Search results for: solder powder
891 Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy
Authors: Ahmet Yonetken, Ayhan Erol
Abstract:
Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties.Keywords: ceramic-metal composites, proporties, powder metallurgy, sintering
Procedia PDF Downloads 193890 Production and Mechanical Properties of Alkali–Activated Inorganic Binders Made from Wastes Solids
Authors: Sonia Vanessa Campos Moreira
Abstract:
The aim of this research is the production and mechanical properties of Alkali-Activated Inorganic Binders (AAIB) made from The Basic Oxygen Furnace Slag (BOF Slag) and Thin Film Transistor Liquid Crystal Display (TFT-LCD), glass powder (waste and industrial by-products). Many factors have an influence on the production of AAIB like the glass powder finesses, the alkaline equivalent content (AE %), water binder ratios (w/b ratios) and the differences curing process. The findings show different behavior in the AAIB related to the factors mentioned, the best results are given with a glass powder fineness of 4,500 cm²/g, w/b=0.30, a curing temperature of 70 ℃, curing duration of 4 days and an aging duration of 14 days results in the highest compressive strength of 18.51 MPa.Keywords: alkaline activators, BOF slag, glass powder fineness, TFT-LCD, w/b ratios
Procedia PDF Downloads 158889 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder
Authors: Jun-Lun Jiang, Bing-Sheng Yu
Abstract:
Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method
Procedia PDF Downloads 271888 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling
Authors: Shahriar Ghammamy, Maryam Gholipoor
Abstract:
Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction
Procedia PDF Downloads 397887 High-Temperature X-Ray Powder Diffraction of Secondary Gypsum
Authors: D. Gazdič, I. Hájková, M. Fridrichová
Abstract:
This paper involved the performance of a high-temperature X-Ray powder diffraction analysis (XRD) of a sample of chemical gypsum generated in the production of titanium white; this gypsum originates by neutralizing highly acidic water with limestone suspension. Specifically, it was gypsum formed in the first stage of neutralization when the resulting material contains, apart from gypsum, a number of waste products resulting from the decomposition of ilmenite by sulphuric acid. So it can be described as red titanogypsum. By conducting the experiment using XRD apparatus Bruker D8 Advance with a Cu anode (λkα=1.54184 Å) equipped with high-temperature chamber Anton Paar HTK 16, it was possible to identify clearly in the sample each phase transition in the system of CaSO4•xH2O.Keywords: anhydrite, gypsum, bassanite, hematite, XRD, powder, high-temperature
Procedia PDF Downloads 342886 Computational Fluid Dynamics (CFD) Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing solids and powders can be difficult as it requires gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in development of such devices saving time and money by reducing the number of prototypes and testing. Furthermore, this paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to trocar’s end side is done by rotation of the screw conveyor. Thus, the performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and also at the effective area within a quick turnaround time frame.Keywords: DDPM-KTGF, gas-solids multiphase flow, screw conveyor, Unsteady
Procedia PDF Downloads 180885 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries
Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma
Abstract:
Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion
Procedia PDF Downloads 234884 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method
Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah
Abstract:
LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping
Procedia PDF Downloads 286883 Growth Performance of New Born Holstein Calves Supplemented with Garlic (Allium sativum) Powder and Probiotics
Authors: T. W. Kekana, J. J. Baloyi, M. C. Muya, F. V. Nherera
Abstract:
Secondary metabolites (thiosulphinates) from Allium sativum are able to stimulate the production of volatile fatty acids. This study was carried out to investigate the effects of feeding Garlic powder or probiotics or a combination of both on feed intake and growth performance of Holstein calves. Neonatal calves were randomly allocated, according to birth weight, to four dietary treatments, each with 8 calves. The treatments were: C control, no additive (C), G: supplemented with either 5g/d garlic powder (G) or 4 g/d probiotics (P) or GP 5g/d garlic powder and 4 g/d probiotics compound (GP) with the total viable count of 1.3 x 107 cfu/g. Garlic and probiotics were diluted in the daily milk allocation from day 4. Commercial (17.5% CP) starter feed and fresh water were available ad libitum from day 4 until day 42 of age. Calves fed GP (0.27 kg day-1) tended (P=0.055) to have higher DMI than C (0.22 kg day-1). Milk, water, CP, fat intake and FCR were not affected (P>0.05) by the treatments. Metibolisable energy (ME) intake for GP group tended (P=0.058) to be higher than C calves. Combination of G and P (60.3 kg) tended (P = 0.056) to be higher than C (56.0 kg) calves on final BW. Garlic, probiotics or their combination did not affect calve’s HG, ADG and BL (P>0.05). The results of the current study indicated that combination of garlic and probiotics may improve nutrients intake and body weight when fed to calves during the first 42 days of life.Keywords: garlic powder, probiotics, intake, growth, Holstein calves
Procedia PDF Downloads 669882 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder
Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma
Abstract:
The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.Keywords: ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements
Procedia PDF Downloads 413881 Effect of Particle Size and Concentration of Pomegranate (Punica granatum l.) Peel Powder on Suppression of Oxidation of Edible Plant Oils
Authors: D. G. D. C. L. Munasinghe, M. S. Gunawardana, P. H. P. Prasanna, C. S. Ranadheera, T. Madhujith
Abstract:
Lipid oxidation is an important process that affects the shelf life of edible oils. Oxidation produces off flavors, off odors and chemical compounds that lead to adverse health effects. Chemical mechanisms such as autoxidation, photo-oxidation and thermal oxidation are responsible for lipid oxidation. Refined, Bleached and Deodorized (RBD) coconut oil, Virgin Coconut Oil (VCO) and corn oil are widely used plant oils. Pomegranate fruit is known to possess high antioxidative efficacy. Peel of pomegranate contains high antioxidant activity than aril and pulp membrane. The study attempted to study the effect of particle size and concentration of pomegranate peel powder on suppression of oxidation of RBD coconut oil, VCO and corn oil. Pomegranate peel powder was incorporated into each oil sample as micro (< 250 µm) and nano particles (280 - 300 nm) at 100 ppm and 200 ppm concentrations. The control sample of each oil was prepared, devoid of pomegranate peel powder. The stability of oils against autoxidation was evaluated by storing oil samples at 60 °C for 28 days. The level of oxidation was assessed by peroxide value and thiobarbituric acid reactive substances on 0,1,3,5,7,14 and 28 day, respectively. VCO containing pomegranate particles of 280 - 300 nm at 200 ppm showed the highest oxidative stability followed by RBD coconut oil and corn oil. Results revealed that pomegranate peel powder with 280 - 300 nm particle size at 200 ppm concentration was the best in mitigating oxidation of RBD coconut oil, VCO and corn oil. There is a huge potential of utilizing pomegranate peel powder as an antioxidant agent in reducing oxidation of edible plant oils.Keywords: antioxidant, autoxidation, micro particles, nano particles, pomegranate peel powder
Procedia PDF Downloads 451880 Preparation of Amla (Phyllanthus emblica) Powder Using Spray Drying Technique
Authors: Shubham Mandliya, Pooja Pandey, H. N. Mishra
Abstract:
Amla (Phyllanthus emblica), a plant of Euphorbiaceous is widely distributed in subtropical and tropical areas of China, India, Indonesia, and Malaysia. Amla is very high in vitamin C content. Spray drying of fruit juices represents another alternative way to improve the physicochemical stability and increase their shelf life. Samples of amla powder were produced using the spray drying method to investigate the effect of inlet temperatures and maltodextrin levels. The spray dryer model used was a laboratory scale dryer and samples were run at different temperatures and concentrations. The response surface methodology (RSM) was used to optimize the spray-drying process for the development of amla powder. The resultant powders were then analyzed for vitamin C, moisture, solubility and dispersibility. The spray dried amla powder contains higher amounts of vitamin C when compared to commercial fruit juice powders. SEM analysis revealed that lower maltodextrin levels and higher inlet air temperatures resulted in smaller but smoother particles. At lower temperature, vitamin C content is high as compared to higher temperature. Spray drying is an effective as well as an economic method which can be commercially used for making powder rather than by tray or solar drying as more fraction is retained with less cost.Keywords: Amla powder, physiochemical properties, response surface methodology, spray drying
Procedia PDF Downloads 240879 CFD Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)
Procedia PDF Downloads 145878 The Influence of Addition of Asparagus Bean Powder (Psophocarpus tetragonolobus) on Gonad Maturity of Nilem Carp (Osteochilus hasselti) at the Floating Net Cage of Cirata Reservoir
Authors: Rita Rostika, Junianto, Zulfiqar W. Ibrahim, Iskandar, Lantun P. Dewanti
Abstract:
The purpose of this research is to determine the influence of asparagus bean powder and its most effective administration dose to improve the gonad maturity of nilem carp (Osteochilus hasselti). The research is conducted in October-July 2017 located at Cirata Reservoir and Aquaculture Laboratory, Faculty of Fisheries and Marine Sciences, Padjadjaran University, Jatinangor. The research employs an experimental method using a Complete Random Design (RAL) with six treatments and three repetitions. The treatments include the addition of asparagus bean powder by 0% (Control), 4% per kg of feed, 5% per kg of feed, 6% per kg of feed, 7% per kg of feed, as well as the addition of vitamin E essential as the control. The results show that the addition of asparagus bean powder to the feed may influence the gonad maturity of nilem carp shown by its Gonado Somatic Index (GSI) parameter, fecundity, egg diameter and egg reaching its maturity phase or GVBD (Germinal Vesicle Breakdown). The best administration dose influencing nilem carp is the addition of asparagus bean powder by 7% per kg of feed with the average GSI of 15.02%, relative fecundity of 137 eggs/g of fish parent weight, egg diameter of 1,263 mm, and egg reaching its maturity phase (GVBD) of 78.15%.Keywords: asparagus bean powder, nilem carp, gonad maturity, Cirata reservoir
Procedia PDF Downloads 165877 The Effect of Fuel Type on Synthesis of CeO2-MgO Nano-Powder by Combustion Method
Authors: F. Ghafoori-Najafabadi, R. Sarraf-Mamoory, N. Riahi-Noori
Abstract:
In this study, nanocrystalline CeO2-MgO powders were synthesized by combustion reactions using citric acid, ethylene glycol, and glycine as different fuels and nitrate as an oxidant. The powders obtained with different kinds of fuels are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The size and morphology of the particles and the extent of agglomeration in the powders were studied using SEM analysis. It is observed that the variation of fuel has an intense influence on the particle size and morphology of the resulting powder. X-ray diffraction revealed that any combined phases were observed, and that MgO and CeO2 phases were formed, separately.Keywords: nanoparticle, combustion synthesis, CeO2-MgO, nano-powder
Procedia PDF Downloads 410876 Column Studies on Chromium(VI) Adsorption onto Kala Jamun (Syzygium cumini L.) Seed Powder
Authors: Sumi Deka, Krishna Gopal Bhattacharyya
Abstract:
This paper evaluate the industrial use of Kala Jamun (Syzygiumcumini L.) Seed powder (KSP) for the continuous adsorption of Cr(VI) in a column adsorption process. Adsorption of Cr(VI) onto Kala jamun (Syzygiumcumini L.) Seed Powder have been examined with the variation of (a) bed depth of the adsorbents, (b) flow rate of the adsorbents and (c) Cr(VI) concentration. The results showed that both the adsorption and the regeneration of the Cr(VI) onto Kala Jamun (Syzygiumcumini L.) seed Powder (KSP) can effectively occur in the column mode of adsorption. On increasing the bed depth, the adsorption of Cr(VI) onto KSP increases whereas on increasing the flow rate and the Cr(VI) concentration of KSP adsorption decreases. The results of the column studies were also fitted to Bed Depth Service Time (BDST) model. The BDST model was appropriate for designing the column for industrial purpose.Keywords: bed-depth-service-time, continuous adsorption, Cr(VI), KSP
Procedia PDF Downloads 254875 Preparation of Nanocrystalline Mesoporous ThO2 Via Surfactant Assisted Sol-gel Procedure
Authors: N. Mohseni, S. Janitabar, S.J. Ahmadi, M. Roshanzamir, M. Thaghizadeh
Abstract:
There has been proposed a technique for getting thorium dioxide mesoporous nanocrystalline. In this paper thorium dioxide powder was synthesized through the sol-gel method using hydrated thorium nitrate and ammonium hydroxide as starting materials and Triton X100 as surfactant. ThO2 gel was characterized by thermogravimetric (TG), and prepared ThO2 powder was subjected to scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emett-Teller (BET) analyses studies. Detailed analyses show that prepared powder consisted of phase with the space group Fm3m of thoria and its crystalline size was 27 nm. The thoria possesses 16.7 m2/g surface area and the pore volume and size calculated to be 0.0423 cc/g and 1.947 nm, respectively.Keywords: mesoporous, nanocrystalline, sol-gel, thoria
Procedia PDF Downloads 279874 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods
Authors: M. Ghobeiti-Hasab
Abstract:
Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM, and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and sol-gel auto-combustion methods were 1300 °C and 1000 °C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Sr-ferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.Keywords: Sr-ferrite, sol-gel, magnetic properties, calcination
Procedia PDF Downloads 236873 Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre
Authors: A. J. Shah, Neeraj Kumar Sahu
Abstract:
Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing.Keywords: high strength concrete, the flexural strength of RPC, compressive strength of RPC, durability
Procedia PDF Downloads 199872 Diversification of Indonesian Terasi Shrimp (Acetes indicus) Powder as Alternative and Sustainable Food for the Double Burden of Malnutrition
Authors: Galuh Asri Bestari, Hajar Shofiyya
Abstract:
Double burden of malnutrition (DBM) has been a global problem in these last decades occurs in both developed and developing countries. Overweight in adults and stunting among preschool children have dramatically increased and become the main problems of malnutrition that should be solved immediately since they are directly related with the health status and productivity. Reformulation of food product by using the local sea resources called terasi shrimp (Acetes indicus) has a potential possibility in facing the DBM. A study was carried out in Indonesia to determine the acceptability of terasi shrimp powder through sensory evaluation. Terasi shrimps were processed into powder form through sun drying and pounding methods. The powder form was directly added in food as alternative seasonings and tested among stunted and normal preschool children. Meanwhile, a further processing method is given to the shrimp powder tested in overweight and normal-weighed adults. The shrimp powder was mixed with sago flour and formed into balls, then steamed for 15-20 minutes, and finally served as alternative snacks. Based on the sensory evaluation, the shrimp powder has a good acceptance in taste (54%), shape (60%), and color properties (63%), while the shrimp balls has a good acceptance in size (65%), shape (50%), color (48%), taste (40%), and texture (36%). Terasi shrimp powder can be stored for a month in room temperature. In addition, carried out chemical analysis revealed that terasi shrimp (Acetes indicus) has higher percentage of protein, calcium, and iron than other animal sources, but conversely contains zero sodium and very low percentage of fat. Terasi shrimp’s shell also contains a substance called chitosan which acts by forming gels in the intestinal tract to entrap lipids, thus interfering with their absorption. After going through some processing methods, the shrimp powder and balls did not show any significant changes in their nutrient contents. So that, terasi shrimp powder is good to be consumed not only by overweight adults, but also by children to support their optimum growth. Intervention of terasi shrimp powder should be implemented step by step from national up to global governance program to face the DBM.Keywords: Acetes indicus, alternative food, double burden of malnutrition, sensory evaluation
Procedia PDF Downloads 303871 Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement
Authors: Passant Youssef, Ahmed El-Tair, Amr El-Nemr
Abstract:
Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected.Keywords: supplementary materials, glass powder, concrete, cementitious materials
Procedia PDF Downloads 210870 The Influence of the Types of Smoke Powder and Storage Duration on Sensory Quality of Balinese Beef and Buffalo Meatballs
Authors: E. Abustam, M. I. Said, M. Yusuf, H. M. Ali
Abstract:
This study aims to examine the sensory quality of meatballs made from Balinese beef and buffalo meat after the addition of smoke powder prior to storage at the temperatures of 2-5°C for 7 days. This study used meat from Longissimus dorsi muscle of male Balinese cattle aged 3 years and of male buffalo aged 5 years as the main raw materials, and smoke powder as a binder and preservative in making meatballs. The study was based on completely randomized design (CRD) of factorial pattern of 2 x 3 x 2 where factors 1, 2 and 3 included the types of meat (cattle and buffalo), types of smoke powder (oven dried, freeze dried and spray dried) with a level of 2% of the weight of the meat (b/b), and storage duration (0 and 7 days) with three replications respectively. The parameters measured were the meatball sensory quality (scores of tenderness, firmness, chewing residue, and intensity of flavor). The results of this study show that each type of meat has produced different sensory characteristics. The meatballs made from buffalo meat have higher tenderness and elasticity scores than the Balinese beef. Meanwhile, the buffalo meatballs have a lower residue mastication score than the Balinese beef. Each type of smoke powders has produced a relatively similar sensory quality of meatballs. It can be concluded that the smoke powder of 2% of the weight of the meat (w/w) could maintain the sensory quality of the meatballs for 7 days of storage.Keywords: Balinese beef meatballs, buffalo meatballs, sensory quality, smoke powder
Procedia PDF Downloads 335869 Comparative Study on the Thickening/Viscosity of Ogbono Seed Powder from Irvingia gabonenesis and Irvingia wombolu Species
Authors: Orlando Ketebu
Abstract:
Ogbono seed is the seed obtained from African bush mango (Irvingia gabonenesis) and bitter bush mango (Irvingia wombolu). Irvingia gabonenesis is known for its sweet edible pulp while Irvingia wombolu has a bitter pulp. Their seed powder is used in cooking soup known as ogbono soup in Nigeria and in West Africa. The powder thickens when cooked and researches have shown that it has medicinal uses such as lowering cholesterol; aiding weight loss and helps in improving diabetes control. The nutritional composition of the seeds indicated that Irvingia gabonenesis contains 8.60% protein, 13.8% carbohydrate, 2.0% moisture, 1.5% crude fiber, 16.4% ash, and Irvingia wombolu contains 7.38% protein, 25.75% carbohydrate, 11.7% moisture, 0.84% crude fiber, 2.50% ash. Solvent extraction of these seeds has shown that the seed of the two species are oil seeds with approximately 70 % and 52 % for Irvingia gabonenesis and Irvingia wombolu respectively. One major setback using ogbono seed powder in cooking soup is identifying the specie of ogbono seed powder that thickens most within the same cooking condition and how temperature affects the thickness of ogbono seed powder which determines its viscosity and in turn affects the quality of the soup and its nutrients. This research work monitored how the viscosity of ogbono species after being sun dried for one week changes with temperature. The result showed that heating 20 grams of powdered Irvingia gabonenesis and Irvingia wombolu at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95OC respectively in 200 ml beaker mixed with 100 ml of water, the viscosity of both species decreases with increase temperature with Irvingia wombolu having higher average viscosity in Pascal seconds (Pa.s) of 1.059, 1.042, 0.961, 0.778, 0.684, 0.675, and 0.495 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively compared to Irvingia gabonenesis with result 0.982, 0.920, 0.720, 0.646, 0.597 and 0.446 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively. Also from the experiment carried out it was found out that the viscosity of both species decreases with ageing of the seeds and the quantity of ogbono seed powder used and amount of water added also affected the viscosity of both species. In conclusion, it was observed that under the same cooking conditions (temperature range, quantity of water added, time and quantity of ogbono seed powder used), Irvingia wombolu had higher viscosity which is a measure of its thickness and quality of nutrients compared to Irvingia gabonenesis and the viscosity of both species decreases with increasing temperature.Keywords: ogbono seed powder, temperature, viscosity , soup
Procedia PDF Downloads 188868 Failure Analysis of Electrode, Nozzle Plate, and Powder Injector during Air Plasma Spray Coating
Authors: Nemes Alexandra
Abstract:
The aim of the research is to develop an optimum microstructure of steel coatings on aluminum surfaces for application on the crankcase cylinder bores. For the proper design of the microstructure of the coat, it is important to control the plasma gun unit properly. The maximum operating time was determined while the plasma gun could optimally work before its destruction. Objectives: The aim of the research is to determine the optimal operating time of the plasma gun between renovations (the renovation shall involve the replacement of the test components of the plasma gun: electrode, nozzle plate, powder injector. Methodology: Plasma jet and particle flux analysis with PFI (PFI is a diagnostic tool for all kinds of thermal spraying processes), CT reconstruction and analysis on the new and the used plasma guns, failure analysis of electrodes, nozzle plates, and powder injectors, microscopic examination of the microstructure of the coating. Contributions: As the result of the failure analysis detailed above, the use of the plasma gun was maximized at 100 operating hours in order to get optimal microstructure for the coat.Keywords: APS, air plasma spray, failure analysis, electrode, nozzle plate, powder injector
Procedia PDF Downloads 117867 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete
Authors: Hossein Kabir, Mojtaba Sadeghi
Abstract:
Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.Keywords: reactive silica sand powder concrete (RSSPC), consolidation, compressive strength, normal curing, thermal accelerated curing
Procedia PDF Downloads 246866 Reactivation of Hydrated Cement and Recycled Concrete Powder by Thermal Treatment for Partial Replacement of Virgin Cement
Authors: Gustave Semugaza, Anne Zora Gierth, Tommy Mielke, Marianela Escobar Castillo, Nat Doru C. Lupascu
Abstract:
The generation of Construction and Demolition Waste (CDW) has globally increased enormously due to the enhanced need in construction, renovation, and demolition of construction structures. Several studies investigated the use of CDW materials in the production of new concrete and indicated the lower mechanical properties of the resulting concrete. Many other researchers considered the possibility of using the Hydrated Cement Powder (HCP) to replace a part of Ordinary Portland Cement (OPC), but only very few investigated the use of Recycled Concrete Powder (RCP) from CDW. The partial replacement of OPC for making new concrete intends to decrease the CO₂ emissions associated with OPC production. However, the RCP and HCP need treatment to produce the new concrete of required mechanical properties. The thermal treatment method has proven to improve HCP properties before their use. Previous research has stated that for using HCP in concrete, the optimum results are achievable by heating HCP between 400°C and 800°C. The optimum heating temperature depends on the type of cement used to make the Hydrated Cement Specimens (HCS), the crushing and heating method of HCP, and the curing method of the Rehydrated Cement Specimens (RCS). This research assessed the quality of recycled materials by using different techniques such as X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetry (TG), Scanning electron Microscopy (SEM), and X-ray Fluorescence (XRF). These recycled materials were thermally pretreated at different temperatures from 200°C to 1000°C. Additionally, the research investigated to what extent the thermally treated recycled cement could partially replace the OPC and if the new concrete produced would achieve the required mechanical properties. The mechanical properties were evaluated on the RCS, obtained by mixing the Dehydrated Cement Powder and Recycled Powder (DCP and DRP) with water (w/c = 0.6 and w/c = 0.45). The research used the compressive testing machine for compressive strength testing, and the three-point bending test was used to assess the flexural strength.Keywords: hydrated cement powder, dehydrated cement powder, recycled concrete powder, thermal treatment, reactivation, mechanical performance
Procedia PDF Downloads 151865 Physicochemical and Sensorial Evaluation of Astringency Reduction in Cashew Apple (Annacardium occidentale L.) Powder Processing in Cookie Elaboration
Authors: Elida Gastelum-Martinez, Neith A. Pacheco-Lopez, Juan L. Morales-Landa
Abstract:
Cashew agroindustry obtained from cashew apple crop (Anacardium occidentale L.) generates large amounts of unused waste in Campeche, Mexico. Despite having a high content of nutritional compounds such as ascorbic acid, carotenoids, fiber, carbohydrates, and minerals, it is not consumed due to its astringent sensation. The aim of this work was to develop a processing method for cashew apple waste in order to obtain a powder with reduced astringency able to be used as an additive in the food industry. The processing method consisted first in reducing astringency by inducing tannins from cashew apple peel to react and form precipitating complexes with a colloid rich in proline and histidine. Then cashew apples were processed to obtain a dry powder. Astringency reduction was determined by total phenolic content and evaluated by sensorial analysis in cashew-apple-powder based cookies. Total phenolic content in processed powders showed up to 72% lower concentration compared to control samples. The sensorial evaluation indicated that cookies baked using cashew apple powder with reduced astringency were 96.8% preferred. Sensorial characteristics like texture, color and taste were also well-accepted attributes. In conclusion, the method applied for astringency reduction is a viable tool to produce cashew apple powder with desirable sensorial properties to be used in the development of food products.Keywords: astringency reduction, cashew apple waste, food industry, sensorial evaluation
Procedia PDF Downloads 349864 Mechanochemical Synthesis of Al2O3/Mo Nanocomposite Powders from Molybdenum Oxide
Authors: Behrooz Ghasemi, Bahram Sharijian
Abstract:
Al2O3/Mo nanocomposite powders were successfully synthesized by mechanical milling through mechanochemical reaction between MoO3 and Al. The structural evolutions of powder particles during mechanical milling were studied by X-ray diffractometry (XRD), energy dispersive X-ray spectroscopy(EDX) and scanning electron microscopy (SEM). Results show that Al2O3-Mo was completely obtained after 5 hr of milling. The crystallite sizes of Al2O3 and Mo after milling for 20 hr were about 45 nm and 23 nm, respectively. With longer milling time, the intensities of Al2O3 and Mo peaks decreased and became broad due to the decrease in crystallite size. Morphological features of powders were influenced by the milling time. The resulting Al2O3- Mo nanocomposite powder exhibited an average particle size of 200 nm after 20 hr of milling. Also nanocomposite powder after 10 hr milling had relatively equiaxed shape with uniformly distributed Mo phase in Al2O3 matrix.Keywords: Al2O3/Mo, nanocomposites, mechanochemical, mechanical milling
Procedia PDF Downloads 366863 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties
Procedia PDF Downloads 691862 Microstructural Evolution of Maraging Steels from Powder Particles to Additively Manufactured Samples
Authors: Seyedamirreza Shamsdini, Mohsen Mohammadi
Abstract:
In this research, 18Ni-300 maraging steel powder particles are investigated by studying particle size distribution along with their morphology and grain structure. The powder analysis shows mostly spherical morphologies with cellular structures. A laser-based additive manufacturing process, selective laser melting (SLM) is used to produce samples for further investigation of mechanical properties and microstructure. Several uniaxial tensile tests are performed on the as-built parts to evaluate the mechanical properties. The macroscopic properties, as well as microscopic studies, are then investigated on the printed parts. Hardness measurements, as well as porosity levels, are measured for each sample and are correlated with microstructures through electron microscopy techniques such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The grain structure is studied for the as-printed specimens and compared to the powder particle microstructure. The cellular structure of the printed samples is observed to have dendritic forms with dendrite width dimensions similar to the powder particle cells. The process parameter is changed, and the study is performed for different powder layer thickness, and the resultant mechanical properties and grain structure are shown to be similar. A phase study is conducted both on the powder and the printed samples using X-Ray Diffraction (XRD) techniques, and the austenite phase is observed to at first decrease due to the manufacturing process and again during the uniaxial tensile deformation. The martensitic structure is formed in the first stage based on the heating cycles of the manufacturing process and the remaining austenite is shown to be transformed to martensite due to different deformation mechanisms.Keywords: additive manufacturing, maraging steel, mechanical properties, microstructure
Procedia PDF Downloads 156