoring of the Chillon Viaducts after Rehabilitation with Ultra High Performance Fiber Reinforced Cement-Based Composite
Authors: Henar Martín-Sanz García, Eleni Chatzi, Eugen Brühwiler
Abstract:
Located on the shore of Geneva Lake, in Switzerland, the Chillon Viaducts are two parallel structures consisted of post-tensioned concrete box girders, with a total length of 2 kilometers and 100m spans. Built in 1969, the bridges currently accommodate a traffic load of 50.000 vehicles per day, thereby holding a key role both in terms of historic value as well as socio-economic significance. Although several improvements have been carried out in the past two decades, recent inspections demonstrate an Alkali-Aggregate reaction in the concrete deck and piers reducing the concrete strength. In order to prevent further expansion of this issue, a layer of 40 mm of Ultra High Performance Fiber Reinforced cement-based Composite (UHPFRC) (incorporating rebars) was casted over the slabs, acting as a waterproof membrane and providing significant increase in resistance of the bridge structure by composite UHPFRC – RC composite action in particular of the deck slab. After completing the rehabilitation works, a Structural Monitoring campaign was installed on the deck slab in one representative span, based on accelerometers, strain gauges, thermal and humidity sensors. This campaign seeks to reveal information on the behavior of UHPFRC-concrete composite systems, such as increase in stiffness, fatigue strength, durability and long-term performance. Consequently, the structural monitoring is expected to last for at least three years. A first insight of the analyzed results from the initial months of measurements is presented herein, along with future improvements or necessary changes on the deployment.Keywords: composite materials, rehabilitation, structural health monitoring, UHPFRC
Procedia PDF Downloads 2851070 Enhancing the Use of Traditional, Complementary and Alternative Medicines into Global Cancer Treatment and Research
Authors: Alejandro Salicrup, Riacrdo Gelhman, Geetha Gopalakrishna
Abstract:
The main aim of this session is to have a panel to discuss specific steps for the integration of traditional, complementary and alternative medicine (TCAM) with conventional oncology for enhancing treatment practices at the global level, specifically in low-and-middle-income-countries (LMICs). Concrete current and required programs for strengthening Integrative Oncology research in LMICs will also be discussed. Case Studies from Latin America, Asia, Europe and Africa will discuss and highlight 1) What is working regarding treatment practices in integrative oncology in their countries/regions providing concrete examples 2) What is not working on this integration for cancer treatment in their countries/regions with concrete examples and 3) What are the challenges and opportunities for research related to integrative oncology treatment. Discussion will include potential next steps and potential mechanisms to enhance global integrative oncology research aimed to enhance the use of TCAM therapies and strengthening cancer treatment in LMICs.Keywords: global cancer treatment, integrative oncology research, low and middle income countries, traditional, complementary and alternative medicines
Procedia PDF Downloads 1271069 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests
Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota
Abstract:
Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.Keywords: liquefaction, shear modulus degradation, shaking table, earthquake
Procedia PDF Downloads 3911068 Evaluation of Mixtures of Recycled Concrete Aggregate and Reclaimed Asphalt Pavement Aggregate in Road Subbases
Authors: Vahid Ayan, Joshua R Omer, Alireza Khavandi, Mukesh C Limbachiya
Abstract:
In Iran, utilization of reclaimed asphalt pavement (RAP) aggregate has become a common practice in pavement rehabilitation during the last ten years. Such developments in highway engineering have necessitated several studies to clarify the technical and environmental feasibility of other alternative materials in road rehabilitation and maintenance. The use of recycled concrete aggregates (RCA) in asphalt pavements is one of the major goals of municipality of Tehran. Nevertheless little research has been done to examine the potential benefits of local RCA. The objective of this study is laboratory investigation of incorporating RCA into RAP for use in unbound subbase application. Laboratory investigation showed that 50%RCA+50%RAP is both technically and economically appropriate for subbase use.Keywords: Roads & highways, Sustainability, Recycling & reuse of materials
Procedia PDF Downloads 4981067 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar
Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi
Abstract:
Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization
Procedia PDF Downloads 1521066 Nonlinear Response of Tall Reinforced Concrete Shear Wall Buildings under Wind Loads
Authors: Mahtab Abdollahi Sarvi, Siamak Epackachi, Ali Imanpour
Abstract:
Reinforced concrete shear walls are commonly used as the lateral load-resisting system of mid- to high-rise office or residential buildings around the world. Design of such systems is often governed by wind rather than seismic effects, in particular in low-to-moderate seismic regions. The current design philosophy as per the majority of building codes under wind loads require elastic response of lateral load-resisting systems including reinforced concrete shear walls when subjected to the rare design wind load, resulting in significantly large wall sections needed to meet strength requirements and drift limits. The latter can highly influence the design in upper stories due to stringent drift limits specified by building codes, leading to substantial added costs to the construction of the wall. However, such walls may offer limited to moderate over-strength and ductility due to their large reserve capacity provided that they are designed and detailed to appropriately develop such over-strength and ductility under extreme wind loads. This would significantly contribute to reducing construction time and costs, while maintaining structural integrity under gravity and frequently-occurring and less frequent wind events. This paper aims to investigate the over-strength and ductility capacity of several imaginary office buildings located in Edmonton, Canada with a glance at earthquake design philosophy. Selected models are 10- to 25-story buildings with three types of reinforced concrete shear wall configurations including rectangular, barbell, and flanged. The buildings are designed according to National Building Code of Canada. Then fiber-based numerical models of the walls are developed in Perform 3D and by conducting nonlinear static (pushover) analysis, lateral nonlinear behavior of the walls are evaluated. Ductility and over-strength of the structures are obtained based on the results of the pushover analyses. The results confirmed moderate nonlinear capacity of reinforced concrete shear walls under extreme wind loads. This is while lateral displacements of the walls pass the serviceability limit states defined in Pre standard for Performance-Based Wind Design (ASCE). The results indicate that we can benefit the limited nonlinear response observed in the reinforced concrete shear walls to economize the design of such systems under wind loads.Keywords: concrete shear wall, high-rise buildings, nonlinear static analysis, response modification factor, wind load
Procedia PDF Downloads 1101065 Impact of Natural Period and Epicentral Distance on Storey Lateral Displacements
Authors: Saida Dorbani, M'hammed Badaoui, Djilali Benouar
Abstract:
This paper deals with the effect of the building design and epicentral distance on the storey lateral displacement, for several reinforced concrete buildings (6, 9 and 12 stories), with three floor plans: symmetric, mono symmetric, and unsymmetrical. These structures are subjected to seismic accelerations from the Boumerdes earthquake (Algeria, May 21st, Mw=6.5). The objective of this study is to highlight the impact of the fundamental period and epicentral distance on storey displacements for a given earthquake. The seismic lateral displacement is carried out in both longitudinal and transverse direction by the response spectrum method.Keywords: natural period, epicenter distance, reinforced concrete buildings, storey displacement
Procedia PDF Downloads 2651064 Application Procedure for Optimized Placement of Buckling Restrained Braces in Reinforced Concrete Building Structures
Authors: S. A. Faizi, S. Yoshitomi
Abstract:
The optimal design procedure of buckling restrained braces (BRBs) in reinforced concrete (RC) building structures can provide the distribution of horizontal stiffness of BRBs at each story, which minimizes story drift response of the structure under the constraint of specified total stiffness of BRBs. In this paper, a simple rule is proposed to convert continuous horizontal stiffness of BRBs into sectional sizes of BRB which are available from standardized section list assuming realistic structural design stage.Keywords: buckling restrained brace, building engineering, optimal damper placement, structural engineering
Procedia PDF Downloads 3201063 Numerical Study of Splay Anchors in CFRP-Strengthened Concrete Beams
Authors: Asal Pournaghshband, Mohammed A. Zaki
Abstract:
This paper presents a detailed numerical investigation into the structural performance of splay anchor configurations for strengthening concrete beams with Carbon Fiber Reinforced Polymer (CFRP) sheets. CFRP is widely used in retrofitting concrete structures to improve flexural strength and extend service life. However, premature debonding limits the tensile capacity of CFRP sheets, reducing the effectiveness of these applications. This study addresses this limitation by exploring the potential of splay anchors as an emerging anchorage technique that mitigates debonding issues through improved load transfer mechanisms. Building on existing experimental studies, the research uses ABAQUS software to validate different splay anchor configurations and simulate real-world performance. The parametric study examines key anchor parameters, including diameter, spacing, and embedment depth, to evaluate their effects on bond strength, load distribution, and the flexural capacity of strengthened beams. Systematic analysis of these parameters allows for identifying configurations that enhance debonding resistance and increase the load-carrying capacity of CFRP-strengthened beams. Improved debonding resistance contributes to greater structural durability, reduced maintenance costs, and extended service life for retrofitted structures, particularly relevant for aging infrastructure like bridges and buildings. This approach not only advances sustainable retrofitting practices but also provides practical solutions tailored to infrastructure demands.Keywords: CFRP strengthening, splay anchors, concrete beams, structural retrofitting, numerical analysis
Procedia PDF Downloads 181062 Behavior of Oil Palm Shell Reinforced Concrete Beams Added with Kenaf Fibres
Authors: Sharifah M. Syed Mohsin, Sayid J. Azimi, Abdoullah Namdar
Abstract:
The present article reports the findings of a study into the behavior of oil palm shell reinforced concrete (OPSRC) beams with the addition of kenaf fibres. The work aim is to examine the potential of using kenaf fibres to improve the strength and ductility of the OPSRC beams and also observe its potential in serving as part of shear reinforcement in the beams. Two different arrangements of the shear links in OPSRC beams with a selection of kenaf fibres (amount of [10kg/m] ^3 and [20kg/m] ^3) content are tested under monotonic loading. In the first arrangement, the kenaf fibres are added to the beam which has full shear reinforcement to study the structural behavior of OPSRC beams with fibres. In the second arrangement, the spacing between the shear links in the OPSRC beams are increased by 50% and experimental work is carried out to study the effect of kenaf fibres without compromising the beams strength and ductility. The results show that the addition of kenaf fibres enhanced the load carrying capacity, ductility and also altered the failure mode of the beams from a brittle shear mode to a flexural ductile one. Furthermore, the study depicts that kenaf fibres are compatible with OPSRC and suggest prospective results.Keywords: oil palm shell reinforced concrete, kenaf fibres, peak strength, ductility
Procedia PDF Downloads 4341061 Cement Mortar Lining as a Potential Source of Water Contamination
Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina
Abstract:
Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.Keywords: concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage
Procedia PDF Downloads 2101060 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review
Authors: Anicet Dansou
Abstract:
Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete
Procedia PDF Downloads 1111059 Contribution of Intermediate Diaphragms on LDFs of Straight and Skew Concrete Multicell Box-Girder Bridges
Authors: Iman Mohseni
Abstract:
Current studies indicate that neglecting the effect of intermediate diaphragms might lead to highly conservative values for bending moment distribution factors and result in non-economic designs for skew bridges. This paper reports on a parametric study performed on 160 prototypes of straight and skew concrete multicell box-girder bridges. The obtained results were used to develop practical expressions to account for the diaphragm effects on American Association of State Highway and Transportation Officials formulas for live load distribution factors. It was observed that decks with internal transverse diaphragms perpendicular to the longitudinal webs are the best arrangement for load distribution in skew bridges.Keywords: box bridges, truck, distribution factor, diaphragm
Procedia PDF Downloads 3871058 Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures
Authors: Kahil Amar, Nekmouche Aghiles, Titouche Billal, Hamizi Mohand, Hannachi Naceur Eddine
Abstract:
The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings.Keywords: ductility, nonlinear behavior, pushover analysis, geometric slenderness, structural behavior
Procedia PDF Downloads 3911057 Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor
Authors: Junkyeong Kim, Jooyoung Park, Aoqi Zhang, Seunghee Park
Abstract:
The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge.Keywords: tensile force estimation, embedded EM sensor, magnetization energy loss, PSC girder
Procedia PDF Downloads 3441056 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions
Authors: Rajai Al-Rousan
Abstract:
This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.Keywords: predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites
Procedia PDF Downloads 2321055 Cyclic Response of Reinforced Concrete Beam-Column Joint Strengthening by FRP
Authors: N. Attari, S. Amziane, M. Chemrouk
Abstract:
A large number of old buildings have been identified as having potentially critical detailing to resist earthquakes. The main reinforcement of lap-spliced columns just above the joint region, discontinuous bottom beam reinforcement, and little or no joint transverse reinforcement are the most critical details of interior beam column joints in such buildings. This structural type constitutes a large share of the building stock, both in developed and developing countries, and hence it represents a substantial exposure. Direct observation of damaged structures, following the Algiers 2003 earthquake, has shown that damage occurs usually at the beam-column joints, with failure in bending or shear, depending on geometry and reinforcement distribution and type. While substantial literature exists for the design of concrete frame joints to withstand this type of failure, after the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore; there exists a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns
Procedia PDF Downloads 4201054 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure
Authors: H. Nikzad, S. Yoshitomi
Abstract:
In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures
Procedia PDF Downloads 1761053 Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures
Authors: Mohammed Mahmood, Walid Tizani, Carlo Sansour
Abstract:
In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5 mm to 6.3 mm seems to be higher than that when increasing it from 6.3 mm to 8 mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls.Keywords: anchored bolted connection, Extended Hollobolt, column faces bending, concrete filled hollow sections
Procedia PDF Downloads 4261052 Corrosion of Concrete Reinforcing Steel Bars Tested and Compared Between Various Protection Methods
Authors: P. van Tonder, U. Bagdadi, B. M. D. Lario, Z. Masina, T. R. Motshwari
Abstract:
This paper analyses how concrete reinforcing steel bars corrode and how it can be minimised through the use of various protection methods against corrosion, such as metal-based paint, alloying, cathodic protection and electroplating. Samples of carbon steel bars were protected, using these four methods. Tests performed on the samples included durability, electrical resistivity and bond strength. Durability results indicated relatively low corrosion rates for alloying, cathodic protection, electroplating and metal-based paint. The resistivity results indicate all samples experienced a downward trend, despite erratic fluctuations in the data, indicating an inverse relationship between electrical resistivity and corrosion rate. The results indicated lowered bond strengths when the reinforced concrete was cured in seawater compared to being cured in normal water. It also showed that higher design compressive strengths lead to higher bond strengths which can be used to compensate for the loss of bond strength due to corrosion in a real-world application. In terms of implications, all protection methods have the potential to be effective at resisting corrosion in real-world applications, especially the alloying, cathodic protection and electroplating methods. The metal-based paint underperformed by comparison, most likely due to the nature of paint in general which can fade and chip away, revealing the steel samples and exposing them to corrosion. For alloying, stainless steel is the suggested material of choice, where Y-bars are highly recommended as smooth bars have a much-lowered bond strength. Cathodic protection performed the best of all in protecting the sample from corrosion, however, its real-world application would require significant evaluation into the feasibility of such a method.Keywords: protection methods, corrosion, concrete, reinforcing steel bars
Procedia PDF Downloads 1781051 Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater
Authors: T. J. Jemi Jeya, V. Sriram
Abstract:
Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (00, 150, 300). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack.Keywords: Caisson breakwater, pile supported breakwater, quarter circle breakwater, vertical breakwater
Procedia PDF Downloads 1561050 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures
Authors: Jelena R. Pejović, Nina N. Serdar
Abstract:
This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building
Procedia PDF Downloads 367