Search results for: advanced radiation detection and measurement
8284 A Weighted Group EI Incorporating Role Information for More Representative Group EI Measurement
Authors: Siyu Wang, Anthony Ward
Abstract:
Emotional intelligence (EI) is a well-established personal characteristic. It has been viewed as a critical factor which can influence an individual's academic achievement, ability to work and potential to succeed. When working in a group, EI is fundamentally connected to the group members' interaction and ability to work as a team. The ability of a group member to intelligently perceive and understand own emotions (Intrapersonal EI), to intelligently perceive and understand other members' emotions (Interpersonal EI), and to intelligently perceive and understand emotions between different groups (Cross-boundary EI) can be considered as Group emotional intelligence (Group EI). In this research, a more representative Group EI measurement approach, which incorporates the information of the composition of a group and an individual’s role in that group, is proposed. To demonstrate the claim of being more representative Group EI measurement approach, this study adopts a multi-method research design, involving a combination of both qualitative and quantitative techniques to establish a metric of Group EI. From the results, it can be concluded that by introducing the weight coefficient of each group member on group work into the measurement of Group EI, Group EI will be more representative and more capable of understanding what happens during teamwork than previous approaches.Keywords: case study, emotional intelligence, group EI, multi-method research
Procedia PDF Downloads 1268283 A Case Study of Deep Learning for Disease Detection in Crops
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture
Procedia PDF Downloads 2598282 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor
Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo
Abstract:
The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.Keywords: automated equipment, management, multi-beam sensor, pothole
Procedia PDF Downloads 2248281 Impact of Contemporary Performance Measurement System and Organization Justice on Academic Staff Work Performance
Authors: Amizawati Mohd Amir, Ruhanita Maelah, Zaidi Mohd Noor
Abstract:
As part of the Malaysia Higher Institutions' Strategic Plan in promoting high-quality research and education, the Ministry of Higher Education has introduced various instrument to assess the universities performance. The aims are that university will produce more commercially-oriented research and continue to contribute in producing professional workforce for domestic and foreign needs. Yet the spirit of the success lies in the commitment of university particularly the academic staff to translate the vision into reality. For that reason, the element of fairness and justice in assessing individual academic staff performance is crucial to promote directly linked between university and individual work goals. Focusing on public research universities (RUs) in Malaysia, this study observes at the issue through the practice of university contemporary performance measurement system. Accordingly management control theory has conceptualized that contemporary performance measurement consisting of three dimension namely strategic, comprehensive and dynamic building upon equity theory, the relationships between contemporary performance measurement system and organizational justice and in turn the effect on academic staff work performance are tested based on online survey data administered on 365 academic staff from public RUs, which were analyzed using statistics analysis SPSS and Equation Structure Modeling. The findings validated the presence of strategic, comprehensive and dynamic in the contemporary performance measurement system. The empirical evidence also indicated that contemporary performance measure and procedural justice are significantly associated with work performance but not for distributive justice. Furthermore, procedural justice does mediate the relationship between contemporary performance measurement and academic staff work performance. Evidently, this study provides evidence on the importance of perceptions of justice towards influencing academic staff work performance. This finding may be a fruitful input in the setting up academic staff performance assessment policy.Keywords: comprehensive, dynamic, distributive justice, contemporary performance measurement system, strategic, procedure justice, work performance
Procedia PDF Downloads 4098280 Determination of Prostate Specific Membrane Antigen (PSMA) Based on Combination of Nanocomposite Fe3O4@Ag@JB303 and Magnetically Assisted Surface Enhanced Raman Spectroscopy (MA-SERS)
Authors: Zuzana Chaloupková, Zdeňka Marková, Václav Ranc, Radek Zbořil
Abstract:
Prostate cancer is now one of the most serious oncological diseases in men with an incidence higher than that of all other solid tumors combined. Diagnosis of prostate cancer usually involves detection of related genes or detection of marker proteins, such as PSA. One of the new potential markers is PSMA (prostate specific membrane antigen). PSMA is a unique membrane bound glycoprotein, which is considerably overexpressed on prostate cancer as well as neovasculature of most of the solid tumors. Commonly applied methods for a detection of proteins include techniques based on immunochemical approaches, including ELISA and RIA. Magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) can be considered as an interesting alternative to generally accepted approaches. This work describes a utilization of MA-SERS in a detection of PSMA in human blood. This analytical platform is based on magnetic nanocomposites Fe3O4@Ag, functionalized by a low-molecular selector labeled as JB303. The system allows isolating the marker from the complex sample using application of magnetic force. Detection of PSMA is than performed by SERS effect given by a presence of silver nanoparticles. This system allowed us to analyze PSMA in clinical samples with limits of detection lower than 1 ng/mL.Keywords: diagnosis, cancer, PSMA, MA-SERS, Ag nanoparticles
Procedia PDF Downloads 2298279 Digital Image Correlation Based Mechanical Response Characterization of Thin-Walled Composite Cylindrical Shells
Authors: Sthanu Mahadev, Wen Chan, Melanie Lim
Abstract:
Anisotropy dominated continuous-fiber composite materials have garnered attention in numerous mechanical and aerospace structural applications. Tailored mechanical properties in advanced composites can exhibit superiority in terms of stiffness-to-weight ratio, strength-to-weight ratio, low-density characteristics, coupled with significant improvements in fatigue resistance as opposed to metal structure counterparts. Extensive research has demonstrated their core potential as more than just mere lightweight substitutes to conventional materials. Prior work done by Mahadev and Chan focused on formulating a modified composite shell theory based prognosis methodology for investigating the structural response of thin-walled circular cylindrical shell type composite configurations under in-plane mechanical loads respectively. The prime motivation to develop this theory stemmed from its capability to generate simple yet accurate closed-form analytical results that can efficiently characterize circular composite shell construction. It showcased the development of a novel mathematical framework to analytically identify the location of the centroid for thin-walled, open cross-section, curved composite shells that were characterized by circumferential arc angle, thickness-to-mean radius ratio, and total laminate thickness. Ply stress variations for curved cylindrical shells were analytically examined under the application of centric tensile and bending loading. This work presents a cost-effective, small-platform experimental methodology by taking advantage of the full-field measurement capability of digital image correlation (DIC) for an accurate assessment of key mechanical parameters such as in-plane mechanical stresses and strains, centroid location etc. Mechanical property measurement of advanced composite materials can become challenging due to their anisotropy and complex failure mechanisms. Full-field displacement measurements are well suited for characterizing the mechanical properties of composite materials because of the complexity of their deformation. This work encompasses the fabrication of a set of curved cylindrical shell coupons, the design and development of a novel test-fixture design and an innovative experimental methodology that demonstrates the capability to very accurately predict the location of centroid in such curved composite cylindrical strips via employing a DIC based strain measurement technique. Error percentage difference between experimental centroid measurements and previously estimated analytical centroid results are observed to be in good agreement. The developed analytical modified-shell theory provides the capability to understand the fundamental behavior of thin-walled cylindrical shells and offers the potential to generate novel avenues to understand the physics of such structures at a laminate level.Keywords: anisotropy, composites, curved cylindrical shells, digital image correlation
Procedia PDF Downloads 3178278 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study
Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui
Abstract:
In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas
Procedia PDF Downloads 3458277 Interaction with Earth’s Surface in Remote Sensing
Authors: Spoorthi Sripad
Abstract:
Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation
Procedia PDF Downloads 608276 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble
Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi
Abstract:
Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble
Procedia PDF Downloads 2218275 Ultra-Sensitive and Real Time Detection of ZnO NW Using QCM
Authors: Juneseok You, Kuewhan Jang, Chanho Park, Jaeyeong Choi, Hyunjun Park, Sehyun Shin, Changsoo Han, Sungsoo Na
Abstract:
Nanomaterials occur toxic effects to human being or ecological systems. Some sensors have been developed to detect toxic materials and the standard for toxic materials has been established. Zinc oxide nanowire (ZnO NW) is known for toxic material. By ionizing in cell body, ionized Zn ions are overexposed to cell components, which cause critical damage or death. In this paper, we detected ZnO NW in water using QCM (Quartz Crystal Microbalance) and ssDNA (single strand DNA). We achieved 30 minutes of response time for real time detection and 100 pg/mL of limit of detection (LOD).Keywords: zinc oxide nanowire, QCM, ssDNA, toxic material, biosensor
Procedia PDF Downloads 4288274 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems
Authors: Craig Mahlasi
Abstract:
The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time
Procedia PDF Downloads 1628273 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer
Authors: R. Loukil, M. Chtourou, T. Damak
Abstract:
In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability
Procedia PDF Downloads 3748272 Treatment of Sanitary Landfill Leachate by Advanced Oxidation Techniques
Authors: R. Kerbachi , Y. Medkour, F. Sahnoune
Abstract:
The integrated waste management is an important aspect in the implementation of sustainable development. Leachate generated by sanitary landfills is a high-strength wastewater that is likely to contain large amounts of organic and inorganic matter, with humic substances, as well as ammonia nitrogen, heavy metals, chlorinated organic and inorganic salts. Untreated leachates create a great potential for harm to the environment, they can permeate ground water or mix with surface water and contribute to the pollution of soil, ground water, and surface water. In Algeria, the treatment of landfill leachate is the weakest link in the solid waste management. This study focuses on the evaluation of the pollution load carried by leachate produced in a former sanitary landfill located to the west of Algiers and the implementation of advanced oxidation treatment (advanced oxidation process, AOP), Fenton, electro-Fenton etc. The characterization of these leachates shows that they have a high organic load, mineral and nitrogen. Measured COD reaches very high values of the order of 5000 to 20,000 mg O2 / L. On this non-biodegradable leachate, treatment tests have been carried out by the methods of coagulation-flocculation, Fenton oxidation, electrocoagulation and electro-Fenton. The removal efficiencies of pollution obtained for each of these modes of treatment are respectively 69, 80, 84 and 97%. The study shows that advanced oxidation processes are very suitable for the treatment of poorly biodegradable leachate.Keywords: advanced oxidation processes, electrocoagulation, electro-Fenton, leachates treatment, sanitary landfill
Procedia PDF Downloads 2988271 A Finite Memory Residual Generation Filter for Fault Detection
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults.Keywords: residual generation filter, finite memory structure, kalman filter, fast detection
Procedia PDF Downloads 6988270 Integrating RAG with Prompt Engineering for Dynamic Log Parsing and Anomaly Detections
Authors: Liu Lin Xin
Abstract:
With the increasing complexity of systems, log parsing and anomaly detection have become crucial for maintaining system stability. However, traditional methods often struggle with adaptability and accuracy, especially when dealing with rapidly evolving log content and unfamiliar domains. To address these challenges, this paper proposes approach that integrates Retrieval Augmented Generation (RAG) technology with Prompt Engineering for Large Language Models, applied specifically in LogPrompt. This approach enables dynamic log parsing and intelligent anomaly detection by combining real-time information retrieval with prompt optimization. The proposed method significantly enhances the adaptability of log analysis and improves the interpretability of results. Experimental results on several public datasets demonstrate the method's superior performance, particularly in scenarios lacking training data, where it significantly outperforms traditional methods. This paper introduces a novel technical pathway for log parsing and anomaly detection, showcasing the substantial theoretical value and practical potential.Keywords: log parsing, anomaly detection, RAG, prompt engineering, LLMs
Procedia PDF Downloads 358269 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: building detection, local maximum filtering, matched filtering, multiscale
Procedia PDF Downloads 3208268 Digital Forgery Detection by Signal Noise Inconsistency
Authors: Bo Liu, Chi-Man Pun
Abstract:
A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.Keywords: forgery detection, splicing forgery, noise estimation, noise
Procedia PDF Downloads 4618267 Revealing Thermal Degradation Characteristics of Distinctive Oligo-and Polisaccharides of Prebiotic Relevance
Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár
Abstract:
As natural prebiotic (non-digestible) carbohydrates stimulate the growth of colon microflora and contribute to maintain the health of the host, analytical studies aiming at revealing the chemical behavior of these beneficial food components came to the forefront of interest. Food processing (especially baking) may lead to a significant conversion of the parent compounds, hence it is of utmost importance to characterize the transformation patterns and the plausible decomposition products formed by thermal degradation. The relevance of this work is confirmed by the wide-spread use of these carbohydrates (fructo-oligosaccharides, cyclodextrins, raffinose and resistant starch) in the food industry. More and more functional foodstuffs are being developed based on prebiotics as bioactive components. 12 different types of oligosaccharides have been investigated in order to reveal their thermal degradation characteristics. Different carbohydrate derivatives (D-fructose and D-glucose oligomers and polymers) have been exposed to elevated temperatures (150 °C 170 °C, 190 °C, 210 °C, and 220 °C) for 10 min. An advanced HPLC method was developed and used to identify the decomposition products of carbohydrates formed as a consequence of thermal treatment. Gradient elution was applied with binary solvent elution (acetonitrile, water) through amine based carbohydrate column. Evaporative light scattering (ELS) proved to be suitable for the reliable detection of the UV/VIS inactive carbohydrate degradation products. These experimental conditions and applied advanced techniques made it possible to survey all the formed intermediers. Change in oligomer distribution was established in cases of all studied prebiotics throughout the thermal treatments. The obtained results indicate increased extent of chain degradation of the carbohydrate moiety at elevated temperatures. Prevalence of oligomers with shorter chain length and even the formation of monomer sugars (D-glucose and D-fructose) might be observed at higher temperatures. Unique oligomer distributions, which have not been described previously are revealed in the case of each studied, specific carbohydrate, which might result in various prebiotic activities. Resistant starches exhibited high stability when being thermal treated. The degradation process has been modeled by a plausible reaction mechanism, in which proton catalyzed degradation and chain cleavage take place.Keywords: prebiotics, thermal degradation, fructo-oligosaccharide, HPLC, ELS detection
Procedia PDF Downloads 3058266 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation
Authors: Feng Yin
Abstract:
Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation
Procedia PDF Downloads 2798265 In-vitro Metabolic Fingerprinting Using Plasmonic Chips by Laser Desorption/Ionization Mass Spectrometry
Authors: Vadanasundari Vedarethinam, Kun Qian
Abstract:
The metabolic analysis is more distal over proteomics and genomics engaging in clinics and needs rationally distinct techniques, designed materials, and device for clinical diagnosis. Conventional techniques such as spectroscopic techniques, biochemical analyzers, and electrochemical have been used for metabolic diagnosis. Currently, there are four major challenges including (I) long-term process in sample pretreatment; (II) difficulties in direct metabolic analysis of biosamples due to complexity (III) low molecular weight metabolite detection with accuracy and (IV) construction of diagnostic tools by materials and device-based platforms for real case application in biomedical applications. Development of chips with nanomaterial is promising to address these critical issues. Mass spectroscopy (MS) has displayed high sensitivity and accuracy, throughput, reproducibility, and resolution for molecular analysis. Particularly laser desorption/ ionization mass spectrometry (LDI MS) combined with devices affords desirable speed for mass measurement in seconds and high sensitivity with low cost towards large scale uses. We developed a plasmonic chip for clinical metabolic fingerprinting as a hot carrier in LDI MS by series of chips with gold nanoshells on the surface through controlled particle synthesis, dip-coating, and gold sputtering for mass production. We integrated the optimized chip with microarrays for laboratory automation and nanoscaled experiments, which afforded direct high-performance metabolic fingerprinting by LDI MS using 500 nL of serum, urine, cerebrospinal fluids (CSF) and exosomes. Further, we demonstrated on-chip direct in-vitro metabolic diagnosis of early-stage lung cancer patients using serum and exosomes without any pretreatment or purifications. To our best knowledge, this work initiates a bionanotechnology based platform for advanced metabolic analysis toward large-scale diagnostic use.Keywords: plasmonic chip, metabolic fingerprinting, LDI MS, in-vitro diagnostics
Procedia PDF Downloads 1638264 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots
Authors: G. Santamato, M. Solazzi, A. Frisoli
Abstract:
Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.Keywords: pantograph models, phase plots, structural health monitoring, damage detection
Procedia PDF Downloads 3638263 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1538262 Intrusion Detection In MANET Using Game Theory
Authors: S. B. Kumbalavati, J. D. Mallapur, K. Y. Bendigeri
Abstract:
A mobile Ad-hoc network (MANET) is a multihop wireless network where nodes communicate each other without any pre-deployed infrastructure. There is no central administrating unit. Hence, MANET is generally prone to many of the attacks. These attacks may alter, release or deny data. These attacks are nothing but intrusions. Intrusion is a set of actions that attempts to compromise integrity, confidentiality and availability of resources. A major issue in the design and operation of ad-hoc network is sharing the common spectrum or common channel bandwidth among all the nodes. We are performing intrusion detection using game theory approach. Game theory is a mathematical tool for analysing problems of competition and negotiation among the players in any field like marketing, e-commerce and networking. In this paper mathematical model is developed using game theory approach and intruders are detected and removed. Bandwidth utilization is estimated and comparison is made between bandwidth utilization with intrusion detection technique and without intrusion detection technique. Percentage of intruders and efficiency of the network is analysed.Keywords: ad-hoc network, IDS, game theory, sensor networks
Procedia PDF Downloads 3878261 A Robust Software for Advanced Analysis of Space Steel Frames
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.Keywords: advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame
Procedia PDF Downloads 3078260 Chromosomal Damage in Human Lymphocytes by Ultraviolet Radiation
Authors: Felipe Osorio Ospina, Maria Adelaida Mejia Arango, Esteban Onésimo Vallejo Agudelo, Victoria Lucía Dávila Osorio, Natalia Vargas Grisales, Lina María Martínez Sanchez, Camilo Andrés Agudelo Vélez, Ángela Maria Londoño García, Isabel Cristina Ortiz Trujillo
Abstract:
Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios States and skin cancers. Objective: Identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for a groups 1 to 3 seconds (p<0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident.Keywords: ultraviolet rays, lymphocytes, chromosome breakpoints, photodamage
Procedia PDF Downloads 4288259 Ultraviolet Radiation and Chromosomal Damage in Human Lymphocytes
Authors: Felipe Osorio Ospina, Maria Adelaida Mejia Arango, Esteban Onésimo Vallejo Agudelo, Victoria Lucía Dávila Osorio, Natalia Vargas Grisales, Lina María Martínez Sanchez, Camilo Andrés Agudelo Vélez, Ángela Maria Londoño García, Isabel Cristina Ortiz Trujillo
Abstract:
Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios states and skin cancers. Objective: To identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from the heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin, and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for groups 1 to 3 seconds (p < 0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident.Keywords: chromosome breakpoints, lymphocytes, photodamage, ultraviolet rays
Procedia PDF Downloads 5798258 Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-SMHSD) Framework Development for Low-Resource Areas
Authors: Wan You Ning
Abstract:
Addressing the rising prevalence of mental health issues among youths, the Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-ASMHSD) framework proposes the implementation of advanced mental health services in low-resource areas to further instil mental health resilience among students in a school-based setting. Recognizing the unsustainability of direct service delivery due to rapidly growing demands and costs, the MARS-ASMHSD framework endorses the deinstitutionalization of mental healthcare and explores a tiered, multi-dimensional approach in mental healthcare provision, establishing advanced school-based mental health service delivery. The framework is developed based on sustainable and credible evidence-based practices and modifications of existing mental health service deliveries in Asia, including Singapore, Thailand, Malaysia, Japan, and Taiwan. Dissemination of the framework model for implementation will enable a more progressive and advanced school-based mental health service delivery in low-resource areas. Through the evaluation of the mental health landscape and the role of stakeholders in the respective countries, the paper concludes with a multi-dimensional framework model for implementation in low-resource areas. A mixed-method independent research study is conducted to facilitate the framework's development.Keywords: mental health, youths, school-based services, framework development
Procedia PDF Downloads 478257 An Embedded System for Early Detection of Gas Leakage in Hospitals and Industries
Authors: Sehreen Moorat, Hiba, Maham Mahnoor, Faryal Soomro
Abstract:
Leakage of gases in a system makes infrastructures and users vulnerable; it can occur due to its environmental conditions or old groundwork. In hospitals and industries, it is very important to detect any small level of gas leakage because of their sensitivity. In this research, a portable detection system for the small leakage of gases has been developed, gas sensor (MQ-2) is used to find leakage when it’s at its initial phase. The sensor and transmitting module senses the change in level of gas by using a sensing circuit. When a concentration of gas reach at a specified threshold level, it will activate an alarm and send the alarming situation notification to receiver through GSM module. The proposed system works well in hospitals, home, and industries.Keywords: gases, detection, Arduino, MQ-2, alarm
Procedia PDF Downloads 2068256 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1188255 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images
Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei
Abstract:
Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.Keywords: miner self-rescue, object detection, underground mine, YOLO
Procedia PDF Downloads 83