Search results for: advanced material synthesis
9603 Optimization of Adsorption Performance of Lignocellulosic Waste Pretreatment and Chemical Modification
Authors: Bendjelloul Meriem, Elandaloussi El Hadj
Abstract:
In this work, we studied the effectiveness of a lignocellulosic waste (wood sawdust) for the removal of cadmium Cd (II) in aqueous solution. The adsorbent material SBO-CH2-CO2Na has been prepared by alkaline pretreatment of wood sawdust followed by a chemical modification with sodium salt of chloroacetic acid. The characterization of the as-prepared material by FTIR has proven that the grafting of acetate spacer took actually place in the lignocellulosic backbone by the appearance of characteristic band of carboxylic groups in the IR spectrum. The removal study of Cd2+ by SBO-CH2-CO2Na material at the solid-liquid interface was carried out by kinetics, sorption isotherms, effect of temperature and thermodynamic parameters were evaluated. The last part of this work was dedicated to assess the regenerability of the adsorbent material after three reuse cycles. The results indicate that SBO-CH2-CO2Na matrix possesses a high effectiveness in removing Cd (II) with an adsorption capacity of 222.22 mg/g, yet a better value that those of many low-cost adsorbents so far reported in the literature. The results found in the course of this study suggest that ionic exchange is the most appropriate mechanism involved in the removal of cadmium ions.Keywords: adsorption, cadmium, isotherms, lignocellulosic, regenerability
Procedia PDF Downloads 3319602 Effect of Water Absorption on the Fatigue Behavior of Glass/Polyester Composite
Authors: Djamel Djeghader, Bachir Redjel
Abstract:
The composite materials of glass fibers can be used as a repair material for damage elements under repeated stresses, and in various environments. A cyclic bending characterization of a glass/polyester composite material was carried out with consideration of the period of immersion in water. These tests describe the behavior of materials and identify the mechanical fatigue characteristics using the Wohler Curve for different immersion time: 0, 90, 180 and 270 days in water. These curves are characterized by a dispersion in the lifetimes were modeled by straight whose intercepts are very similar and comparable to the static strength. This material deteriorates fatigue at a constant rate, which increases with increasing immersion time in water at a constant speed. The endurance limit seems to be independent of the immersion time in the water.Keywords: fatigue, composite, glass, polyester, immersion, wohler
Procedia PDF Downloads 3149601 Novel Correlations for P-Substituted Phenols in NMR Spectroscopy
Authors: Khodzhaberdi Allaberdiev
Abstract:
Substituted phenols are widely used for the synthesis of advanced polycondensation polymers. In terms of the structure regularity and practical value of obtained polymers are of special interest the p-substituted phenols. The lanthanide induced shifts (LIS) of the aromatic ring and the OH protons by addition Eu(fod)3 to various p-substituted phenols in CDCL3 solvent were measured Nuclear Magnetic Resonance spectroscopy. A linear relationship has been observed between the LIS of protons (∆=δcomplex –δsubstrate) and Eu(fod)3/substrate molar ratios. The LIS protons of the investigated phenols decreases in the following order: ОН > ortho > meta. The LIS of these protons also depends on both steric and electronic effects of p-substituents. The effect on the LIS of protons steric hindrance of substituents by way of example p-substituted alkyl phenols was studied. Alkyl phenols exhibit pronounced europium- induced shifts, their sensitivity increasing in the order: CH3 > C2H5 > sym-C5H11 > tert-C5H11 > tert-C4H9, i.e. in parallel with decreasing steric hindrance. The influence steric hindrance p-substituents of phenols on the LIS of protons in sequence following decreases: OH> meta >ortho. Contrary to the expectations, it is found that the LIS of the ortho protons an excellent linear correlation with meta-substituent constants, σm for 14 p-substituted phenols: ∆H2, 6=8.165-9.896 σm (r2=0,999). Moreover, a linear correlation between the LIS of the ortho protons and ionization constants, РКa of p-substituted phenols has been revealed. Similarly, the linear relationships for the LIS of the meta and the OH protons were obtained. Use the LIS of the phenolic hydroxyl groups for linear relationships is necessary with care, because of the signal broadening of the OH protons. New constants may be determinate with unusual case by this approach.Keywords: novel correlations, NMR spectroscopy, phenols, shift reagent
Procedia PDF Downloads 3019600 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method
Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum
Abstract:
Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method
Procedia PDF Downloads 929599 Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests
Authors: M. Aboudalle, Le Btth, M. Sari, F. Meftah
Abstract:
In parallel with the appearance of new materials, brick masonry had and still has an essential part of the construction market today, with new technical challenges in designing bricks to meet additional requirements. Being used in structural applications, predicting the performance of clay brick masonry allows a significant cost reduction, in terms of practical experimentation. The behavior of masonry walls depends on the behavior of their elementary components, such as bricks, joints, and coatings. Therefore, it is necessary to consider it at different scales (from the scale of the intrinsic material to the real scale of the wall) and then to develop appropriate models, using numerical simulations. The work presented in this paper focuses on the mechanical characterization of the terracotta material at ambient temperature. As a result, the static Young’s modulus obtained from the flexural test shows different values in comparison with the compression test, as well as with the dynamic Young’s modulus obtained from the Impulse excitation of vibration test. Moreover, the Young's modulus varies according to the direction in which samples are extracted, where the values in the extrusion direction diverge from the ones in the orthogonal directions. Based on these results, hollow bricks can be considered as transversely isotropic bimodulus material.Keywords: bimodulus material, hollow clay brick, ımpulse excitation of vibration, transversely isotropic material, young’s modulus
Procedia PDF Downloads 1979598 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai
Abstract:
Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities
Procedia PDF Downloads 3179597 Determination of Temperature Dependent Characteristic Material Properties of Commercial Thermoelectric Modules
Authors: Ahmet Koyuncu, Abdullah Berkan Erdogmus, Orkun Dogu, Sinan Uygur
Abstract:
Thermoelectric modules are integrated to electronic components to keep their temperature in specific values in electronic cooling applications. They can be used in different ambient temperatures. The cold side temperatures of thermoelectric modules depend on their hot side temperatures, operation currents, and heat loads. Performance curves of thermoelectric modules are given at most two different hot surface temperatures in product catalogs. Characteristic properties are required to select appropriate thermoelectric modules in thermal design phase of projects. Generally, manufacturers do not provide characteristic material property values of thermoelectric modules to customers for confidentiality. Common commercial software applied like ANSYS ICEPAK, FloEFD, etc., include thermoelectric modules in their libraries. Therefore, they can be easily used to predict the effect of thermoelectric usage in thermal design. Some software requires only the performance values in different temperatures. However, others like ICEPAK require three temperature-dependent equations for material properties (Seebeck coefficient (α), electrical resistivity (β), and thermal conductivity (γ)). Since the number and the variety of thermoelectric modules are limited in this software, definitions of characteristic material properties of thermoelectric modules could be required. In this manuscript, the method of derivation of characteristic material properties from the datasheet of thermoelectric modules is presented. Material characteristics were estimated from two different performance curves by experimentally and numerically in this study. Numerical calculations are accomplished in ICEPAK by using a thermoelectric module exists in the ICEPAK library. A new experimental setup was established to perform experimental study. Because of similar results of numerical and experimental studies, it can be said that proposed equations are approved. This approximation can be suggested for the analysis includes different type or brand of TEC modules.Keywords: electrical resistivity, material characteristics, thermal conductivity, thermoelectric coolers, seebeck coefficient
Procedia PDF Downloads 1799596 Synthesis and Antibacterial Evaluation of Natural Bioactive 3,4-DihydroisocoumarinAnalogues
Authors: Hummera Rafique, Aamer Saeed
Abstract:
Synthesis of structural analogues of various well known bioactive natural 3,4-dihydroisocoumarins viz. Scorzocreticin, Annulatomarin, Montroumarin, and Thunberginol B, have been carried out starting from 3,5-dimethoxy-4-methylphenyl acetic acid. 3,5-Dimethoxy-4-methylphenyl acetic acid was then condensed with various aryl acid chlorides (a-e) to afford the corresponding 6,8-dimethoxy-7-methyl-3-aryl isocoumarins (5a-e). The alkaline hydrolysis of isocoumarins yields keto-acids (3a-e), which were then reduced to hydroxyacids, followed by cyclodehydration with acetic anhydride furnish corresponding 3,4-dihydroisocoumarins (7a-e). Finally, demethylation of 3,4-dihydroisocoumarins was carried out to afford 6,8-dihydroxy-7-methyl-3-aryl-3,4-dihydroisocoumarins (7a-e). Antibacterial evaluation of all the synthesized compounds were carried out against ten bacterial strains, it was concluded that isocoumarins (5a-e) and 3,4-dihydroisocoumarins (7a-e) are more active against gram positive bacteria then gram negative. However, the 6,8-dihydroxy-3,4-dihydroisocoumarin derivatives (8a-e) are more active against gram negative then gram positive.Keywords: 3, 5-Dimethoxy-4-methylhomophthalic acid, natural 3, 4-Dihydroisocoumarin analogues, antibacterial activity, isocoumarins, demethylation
Procedia PDF Downloads 4039595 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste
Authors: Suneeta Kumari, Abanti Sahoo
Abstract:
Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan
Procedia PDF Downloads 3219594 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs
Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi
Abstract:
Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.Keywords: active damper, fixation system, hardened material, passive damper
Procedia PDF Downloads 2209593 Feasibility of On-Demand Transport Systems (ODT) in Oran Wilaya: Geomatics Study
Authors: Brahmia Nadjet
Abstract:
The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transport systems (ODT) are very efficient; they rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible of the advance reservation, planning and organization, and studying the different ODT criteria (organizational, technical, geographical, etc.). As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This communication presents the study of an ODT implementation in the west of Algeria, by developing the Geomatics side of the study. This part requires the use of specific systems (such as GIS, RDBMS), so we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.Keywords: ODT, geomatics, GIS, transport systems
Procedia PDF Downloads 5029592 Heterogeneous Photocatalytic Degradation of Methylene Blue by Montmorillonite/CuxCd1-xs Nanomaterials
Authors: Horiya Boukhatem, Lila Djouadi, Hussein Khalaf, Rufino Manuel Navarro Yerga, Fernando Vaquero Gonzalez
Abstract:
Heterogeneous photo catalysis is an alternative method for the removal of organic pollutants in water. The photo excitation of a semi-conductor under ultra violet (UV) irradiation entails the production of hydroxyl radicals, one of the most oxidative chemical species. The objective of this study is the synthesis of nano materials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) and their application in photocatalysis of a cationic dye: methylene blue. The synthesized nano materials and montmorillonite were characterized by fourier transform infrared (FTIR). Test results of photo catalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nano materials montmorillonite/ CuxCd1-xS increase with the increasing of Cu concentration and it is significantly higher compared to that of sodium montmorillonite alone. The application of the kinetic model of Langmuir-Hinshelwood (L-H) to the photocatalytic test results showed that the reaction rate obeys to the first-order kinetic model.Keywords: heterogeneous photo catalysis, methylene blue, montmorillonite, nano material
Procedia PDF Downloads 3399591 Synthesis, Growth, Characterization and Quantum Chemical Investigations of an Organic Single Crystal: 2-Amino- 4-Methylpyridinium Quinoline- 2-Carboxylate
Authors: Anitha Kandasamy, Thirumurugan Ramaiah
Abstract:
Interestingly, organic materials exhibit large optical nonlinearity with quick responses and having the flexibility of molecular tailoring using computational modelling and favourable synthetic methodologies. Pyridine based organic compounds and carboxylic acid contained aromatic compounds play a crucial role in crystal engineering of NCS complexes that displays admirable optical nonlinearity with fast response and favourable physicochemical properties such as low dielectric constant, wide optical transparency and large laser damage threshold value requires for optoelectronics device applications. Based on these facts, it was projected to form an acentric molecule of π-conjugated system interaction with appropriately replaced electron donor and acceptor groups for achieving higher SHG activity in which quinoline-2-carboyxlic acid is chosen as an electron acceptor and capable of acting as an acid as well as a base molecule, while 2-amino-4-methylpyridine is used as an electron donor and previously employed in numerous proton transfer complexes for synthesis of NLO materials for optoelectronic applications. 2-amino-4-mehtylpyridinium quinoline-2-carboxylate molecular complex (2AQ) is having π-donor-acceptor groups in which 2-amino-4-methylpyridine donates one of its electron to quinoline -2-carboxylic acid thereby forming a protonated 2-amino-4-methyl pyridinium moiety and mono ionized quinoline-2-carboxylate moiety which are connected via N-H…O intermolecular interactions with non-centrosymmetric crystal packing arrangement at microscopic scale is accountable to the enhancement of macroscopic second order NLO activity. The 2AQ crystal was successfully grown by a slow evaporation solution growth technique and its structure was determined in orthorhombic crystal system with acentric, P212121, space group. Hirshfeld surface analysis reveals that O…H intermolecular interactions primarily contributed with 31.0 % to the structural stabilization of 2AQ. The molecular structure of title compound has been confirmed by 1H and 13C NMR spectral studies. The vibrational modes of functional groups present in 2AQ have been assigned by using FTIR and FT-Raman spectroscopy. The grown 2AQ crystal exhibits high optical transparency with lower cut-off wavelength (275 nm) within the region of 275-1500 nm. The laser study confirmed that 2AQ exhibits high SHG efficiency of 12.6 times greater than that of KDP. TGA-DTA analysis revealed that 2AQ crystal had a thermal stability of 223 °C. The low dielectric constant and low dielectric loss at higher frequencies confirmed good crystalline nature with fewer defects of grown 2AQ crystal. The grown crystal exhibits soft material and positive photoconduction behaviour. Mulliken atomic distribution and FMOs analysis suggested that the strong intermolecular hydrogen bonding which lead to the enhancement of NLO activity. These properties suggest that 2AQ crystal is a suitable material for optoelectronic and laser frequency conversion applications.Keywords: crystal growth, NLO activity, proton transfer complex, quantum chemical investigation
Procedia PDF Downloads 1229590 Chemical Synthesis, Electrical and Antibacterial Properties of Polyaniline/Gold Nanocomposites
Authors: L. N. Shubha, M. Kalpana, P. Madhusudana Rao
Abstract:
Polyaniline/gold (PANI/Au) nanocomposite was prepared by in-situ chemical oxidation polymerization method. The synthesis involved the formation of polyaniline-gold nanocomposite, by in-situ redox reaction and the dispersion of gold nano particles throughout the polyaniline matrix. The nanocomposites were characterized by XRD, FTIR, TEM and UV-visible spectroscopy. The characteristic peaks in FTIR and UV-visible spectra confirmed the expected structure of polymer as reported in the literature. Further, transmission electron microscopy (TEM) confirmed the formation of gold nano particles. The crystallite size of 30 nm for nanoAu was supported by the XRD pattern. Further, the A.C. conductivity, dielectric constant (€’(w)) and dielectric loss (€’’(w)) of PANI/Au nano composite was measured using impedance analyzer. The effect of doping on the conductivity was investigated. The antibacterial activity was examined for this nano composite and it was observed that PANI/Au nanocomposite could be used as an antibacterial agent.Keywords: AC-conductivity, anti-microbial activity, dielectric constant, dielectric loss, polyaniline/gold (PANI/AU) nanocomposite
Procedia PDF Downloads 3839589 Electrochemistry of Metal Chalcogenides Semiconductor Materials; Theory and Practical Applications
Authors: Mahmoud Elrouby
Abstract:
Metal chalcogenide materials have wide spectrum of properties, for that these materials can be used in electronics, optics, magnetics, solar energy conversion, catalysis, passivation, ion sensing, batteries, and fuel cells. This work aims to, how can obtain these materials via electrochemical methods simply for further applications. The work regards in particular the systems relevant to the sulphur sub-group elements, i.e., sulphur, selenium, and tellurium. The role of electrochemistry in synthesis, development, and characterization of the metal chalcogenide materials and related devices is vital and important. Electrochemical methods as preparation tool offer the advantages of soft chemistry to access bulk, thin, nano film and epitaxial growth of a wide range of alloys and compounds, while as a characterization tool provides exceptional assistance in specifying the physicochemical properties of materials. Moreover, quite important applications and modern devices base their operation on electrochemical principles. Thereupon, our scope in the first place was to organize existing facts on the electrochemistry of metal chalcogenides regarding their synthesis, properties, and applications.Keywords: electrodeposition, metal chacogenides, semiconductors, applications
Procedia PDF Downloads 2989588 Microstructure and SEM Analysis of Joints Fabricated by FSW of Aluminum Alloys 5083 and 6063
Authors: Jaskirat Singh, Roshan Lal Virdi, Khushdeep Goyal
Abstract:
The purpose of this paper is to perform a microstructural analysis of Friction Stir Welded joints of aluminum alloys 6063 and 5083, also to check the properties of the weld zone by SEM analysis. FSW experiments were carried on CNC Vertical milling machine. The tools used for welding were the round cylindrical pin shape and square pin shape. It is found that Microstructure shows the uniformly distributed material with minimum heat affected zone and dense welded zone without any defect. Microstructures indicate that the weld material is defect free. The SEM shows the diffusion of material with base metal with proper bonding without any defect.Keywords: friction stir welding, aluminum alloy, microstructure, SEM analysis
Procedia PDF Downloads 3089587 Sustainability in Space: Material Efficiency in Space Missions
Authors: Hamda M. Al-Ali
Abstract:
From addressing fundamental questions about the history of the solar system to exploring other planets for any signs of life have always been the core of human space exploration. This triggered humans to explore whether other planets such as Mars could support human life on them. Therefore, many planned space missions to other planets have been designed and conducted to examine the feasibility of human survival on them. However, space missions are expensive and consume a large number of various resources to be successful. To overcome these problems, material efficiency shall be maximized through the use of reusable launch vehicles (RLV) rather than disposable and expendable ones. Material efficiency is defined as a way to achieve service requirements using fewer materials to reduce CO2 emissions from industrial processes. Materials such as aluminum-lithium alloys, steel, Kevlar, and reinforced carbon-carbon composites used in the manufacturing of spacecrafts could be reused in closed-loop cycles directly or by adding a protective coat. Material efficiency is a fundamental principle of a circular economy. The circular economy aims to cutback waste and reduce pollution through maximizing material efficiency so that businesses can succeed and endure. Five strategies have been proposed to improve material efficiency in the space industry, which includes waste minimization, introduce Key Performance Indicators (KPIs) to measure material efficiency, and introduce policies and legislations to improve material efficiency in the space sector. Another strategy to boost material efficiency is through maximizing resource and energy efficiency through material reusability. Furthermore, the environmental effects associated with the rapid growth in the number of space missions include black carbon emissions that lead to climate change. The levels of emissions must be tracked and tackled to ensure the safe utilization of space in the future. The aim of this research paper is to examine and suggest effective methods used to improve material efficiency in space missions so that space and Earth become more environmentally and economically sustainable. The objectives used to fulfill this aim are to identify the materials used in space missions that are suitable to be reused in closed-loop cycles considering material efficiency indicators and circular economy concepts. An explanation of how spacecraft materials could be re-used as well as propose strategies to maximize material efficiency in order to make RLVs possible so that access to space becomes affordable and reliable is provided. Also, the economic viability of the RLVs is examined to show the extent to which the use of RLVs has on the reduction of space mission costs. The environmental and economic implications of the increase in the number of space missions as a result of the use of RLVs are also discussed. These research questions are studied through detailed critical analysis of the literature, such as published reports, books, scientific articles, and journals. A combination of keywords such as material efficiency, circular economy, RLVs, and spacecraft materials were used to search for appropriate literature.Keywords: access to space, circular economy, material efficiency, reusable launch vehicles, spacecraft materials
Procedia PDF Downloads 1139586 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing
Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares
Abstract:
In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms
Procedia PDF Downloads 1909585 Static and Dynamical Analysis on Clutch Discs on Different Material and Geometries
Authors: Jairo Aparecido Martins, Estaner Claro Romão
Abstract:
This paper presents the static and cyclic stresses in combination with fatigue analysis resultant of loads applied on the friction discs usually utilized on industrial clutches. The material chosen to simulate the friction discs under load is aluminum. The numerical simulation was done by software COMSOLTM Multiphysics. The results obtained for static loads showed enough stiffness for both geometries and the material utilized. On the other hand, in the fatigue standpoint, failure is clearly verified, what demonstrates the importance of both approaches, mainly dynamical analysis. The results and the conclusion are based on the stresses on disc, counted stress cycles, and fatigue usage factor.Keywords: aluminum, industrial clutch, static and dynamic loading, numerical simulation
Procedia PDF Downloads 1889584 Top-Down Construction Method in Concrete Structures: Advantages and Disadvantages of This Construction Method
Authors: Hadi Rouhi Belvirdi
Abstract:
The construction of underground structures using the traditional method, which begins with excavation and the implementation of the foundation of the underground structure, continues with the construction of the main structure from the ground up, and concludes with the completion of the final ceiling, is known as the Bottom-Up Method. In contrast to this method, there is an advanced technique called the Top-Down Method, which has practically replaced the traditional construction method in large projects in industrialized countries in recent years. Unlike the traditional approach, this method starts with the construction of surrounding walls, columns, and the final ceiling and is completed with the excavation and construction of the foundation of the underground structure. Some of the most significant advantages of this method include the elimination or minimization of formwork surfaces, the removal of temporary bracing during excavation, the creation of some traffic facilities during the construction of the structure, and the possibility of using it in limited and high-traffic urban spaces. Despite these numerous advantages, unfortunately, there is still insufficient awareness of this method in our country, to the extent that it can be confidently stated that most stakeholders in the construction industry are unaware of the existence of such a construction method. However, it can be utilized as a very important execution option alongside other conventional methods in the construction of underground structures. Therefore, due to the extensive practical capabilities of this method, this article aims to present a methodology for constructing underground structures based on the aforementioned advanced method to the scientific community of the country, examine the advantages and limitations of this method and their impacts on time and costs, and discuss its application in urban spaces. Finally, some underground structures executed in the Ahvaz urban rail, which are being implemented using this advanced method to the best of our best knowledge, will be introduced.Keywords: top-down method, bottom-up method, underground structure, construction method
Procedia PDF Downloads 129583 Delay Studies in Construction: Synthesis, Critical Evaluation, and the Way Forward
Authors: Abdullah Alsehaimi
Abstract:
Over decades, there have been many studies of delay in construction, and this type of study continues to be popular in construction management research. A synthesis and critical evaluation of delay studies in developing countries reveals that poor project management is cited as one of the main causes of delay. However, despite such consensus, most of the previous studies fall short in providing clear recommendations demonstrating how project management practice could be improved. Moreover, the majority of recommendations are general and not devoted to solving the difficulties associated with particular delay causes. This paper aims to demonstrate that the root cause of this state of affairs is that typical research into delay tends to be descriptive and explanatory, making it inadequate for solving persistent managerial problems in construction. It is contended that many problems in construction could be mitigated via alternative research approaches, i.e. action and constructive research. Such prescriptive research methods can assist in the development and implementation of innovative tools tackling managerial problems of construction, including that of delay. In so doing, those methods will better connect research and practice, and thus strengthen the relevance of academic construction management.Keywords: construction delay, action research, constructive research, industrial engineering
Procedia PDF Downloads 4239582 Viability of On-Demand Transportation (ODT) in Oran Wilaya: Geomatics Study
Authors: Nadjet Brahmia
Abstract:
The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transportation (ODT) are very efficient; they rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible of the advance reservation, planning and organization, and studying the different ODT criteria (organizational, technical, geographical, etc.). As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This communication presents the study of an ODT implementation in the west of Algeria, by developing the Geomatics side of the study. This part requires the use of specific systems (such as GIS, RDBMS…), so we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.Keywords: ODT, geomatics, GIS, transport systems
Procedia PDF Downloads 5579581 Hydrogen Storage in Carbonized Coconut Meat (Kernel)
Authors: Viney Dixit, Rohit R. Shahi, Ashish Bhatnagar, P. Jain, T. P. Yadav, O. N. Srivastava
Abstract:
Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM.Keywords: coconut kernel, carbonization, hydrogenation, KCl, Mg, Ca
Procedia PDF Downloads 4229580 Difficulties in Providing Palliative Care in Rural India, West Bengal: Experience of an NGO
Authors: Aditya Manna
Abstract:
Introduction: As in any developing countries state of West Bengal in India has a huge burden of cancer patients in advanced stage coming from rural area where awareness regarding the usefulness of palliative care in rather poor. Objective: Our goal is to give a pain free good quality of life in these advanced stage cancer patients. Objective of this study is to identify the main difficulties in achieving the above goal in a rural village setting in India. Method: Advanced cancer patients in need of palliative care in various villages in of rural India were selected for this study. Their symptoms and managements in that rural surroundings were evaluated by an NGO (under the guidance of a senior palliative care specialist) working in that area. An attempt was made to identify the main obstacles in getting proper palliative care in a rural setting. Results: Pain, fatigue are the main symptoms effecting these patients. In most patients pain and other symptoms control were grossly inadequate due to lack of properly trained manpower in the rural India. However regular homecare visits by a group of social workers were of immense help in the last few months of life. NGO team was well guided by a palliative care specialist. Conclusion: There is a wide gap of trained manpower in this filled in rural areas of India. Dedicated groups from rural area itself need encouragement and proper training, so that difficult symptoms can be managed locally along with necessary social and psychological support to these patients.Keywords: palliative care, NGO, rural India, home care
Procedia PDF Downloads 2959579 An Overview on Aluminum Matrix Composites: Liquid State Processing
Authors: S. P. Jordan, G. Christian, S. P. Jeffs
Abstract:
Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods.Keywords: aluminium matrix composites, light-weighting, hybrid squeeze casting, strategically placed reinforcements
Procedia PDF Downloads 999578 Knowledge about Dementia: Why Should Family Caregivers Know that Dementia is a Terminal Disease?
Authors: Elzbieta Sikorska-Simmons
Abstract:
Dementia is a progressive terminal disease. Despite this recognition, research shows that most family caregivers do not know it, and it is unclear how this knowledge affects the quality of patient care. The aim of this qualitative study of 20 family caregivers for patients with advanced dementia is to examine how the caregiver's knowledge about dementia affects the quality of patient care in the context of healthcare decision-making, advanced care planning, and access to adequate support systems. Knowledge about dementia implies family caregivers' understanding of dementia trajectories, common symptoms/complications, and alternative treatment options (e.g., comfort feeding versus tube feeding). Data were collected in semi-structured interviews with 20 family caregivers. The interviews were conducted in person by the author and designed to elicit rich descriptions of family caregivers' experiences with healthcare decision-making and the management of common symptoms/complications of end-stage dementia as patient healthcare proxies. The study findings suggest that caregivers who recognize that dementia is a terminal disease are less likely to opt for life-extending treatments during the advanced stages. They are also more likely to seek palliative/hospice care, and consequently, they are better able to avoid unnecessary hospitalizations or medical procedures. For example, those who know that dementia is a terminal disease tend to opt for "comfort feeding" rather than "tube feeding" in managing the swallowing difficulties that accompany advanced dementia. In the context of advance care planning, family caregivers who know that dementia is a terminal disease tend to have more meaningful advance directives (e.g., Power of Attorney and Do Not Resuscitate orders). They are better prepared to anticipate common problems and pursue treatments that foster the best quality of patient life and care. Greater knowledge about advanced dementia helps them make more informed decisions that focus on enhancing the quality of patient life rather than just survival. In addition, those who know that dementia is a terminal disease are more likely to establish adequate support systems to help them cope with the complex demands of caregiving. For example, they are more likely to seek dementia-oriented primary care programs that offer house visits or respite services. Based on the study findings, knowledge about dementia as a terminal disease is critical in the optimal management of patient care needs and the establishment of adequate support systems. More research is needed to better understand what caregivers need to know to better prepare them for the complex demands of dementia caregiving.Keywords: dementia education, family caregiver, management of dementia, quality of care
Procedia PDF Downloads 1009577 Synthesis, Spectroscopic and XRD Study of Transition Metal Complex Derived from Low-Schiff Acyl-Hydrazone Ligand
Authors: Mohamedou El Boukhary, Farba Bouyagui Tamboura, A. Hamady Barry, T. Moussa Seck, Mohamed L. Gaye
Abstract:
Nowadays, low-schiff acyl-hydrazone ligands are highly sought after due to their wide applications in various fields of biology, coordination chemistry, and catalysis. They are studied for their antioxidant, antibacterial and antiviral properties. The complexes of transition metals and the lanthanide they derive are well known for their magnetic, optical, and catalytic properties. In this work, we present the synthesis of an acyl-hydrazone (H2L) schiff base and their 3d transition complexes. The ligand (H2L) is characterized by IR, NMR (1H; 13C) spectroscopy. The complexes are characterized by different physic-chemical techniques such as IR, UV-visible, conductivity, measurement of magnetic susceptibility. The study of XRD allowed us to elucidate the crystalline structure of the manganese (Mn) complex. The asymmetric unit of the complex is composed of two molecules of the ligand, one manganese (II) ion, and two coordinate chloride ions; the environment around Mn is described as a pentagonal base bipyramid. In the crystal lattice, the asymmetric unit is bound by hydrogen bonds.Keywords: synthene, acyl-hydrazone, 3D transition metal complex, application
Procedia PDF Downloads 529576 The Use of a Rabbit Model to Evaluate the Influence of Age on Excision Wound Healing
Authors: S. Bilal, S. A. Bhat, I. Hussain, J. D. Parrah, S. P. Ahmad, M. R. Mir
Abstract:
Background: The wound healing involves a highly coordinated cascade of cellular and immunological response over a period including coagulation, inflammation, granulation tissue formation, epithelialization, collagen synthesis and tissue remodeling. Wounds in aged heal more slowly than those in younger, mainly because of comorbidities that occur as one age. The present study is about the influence of age on wound healing. 1x1cm^2 (100 mm) wounds were created on the back of the animal. The animals were divided into two groups; one group had animals in the age group of 3-9 months while another group had animals in the age group of 15-21 months. Materials and Methods: 24 clinically healthy rabbits in the age group of 3-21 months were used as experimental animals and divided into two groups viz A and B. All experimental parameters, i.e., Excision wound model, Measurement of wound area, Protein extraction and estimation, Protein extraction and estimation and DNA extraction and estimation were done by standard methods. Results: The parameters studied were wound contraction, hydroxyproline, glucosamine, protein, and DNA. A significant increase (p<0.005) in the hydroxyproline, glucosamine, protein and DNA and a significant decrease in wound area (p<0.005) was observed in the age group of 3-9 months when compared to animals of an age group of 15-21 months. Wound contraction together with hydroxyproline, glucosamine, protein and DNA estimations suggest that advanced age results in retarded wound healing. Conclusion: The decrease wound contraction and accumulation of hydroxyproline, glucosamine, protein and DNA in group B animals may be associated with the reduction or delay in growth factors because of the advancing age.Keywords: age, wound healing, excision wound, hydroxyproline, glucosamine
Procedia PDF Downloads 6599575 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2
Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. AL-Dadah
Abstract:
Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.Keywords: adsorption, desalination, refrigeration, seawater
Procedia PDF Downloads 4959574 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction
Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer
Abstract:
Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.Keywords: extraction, MOF, ligand, uranium
Procedia PDF Downloads 160