Search results for: semantic impairments
642 From Shallow Semantic Representation to Deeper One: Verb Decomposition Approach
Authors: Aliaksandr Huminski
Abstract:
Semantic Role Labeling (SRL) as shallow semantic parsing approach includes recognition and labeling arguments of a verb in a sentence. Verb participants are linked with specific semantic roles (Agent, Patient, Instrument, Location, etc.). Thus, SRL can answer on key questions such as ‘Who’, ‘When’, ‘What’, ‘Where’ in a text and it is widely applied in dialog systems, question-answering, named entity recognition, information retrieval, and other fields of NLP. However, SRL has the following flaw: Two sentences with identical (or almost identical) meaning can have different semantic role structures. Let consider 2 sentences: (1) John put butter on the bread. (2) John buttered the bread. SRL for (1) and (2) will be significantly different. For the verb put in (1) it is [Agent + Patient + Goal], but for the verb butter in (2) it is [Agent + Goal]. It happens because of one of the most interesting and intriguing features of a verb: Its ability to capture participants as in the case of the verb butter, or their features as, say, in the case of the verb drink where the participant’s feature being liquid is shared with the verb. This capture looks like a total fusion of meaning and cannot be decomposed in direct way (in comparison with compound verbs like babysit or breastfeed). From this perspective, SRL looks really shallow to represent semantic structure. If the key point in semantic representation is an opportunity to use it for making inferences and finding hidden reasons, it assumes by default that two different but semantically identical sentences must have the same semantic structure. Otherwise we will have different inferences from the same meaning. To overcome the above-mentioned flaw, the following approach is suggested. Assume that: P is a participant of relation; F is a feature of a participant; Vcp is a verb that captures a participant; Vcf is a verb that captures a feature of a participant; Vpr is a primitive verb or a verb that does not capture any participant and represents only a relation. In another word, a primitive verb is a verb whose meaning does not include meanings from its surroundings. Then Vcp and Vcf can be decomposed as: Vcp = Vpr +P; Vcf = Vpr +F. If all Vcp and Vcf will be represented this way, then primitive verbs Vpr can be considered as a canonical form for SRL. As a result of that, there will be no hidden participants caught by a verb since all participants will be explicitly unfolded. An obvious example of Vpr is the verb go, which represents pure movement. In this case the verb drink can be represented as man-made movement of liquid into specific direction. Extraction and using primitive verbs for SRL create a canonical representation unique for semantically identical sentences. It leads to the unification of semantic representation. In this case, the critical flaw related to SRL will be resolved.Keywords: decomposition, labeling, primitive verbs, semantic roles
Procedia PDF Downloads 366641 An Application of E-Learning Technology for Students with Deafness and Hearing Impairment
Authors: Eyup Bayram Guzel
Abstract:
There have been growing awareness that technology offers unique and promising advantages by offering up-to-data educational materials in promoting teaching and learning materials, new strategies for building enhanced communication environment for people with disabilities and specifically for this study concentrated on the students with deafness and hearing impairments. Creating e-learning environment where teachers and students work in collaboration to develop better educational outcomes is the foremost reason of conducting this research. This study examined the perspectives of special education teachers’ regarding an application of e-learning software called Multimedia Builder on the students with deafness and hearing impairments. Initial and follow up interviews were conducted with 15 special education teachers around the scope of qualitative case study. Grounded approach has been used to analyse and interpret the data. The research results revealed that application of Multimedia Builder software were influential on reading, sign language, vocabulary improvements, computer and ICT usage developments and on audio-visual learning achievements for the advantages of students with deafness and hearing impairments. The implications of the study encouraged the ways of using e-learning tools and strategies to promote unique and comprehensive learning experiences for the targeted students and their teachers.Keywords: e-learning, special education, deafness and hearing impairment, computer-ICT usage.
Procedia PDF Downloads 438640 Online Topic Model for Broadcasting Contents Using Semantic Correlation Information
Authors: Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park, Sang-Jo Lee
Abstract:
This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script which is a series of texts including directions and dialogues. The other is blogposts which possesses relatively abstracted contents, stories and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. In order to improve the quality of topics, it needs a method to consider the word difference. In this paper, we introduce a semantic vocabulary expansion method to solve the word difference. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can learn more salient topics for broadcasting contents.Keywords: broadcasting script analysis, topic expansion, semantic correlation analysis, word2vec
Procedia PDF Downloads 251639 Impairments Correction of Six-Port Based Millimeter-Wave Radar
Authors: Dan Ohev Zion, Alon Cohen
Abstract:
In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.Keywords: radar, FMCW Radar, IQ mismatch, six port
Procedia PDF Downloads 152638 Two-Way Reminder Systems to Support Activities of Daily Living for Adults with Cognitive Impairments: A Scoping Review
Authors: Julia Brudzinski, Ashley Croswell, Jade Mardin, Hannah Shilling, Jennifer Berg-Carnegie
Abstract:
Adults with brain injuries and mental illnesses commonly experience cognitive impairments that interfere with their participation in activities of daily living (ADLs). Prior research states that electronic reminder systems can support adults with cognitive impairments; however, previous studies focus primarily on one-way reminder systems. Research on adults with chronic diseases reported that two-way reminder systems yield better health outcomes and disease self-management compared to one-way reminder systems. Literature was identified through systematically searching 7 databases and hand-searching relevant reference lists. Retrieved studies were independently screened and reviewed by at least two members of the research team. Data was extracted on study design, participant characteristics, intervention details, study objectives, outcome measures, and important results. 574 articles were screened and reviewed. Nine articles met all inclusion criteria and were included. The literature focused on three main areas: system feasibility (n=8), stakeholder satisfaction (n=6), and efficacy of the two-way reminder systems (n=6). Participants in eight of the studies had brain injuries, with participants in only one study having a mental illness (i.e., schizophrenia). Two-way reminder systems were used to support participation in a wide range of ADLs. The current literature on two-way reminder systems to support ADLs for adults with cognitive impairments focuses on feasibility, stakeholder satisfaction, and system efficacy. Future research should focus on addressing the barriers to accessing and implementing two-way reminder systems and identifying specific client characteristics that would benefit most from using these systems.Keywords: brain injury, digital health, occupational therapy, activities of daily living, two-way reminder systems
Procedia PDF Downloads 74637 Lexical-Semantic Deficits in Sinhala Speaking Persons with Post Stroke Aphasia: Evidence from Single Word Auditory Comprehension Task
Authors: D. W. M. S. Samarathunga, Isuru Dharmarathne
Abstract:
In aphasia, various levels of symbolic language processing (semantics) are affected. It is shown that Persons with Aphasia (PWA) often experience more problems comprehending some categories of words than others. The study aimed to determine lexical semantic deficits seen in Auditory Comprehension (AC) and to describe lexical-semantic deficits across six selected word categories. Thirteen (n =13) persons diagnosed with post-stroke aphasia (PSA) were recruited to perform an AC task. Foods, objects, clothes, vehicles, body parts and animals were selected as the six categories. As the test stimuli, black and white line drawings were adapted from a picture set developed for semantic studies by Snodgrass and Vanderwart. A pilot study was conducted with five (n=5) healthy nonbrain damaged Sinhala speaking adults to decide familiarity and applicability of the test material. In the main study, participants were scored based on the accuracy and number of errors shown. The results indicate similar trends of lexical semantic deficits identified in the literature confirming ‘animals’ to be the easiest category to comprehend. Mann-Whitney U test was performed to determine the association between the selected variables and the participants’ performance on AC task. No statistical significance was found between the errors and the type of aphasia reflecting similar patterns described in aphasia literature in other languages. The current study indicates the presence of selectivity of lexical semantic deficits in AC and a hierarchy was developed based on the complexity of the categories to comprehend by Sinhala speaking PWA, which might be clinically beneficial when improving language skills of Sinhala speaking persons with post-stroke aphasia. However, further studies on aphasia should be conducted with larger samples for a longer period to study deficits in Sinhala and other Sri Lankan languages (Tamil and Malay).Keywords: aphasia, auditory comprehension, selective lexical-semantic deficits, semantic categories
Procedia PDF Downloads 253636 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks
Authors: Kriuk Boris, Kriuk Fedor
Abstract:
This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we introduce a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.Keywords: siamese networks, semantic textual similarity, similarity functions, STS benchmark dataset, threshold selection
Procedia PDF Downloads 37635 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 126634 Relationship between Readability of Paper-Based Braille and Character Spacing
Authors: T. Nishimura, K. Doi, H. Fujimoto, T. Wada
Abstract:
The Number of people with acquired visual impairments has increased in recent years. In specialized courses at schools for the blind and in Braille lessons offered by social welfare organizations, many people with acquired visual impairments cannot learn to read adequately Braille. One of the reasons is that the common Braille patterns for people visual impairments who already has mature Braille reading skill being difficult to read for Braille reading beginners. In addition, there is the scanty knowledge of Braille book manufacturing companies regarding what Braille patterns would be easy to read for beginners. Therefore, it is required to investigate a suitable Braille patterns would be easy to read for beginners. In order to obtain knowledge regarding suitable Braille patterns for beginners, this study aimed to elucidate the relationship between readability of paper-based Braille and its patterns. This study focused on character spacing, which readily affects Braille reading ability, to determine a suitable character spacing ratio (ratio of character spacing to dot spacing) for beginners. Specifically, considering beginners with acquired visual impairments who are unfamiliar with reading Braille, we quantitatively evaluated the effect of character spacing ratio on Braille readability through an evaluation experiment using sighted subjects with no experience of reading Braille. In this experiment, ten sighted adults took the blindfold were asked to read test piece (three Braille characters). Braille used as test piece was composed of five dots. They were asked to touch the Braille by sliding their forefinger on the test piece immediately after the test examiner gave a signal to start the experiment. Then, they were required to release their forefinger from the test piece when they perceived the Braille characters. Seven conditions depended on character spacing ratio was held (i.e., 1.2, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2 [mm]), and the other four depended on the dot spacing (i.e., 2.0, 2.5, 3.0, 3.5 [mm]). Ten trials were conducted for each conditions. The test pieces are created using by NISE Graphic could print Braille adjusted arbitrary value of character spacing and dot spacing with high accuracy. We adopted the evaluation indices for correct rate, reading time, and subjective readability to investigate how the character spacing ratio affects Braille readability. The results showed that Braille reading beginners could read Braille accurately and quickly, when character spacing ratio is more than 1.8 and dot spacing is more than 3.0 mm. Furthermore, it is difficult to read Braille accurately and quickly for beginners, when both character spacing and dot spacing are small. For this study, suitable character spacing ratio to make reading easy for Braille beginners is revealed.Keywords: Braille, character spacing, people with visual impairments, readability
Procedia PDF Downloads 285633 Assessing the Structure of Non-Verbal Semantic Knowledge: The Evaluation and First Results of the Hungarian Semantic Association Test
Authors: Alinka Molnár-Tóth, Tímea Tánczos, Regina Barna, Katalin Jakab, Péter Klivényi
Abstract:
Supported by neuroscientific findings, the so-called Hub-and-Spoke model of the human semantic system is based on two subcomponents of semantic cognition, namely the semantic control process and semantic representation. Our semantic knowledge is multimodal in nature, as the knowledge system stored in relation to a conception is extensive and broad, while different aspects of the conception may be relevant depending on the purpose. The motivation of our research is to develop a new diagnostic measurement procedure based on the preservation of semantic representation, which is appropriate to the specificities of the Hungarian language and which can be used to compare the non-verbal semantic knowledge of healthy and aphasic persons. The development of the test will broaden the Hungarian clinical diagnostic toolkit, which will allow for more specific therapy planning. The sample of healthy persons (n=480) was determined by the last census data for the representativeness of the sample. Based on the concept of the Pyramids and Palm Tree Test, and according to the characteristics of the Hungarian language, we have elaborated a test based on different types of semantic information, in which the subjects are presented with three pictures: they have to choose the one that best fits the target word above from the two lower options, based on the semantic relation defined. We have measured 5 types of semantic knowledge representations: associative relations, taxonomy, motional representations, concrete as well as abstract verbs. As the first step in our data analysis, we examined the normal distribution of our results, and since it was not normally distributed (p < 0.05), we used nonparametric statistics further into the analysis. Using descriptive statistics, we could determine the frequency of the correct and incorrect responses, and with this knowledge, we could later adjust and remove the items of questionable reliability. The reliability was tested using Cronbach’s α, and it can be safely said that all the results were in an acceptable range of reliability (α = 0.6-0.8). We then tested for the potential gender differences using the Mann Whitney-U test, however, we found no difference between the two (p < 0.05). Likewise, we didn’t see that the age had any effect on the results using one-way ANOVA (p < 0.05), however, the level of education did influence the results (p > 0.05). The relationships between the subtests were observed by the nonparametric Spearman’s rho correlation matrix, showing statistically significant correlation between the subtests (p > 0.05), signifying a linear relationship between the measured semantic functions. A margin of error of 5% was used in all cases. The research will contribute to the expansion of the clinical diagnostic toolkit and will be relevant for the individualised therapeutic design of treatment procedures. The use of a non-verbal test procedure will allow an early assessment of the most severe language conditions, which is a priority in the differential diagnosis. The measurement of reaction time is expected to advance prodrome research, as the tests can be easily conducted in the subclinical phase.Keywords: communication disorders, diagnostic toolkit, neurorehabilitation, semantic knowlegde
Procedia PDF Downloads 103632 Semantic Processing in Chinese: Category Effects, Task Effects and Age Effects
Authors: Yi-Hsiu Lai
Abstract:
The present study aimed to elucidate the nature of semantic processing in Chinese. Language and cognition related to the issue of aging are examined from the perspective of picture naming and category fluency tasks. Twenty Chinese-speaking adults (ranging from 25 to 45 years old) and twenty Chinese-speaking seniors (ranging from 65 to 75 years old) in Taiwan participated in this study. Each of them individually completed two tasks: a picture naming task and a category fluency task. Instruments for the naming task were sixty black-and-white pictures: thirty-five object and twenty-five action pictures. Category fluency task also consisted of two semantic categories – objects (or nouns) and actions (or verbs). Participants were asked to report as many items within a category as possible in one minute. Scores of action fluency and of object fluency were a summation of correct responses in these two categories. Category effects (actions vs. objects) and age effects were examined in these tasks. Objects were further divided into two major types: living objects and non-living objects. Actions were also categorized into two major types: action verbs and process verbs. Reaction time to each picture/question was additionally calculated and analyzed. Results of the category fluency task indicated that the content of information in Chinese seniors was comparatively deteriorated, thus producing smaller number of semantic-lexical items. Significant group difference was also found in the results of reaction time. Category Effect was significant for both Chinese adults and seniors in the semantic fluency task. Findings in the present study helped characterize the nature of semantic processing in Chinese-speaking adults and seniors and contributed to the issue of language and aging.Keywords: semantic processing, aging, Chinese, category effects
Procedia PDF Downloads 361631 Semantic Search Engine Based on Query Expansion with Google Ranking and Similarity Measures
Authors: Ahmad Shahin, Fadi Chakik, Walid Moudani
Abstract:
Our study is about elaborating a potential solution for a search engine that involves semantic technology to retrieve information and display it significantly. Semantic search engines are not used widely over the web as the majorities are still in Beta stage or under construction. Many problems face the current applications in semantic search, the major problem is to analyze and calculate the meaning of query in order to retrieve relevant information. Another problem is the ontology based index and its updates. Ranking results according to concept meaning and its relation with query is another challenge. In this paper, we are offering a light meta-engine (QESM) which uses Google search, and therefore Google’s index, with some adaptations to its returned results by adding multi-query expansion. The mission was to find a reliable ranking algorithm that involves semantics and uses concepts and meanings to rank results. At the beginning, the engine finds synonyms of each query term entered by the user based on a lexical database. Then, query expansion is applied to generate different semantically analogous sentences. These are generated randomly by combining the found synonyms and the original query terms. Our model suggests the use of semantic similarity measures between two sentences. Practically, we used this method to calculate semantic similarity between each query and the description of each page’s content generated by Google. The generated sentences are sent to Google engine one by one, and ranked again all together with the adapted ranking method (QESM). Finally, our system will place Google pages with higher similarities on the top of the results. We have conducted experimentations with 6 different queries. We have observed that most ranked results with QESM were altered with Google’s original generated pages. With our experimented queries, QESM generates frequently better accuracy than Google. In some worst cases, it behaves like Google.Keywords: semantic search engine, Google indexing, query expansion, similarity measures
Procedia PDF Downloads 425630 An Ontology for Semantic Enrichment of RFID Systems
Authors: Haitham S. Hamza, Mohamed Maher, Shourok Alaa, Aya Khattab, Hadeal Ismail, Kamilia Hosny
Abstract:
Radio Frequency Identification (RFID) has become a key technology in the margining concept of Internet of Things (IoT). Naturally, business applications would require the deployment of various RFID systems that are developed by different vendors and use various data formats. This heterogeneity poses a real challenge in developing large-scale IoT systems with RFID as integration is becoming very complex and challenging. Semantic integration is a key approach to deal with this challenge. To do so, ontology for RFID systems need to be developed in order to annotated semantically RFID systems, and hence, facilitate their integration. Accordingly, in this paper, we propose ontology for RFID systems. The proposed ontology can be used to semantically enrich RFID systems, and hence, improve their usage and reasoning. The usage of the proposed ontology is explained through a simple scenario in the health care domain.Keywords: RFID, semantic technology, ontology, sparql query language, heterogeneity
Procedia PDF Downloads 471629 Possible Impact of Shunt Surgeries on the Spatial Learning of Congenitally-Blind Children
Authors: Waleed Jarjoura
Abstract:
In various cases of visual impairments, the individuals are referred to expert Ophthalmologists in order to establish a correct diagnosis. Children with visual-impairments confront various challenging experiences in life since early childhood throughout lifespan. In some cases, blind infants, especially due to congenital hydrocephalus, suffer from high intra-cranial pressure and, consequently, go through a ventriculo-peritoneal shunt surgery in order to limit the neurological symptoms or decrease the cognitive impairments. In this article, a detailed description of numerous crucial implications of the V/P shunt surgery, through the right posterior-inferior parieto-temporal cortex, on the observed preliminary capabilities that are pre-requisites for the acquisition of literacy skills in braille, basic Math competencies, braille printing which suggest Gerstmann syndrome in the blind. In addition, significant difficultiesorientation and mobility skills using the Cane, in general, organizational skills, and social interactions were observed. The primary conclusion of this report focuses on raising awareness among neuro-surgeons towards the need for alternative intracranial routes for V/P shunt implantation in blind infants that preserve the right posterior-inferior parieto-temporal cortex that is hypothesized to modulate the tactual-spatial cues in braille discrimination. A second conclusion targets educators and therapists that address the acquired dysfunctionsin blind individuals due to V/P shunt surgeries.Keywords: congenital blindness, hydrocephalus, shunt surgery, spatial orientation
Procedia PDF Downloads 89628 New Ways of Vocabulary Enlargement
Authors: S. Pesina, T. Solonchak
Abstract:
Lexical invariants, being a sort of stereotypes within the frames of ordinary consciousness, are created by the members of a language community as a result of uniform division of reality. The invariant meaning is formed in person’s mind gradually in the course of different actualizations of secondary meanings in various contexts. We understand lexical the invariant as abstract language essence containing a set of semantic components. In one of its configurations it is the basis or all or a number of the meanings making up the semantic structure of the word.Keywords: lexical invariant, invariant theories, polysemantic word, cognitive linguistics
Procedia PDF Downloads 322627 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0
Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini
Abstract:
Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling
Procedia PDF Downloads 94626 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 136625 Cerrado and Vereda: A Survey of Portuguese Lexicon for Brazilian Biomes
Authors: Daniel Marra
Abstract:
This paper analyses from a semantic-diachronic viewpoint the change of meanings that two lexical items of Brazilian-Portuguese language have gone through. Cerrado and Vereda designate currently the second largest Brazilian biome and one of its most important subsystems. Nevertheless, these two words have long individual histories that can be traced back to their Latin etymons. Therefore, the purpose of this work is to highlight the process by which meaning instantiated itself in these words’ formation and to discuss how semantic change installed subsequently in them. As this paper shows, the aforementioned words have been, in different past, synchronizes, created, and undergone changes of meanings by metaphor and metonymy. Besides, it is argued here that semantic change takes place due to external causes, such as generalization and specialization of meaning. It happens when a specialized use of a lexical item, restricted to a particular linguistic group, is adopted by other groups, having its meaning generalized by them. In these processes, the etymological idea of the word is generally lost, which gains, in the new group, less specific meaning in relation to its etymology, sometimes with no relation to the original idea. As a final point, it is claimed that both the creation of a lexical item and its change of meaning involve pragmatic goals, such as the need the language users have to express a new meaning related to a certain reality in the empirical world.Keywords: Brazilian biomes, metaphor and metonymy, Portuguese lexicon, semantic change
Procedia PDF Downloads 120624 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 102623 An AI-generated Semantic Communication Platform in HCI Course
Authors: Yi Yang, Jiasong Sun
Abstract:
Almost every aspect of our daily lives is now intertwined with some degree of human-computer interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology, and more. Our HCI courses, named the Media and Cognition course, are constantly updated to reflect state-of-the-art technological advancements such as virtual reality, augmented reality, and artificial intelligence-based interactions. For more than a decade, our course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which have gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. Our latest version of the Human-Computer Interaction course practices a semantic communication platform based on AI-generated techniques. The purpose of this semantic communication is twofold: to extract and transmit task-specific information while ensuring efficient end-to-end communication with minimal latency. An AI-generated semantic communication platform evaluates the retention of signal sources and converts low-retain ability visual signals into textual prompts. These data are transmitted through AI-generated techniques and reconstructed at the receiving end; on the other hand, visual signals with a high retain ability rate are compressed and transmitted according to their respective regions. The platform and associated research are a testament to our students' growing ability to independently investigate state-of-the-art technologies.Keywords: human-computer interaction, media and cognition course, semantic communication, retainability, prompts
Procedia PDF Downloads 115622 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance
Authors: Hirokatsu Kawashima
Abstract:
One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).Keywords: auditory error recognition, intensive listening, interaction, investigation
Procedia PDF Downloads 513621 The Differences and Similarities in Neurocognitive Deficits in Mild Traumatic Brain Injury and Depression
Authors: Boris Ershov
Abstract:
Depression is the most common mood disorder experienced by patients who have sustained a traumatic brain injury (TBI) and is associated with poorer cognitive functional outcomes. However, in some cases, similar cognitive impairments can also be observed in depression. There is not enough information about the features of the cognitive deficit in patients with TBI in relation to patients with depression. TBI patients without depressive symptoms (TBInD, n25), TBI patients with depressive symptoms (TBID, n31), and 28 patients with bipolar II disorder (BP) were included in the study. There were no significant differences in participants in respect to age, handedness and educational level. The patients clinical status was determined by using Montgomery–Asberg Depression Rating Scale (MADRS). All participants completed a cognitive battery (The Brief Assessment of Cognition in Affective Disorders (BAC-A)). Additionally, the Rey–Osterrieth Complex Figure (ROCF) was used to assess visuospatial construction abilities and visual memory, as well as planning and organizational skills. Compared to BP, TBInD and TBID showed a significant impairments in visuomotor abilities, verbal and visual memory. There were no significant differences between BP and TBID groups in working memory, speed of information processing, problem solving. Interference effect (cognitive inhibition) was significantly greater in TBInD and TBID compared to BP. Memory bias towards mood-related information in BP and TBID was greater in comparison with TBInD. These results suggest that depressive symptoms are associated with impairments some executive functions in combination at decrease of speed of information processing.Keywords: bipolar II disorder, depression, neurocognitive deficits, traumatic brain injury
Procedia PDF Downloads 347620 Aspects of Semantics of Standard British English and Nigerian English: A Contrastive Study
Authors: Chris Adetuyi, Adeola Adeniran
Abstract:
The concept of meaning is a complex one in language study when cultural features are added. This is mandatory because language cannot be completely separated from the culture in which case language and culture complement each other. When there are two varieties of a language in a society, i.e. two varieties functioning side by side in a speech community, there is a tendency to view one of the varieties with each other. There is, therefore, the need to make a linguistic comparative study of varieties of such languages. In this paper, a semantic contrastive study is made between Standard British English (SBE) and Nigerian English (NB). The semantic study is limited to aspects of semantics: semantic extension (Kinship terms, metaphors), semantic shift (lexical items considered are ‘drop’ ‘befriend’ ‘dowry’ and escort) acronyms (NEPA, JAMB, NTA) linguistic borrowing or loan words (Seriki, Agbada, Eba, Dodo, Iroko) coinages (long leg, bush meat; bottom power and juju). In the study of these aspects of semantics of SBE and NE lexical terms, conservative statements are made, problems areas and hierarchy of difficulties are highlighted with a view to bringing out areas of differences are highlighted in this paper are concerned. The study will also serve as a guide in further contrastive studies in some other area of languages.Keywords: aspect, British, English, Nigeria, semantics
Procedia PDF Downloads 346619 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion
Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro
Abstract:
Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.Keywords: basketball, deep learning, feature extraction, single-camera, tracking
Procedia PDF Downloads 138618 A Semantic Registry to Support Brazilian Aeronautical Web Services Operations
Authors: Luís Antonio de Almeida Rodriguez, José Maria Parente de Oliveira, Ednelson Oliveira
Abstract:
In the last two decades, the world’s aviation authorities have made several attempts to create consensus about a global and accepted approach for applying semantics to web services registry descriptions. This problem has led communities to face a fat and disorganized infrastructure to describe aeronautical web services. It is usual for developers to implement ad-hoc connections among consumers and providers and manually create non-standardized service compositions, which need some particular approach to compose and semantically discover a desired web service. Current practices are not precise and tend to focus on lightweight specifications of some parts of the OWL-S and embed them into syntactic descriptions (SOAP artifacts and OWL language). It is necessary to have the ability to manage the use of both technologies. This paper presents an implementation of the ontology OWL-S that describes a Brazilian Aeronautical Web Service Registry, which makes it able to publish, advertise, make multi-criteria semantic discovery aligned with the ideas of the System Wide Information Management (SWIM) Program, and invoke web services within the Air Traffic Management context. The proposal’s best finding is a generic approach to describe semantic web services. The paper also presents a set of functional requirements to guide the ontology development and to compare them to the results to validate the implementation of the OWL-S Ontology.Keywords: aeronautical web services, OWL-S, semantic web services discovery, ontologies
Procedia PDF Downloads 86617 Using Corpora in Semantic Studies of English Adjectives
Authors: Oxana Lukoshus
Abstract:
The methods of corpus linguistics, a well-established field of research, are being increasingly applied in cognitive linguistics. Corpora data are especially useful for different quantitative studies of grammatical and other aspects of language. The main objective of this paper is to demonstrate how present-day corpora can be applied in semantic studies in general and in semantic studies of adjectives in particular. Polysemantic adjectives have been the subject of numerous studies. But most of them have been carried out on dictionaries. Undoubtedly, dictionaries are viewed as one of the basic data sources, but only at the initial steps of a research. The author usually starts with the analysis of the lexicographic data after which s/he comes up with a hypothesis. In the research conducted three polysemantic synonyms true, loyal, faithful have been analyzed in terms of differences and similarities in their semantic structure. A corpus-based approach in the study of the above-mentioned adjectives involves the following. After the analysis of the dictionary data there was the reference to the following corpora to study the distributional patterns of the words under study – the British National Corpus (BNC) and the Corpus of Contemporary American English (COCA). These corpora are continually updated and contain thousands of examples of the words under research which make them a useful and convenient data source. For the purpose of this study there were no special needs regarding genre, mode or time of the texts included in the corpora. Out of the range of possibilities offered by corpus-analysis software (e.g. word lists, statistics of word frequencies, etc.), the most useful tool for the semantic analysis was the extracting a list of co-occurrence for the given search words. Searching by lemmas, e.g. true, true to, and grouping the results by lemmas have proved to be the most efficient corpora feature for the adjectives under the study. Following the search process, the corpora provided a list of co-occurrences, which were then to be analyzed and classified. Not every co-occurrence was relevant for the analysis. For example, the phrases like An enormous sense of responsibility to protect the minds and hearts of the faithful from incursions by the state was perceived to be the basic duty of the church leaders or ‘True,’ said Phoebe, ‘but I'd probably get to be a Union Official immediately were left out as in the first example the faithful is a substantivized adjective and in the second example true is used alone with no other parts of speech. The subsequent analysis of the corpora data gave the grounds for the distribution groups of the adjectives under the study which were then investigated with the help of a semantic experiment. To sum it up, the corpora-based approach has proved to be a powerful, reliable and convenient tool to get the data for the further semantic study.Keywords: corpora, corpus-based approach, polysemantic adjectives, semantic studies
Procedia PDF Downloads 314616 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources
Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha
Abstract:
Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models
Procedia PDF Downloads 211615 Study of Syntactic Errors for Deep Parsing at Machine Translation
Authors: Yukiko Sasaki Alam, Shahid Alam
Abstract:
Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.Keywords: syntactic parsing, error analysis, machine translation, deep parsing
Procedia PDF Downloads 560614 Unraveling the Phonosignological Foundations of Human Language and Semantic Analysis of Linguistic Elements in Cross-Cultural Contexts
Authors: Mahmudjon Kuchkarov, Marufjon Kuchkarov, Mukhayyo Sobirjanova
Abstract:
The origins of human language remain a profound scientific mystery, characterized by speculative theories often lacking empirical support. This study presents findings that may illuminate the genesis of human language, emphasizing its roots in natural, systematic, and repetitive sound patterns. Also, this paper presents the phonosignological and semantic analysis of linguistic elements across various languages and cultures. By utilizing the principles of the "Human Language" theory, we analyze the symbolic, phonetic, and semantic characteristics of elements such as "A", "L", "I", "F", and "四" (pronounced /si/ in Chinese and /shi/ in Japanese). Our findings reveal that natural sounds and their symbolic representations form the foundation of language, with significant implications for understanding religious and secular myths. This paper explores the intricate relationships between these elements and their cultural connotations, particularly focusing on the concept of "descent" in the context of the phonetic sequence "A, L, I, F," and the symbolic associations of the number four with death.Keywords: empirical research, human language, phonosignology, semantics, sound patterns, symbolism, body shape, body language, coding, Latin alphabet, merging method, natural sound, origin of language, pairing, phonetics, sound and shape production, word origin, word semantic
Procedia PDF Downloads 37613 Lexical-Semantic Processing by Chinese as a Second Language Learners
Authors: Yi-Hsiu Lai
Abstract:
The present study aimed to elucidate the lexical-semantic processing for Chinese as second language (CSL) learners. Twenty L1 speakers of Chinese and twenty CSL learners in Taiwan participated in a picture naming task and a category fluency task. Based on their Chinese proficiency levels, these CSL learners were further divided into two sub-groups: ten CSL learners of elementary Chinese proficiency level and ten CSL learners of intermediate Chinese proficiency level. Instruments for the naming task were sixty black-and-white pictures: thirty-five object pictures and twenty-five action pictures. Object pictures were divided into two categories: living objects and non-living objects. Action pictures were composed of two categories: action verbs and process verbs. As in the naming task, the category fluency task consisted of two semantic categories – objects (i.e., living and non-living objects) and actions (i.e., action and process verbs). Participants were asked to report as many items within a category as possible in one minute. Oral productions were tape-recorded and transcribed for further analysis. Both error types and error frequency were calculated. Statistical analysis was further conducted to examine these error types and frequency made by CSL learners. Additionally, category effects, pictorial effects and L2 proficiency were discussed. Findings in the present study helped characterize the lexical-semantic process of Chinese naming in CSL learners of different Chinese proficiency levels and made contributions to Chinese vocabulary teaching and learning in the future.Keywords: lexical-semantic processing, Mandarin Chinese, naming, category effects
Procedia PDF Downloads 462