Search results for: nuclear-fuelled vessels
278 Appliance of the Analytic Hierarchy Process Methodology for the Selection of a Small Modular Reactors to Enhance Maritime Traffic Decarbonisation
Authors: Sara Martín, Ying Jie Zheng, César Hueso
Abstract:
International shipping is considered one of the largest sources of pollution in the world, accounting for 812 million tons of CO2 emissions in the year 2018. Current maritime decarbonisation is based on the implementation of new fuel alternatives, such as LNG, biofuels, and methanol, among others, which are less polluting as well as less efficient. Despite being a carbon-free and highly-developed technology, nuclear propulsion is hardly discussed as an alternative. Scientifically, it is believed that Small Modular Reactors (SMR) could be a promising solution to decarbonized maritime traffic due to their small dimensions and safety capabilities. However, as of today, there are no merchant ships powered by nuclear systems. Therefore, this project aims to understand the challenges of the development of nuclear-fuelled vessels by analysing all SMR designs to choose the most suitable one. In order not to fall into subjectivities, the Analytic Hierarchy Process (AHP) will be used to make the selection. This multiple-criteria evaluation technique analyses complex decisions by pairwise comparison of a number of evaluation criteria that can be applied to each SMR. The state-of-the-art 72 SMRs presented by the International Atomic Energy Agency (IAEA) will be analysed and ranked by a global parameter, calculated by applying the AHP methodology. The main target of the work is to find an adequate SMR system to power a ship. Top designs will be described in detail, and conclusions will be drawn from the results. This project has been conceived as an effort to foster the near-term development of zero-emission maritime traffic.Keywords: international shipping, decarbonization, SMR, AHP, nuclear-fuelled vessels
Procedia PDF Downloads 125277 Payload Bay Berthing of an Underwater Vehicle With Vertically Actuated Thrusters
Authors: Zachary Cooper-Baldock, Paulo E. Santos, Russell S. A. Brinkworth, Karl Sammut
Abstract:
In recent years, large unmanned underwater vehicles such as the Boeing Voyager and Anduril Ghost Shark have been developed. These vessels can be structured to contain onboard internal payload bays. These payload bays can serve a variety of purposes – including the launch and recovery (LAR) of smaller underwater vehicles. The LAR of smaller vessels is extremely important, as it enables transportation over greater distances, increased time on station, data transmission and operational safety. The larger vessel and its payload bay structure complicate the LAR of UUVs in contrast to static docks that are affixed to the seafloor, as they actively impact the local flow field. These flow field impacts require analysis to determine if UUV vessels can be safely launched and recovered inside the motherships. This research seeks to determine the hydrodynamic forces exerted on a vertically over-actuated, small, unmanned underwater vehicle (OUUV) during an internal LAR manoeuvre and compare this to an under-actuated vessel (UUUV). In this manoeuvre, the OUUV is navigated through the stern wake region of the larger vessel to a set point within the internal payload bay. The manoeuvre is simulated using ANSYS Fluent computational fluid dynamics models, covering the entire recovery of the OUUV and UUUV. The analysis of the OUUV is compared against the UUUV to determine the differences in the exerted forces. Of particular interest are the drag, pressure, turbulence and flow field effects exerted as the OUUV is driven inside the payload bay of the larger vessel. The hydrodynamic forces and flow field disturbances are used to determine the feasibility of making such an approach. From the simulations, it was determined that there was no significant detrimental physical forces, particularly with regard to turbulence. The flow field effects exerted by the OUUV are significant. The vertical thrusters exert significant wake structures, but their orientation ensures the wake effects are exerted below the UUV, minimising the impact. It was also seen that OUUV experiences higher drag forces compared to the UUUV, which will correlate to an increased energy expenditure. This investigation found no key indicators that recovery via a mothership payload bay was not feasible. The turbulence, drag and pressure phenomenon were of a similar magnitude to existing static and towed dock structures.Keywords: underwater vehicles, submarine, autonomous underwater vehicles, AUV, computational fluid dynamics, flow fields, pressure, turbulence, drag
Procedia PDF Downloads 91276 Hydrodynamic Analysis of Payload Bay Berthing of an Underwater Vehicle With Vertically Actuated Thrusters
Authors: Zachary Cooper-Baldock, Paulo E. Santos, Russell S. A. Brinkworth, Karl Sammut
Abstract:
- In recent years, large unmanned underwater vehicles such as the Boeing Voyager and Anduril Ghost Shark have been developed. These vessels can be structured to contain onboard internal payload bays. These payload bays can serve a variety of purposes – including the launch and recovery (LAR) of smaller underwater vehicles. The LAR of smaller vessels is extremely important, as it enables transportation over greater distances, increased time on station, data transmission and operational safety. The larger vessel and its payload bay structure complicate the LAR of UUVs in contrast to static docks that are affixed to the seafloor, as they actively impact the local flow field. These flow field impacts require analysis to determine if UUV vessels can be safely launched and recovered inside the motherships. This research seeks to determine the hydrodynamic forces exerted on a vertically over-actuated, small, unmanned underwater vehicle (OUUV) during an internal LAR manoeuvre and compare this to an under-actuated vessel (UUUV). In this manoeuvre, the OUUV is navigated through the stern wake region of the larger vessel to a set point within the internal payload bay. The manoeuvre is simulated using ANSYS Fluent computational fluid dynamics models, covering the entire recovery of the OUUV and UUUV. The analysis of the OUUV is compared against the UUUV to determine the differences in the exerted forces. Of particular interest are the drag, pressure, turbulence and flow field effects exerted as the OUUV is driven inside the payload bay of the larger vessel. The hydrodynamic forces and flow field disturbances are used to determine the feasibility of making such an approach. From the simulations, it was determined that there was no significant detrimental physical forces, particularly with regard to turbulence. The flow field effects exerted by the OUUV are significant. The vertical thrusters exert significant wake structures, but their orientation ensures the wake effects are exerted below the UUV, minimising the impact. It was also seen that OUUV experiences higher drag forces compared to the UUUV, which will correlate to an increased energy expenditure. This investigation found no key indicators that recovery via a mothership payload bay was not feasible. The turbulence, drag and pressure phenomenon were of a similar magnitude to existing static and towed dock structures.Keywords: underwater vehicles, submarine, autonomous underwater vehicles, auv, computational fluid dynamics, flow fields, pressure, turbulence, drag
Procedia PDF Downloads 78275 Assets Integrity Management in Oil and Gas Production Facilities through Corrosion Mitigation and Inspection Strategy: A Case Study of Sarir Oilfield
Authors: Iftikhar Ahmad, Youssef Elkezza
Abstract:
Sarir oilfield is in North Africa. It has facilities for oil and gas production. The assets of the Sarir oilfield can be divided into five following categories, namely: (i) well bore and wellheads; (ii) vessels such as separators, desalters, and gas processing facilities; (iii) pipelines including all flow lines, trunk lines, and shipping lines; (iv) storage tanks; (v) other assets such as turbines and compressors, etc. The nature of the petroleum industry recognizes the potential human, environmental and financial consequences that can result from failing to maintain the integrity of wellheads, vessels, tanks, pipelines, and other assets. The importance of effective asset integrity management increases as the industry infrastructure continues to age. The primary objective of assets integrity management (AIM) is to maintain assets in a fit-for-service condition while extending their remaining life in the most reliable, safe, and cost-effective manner. Corrosion management is one of the important aspects of successful asset integrity management. It covers corrosion mitigation, monitoring, inspection, and risk evaluation. External corrosion on pipelines, well bores, buried assets, and bottoms of tanks is controlled with a combination of coatings by cathodic protection, while the external corrosion on surface equipment, wellheads, and storage tanks is controlled by coatings. The periodic cleaning of the pipeline by pigging helps in the prevention of internal corrosion. Further, internal corrosion of pipelines is prevented by chemical treatment and controlled operations. This paper describes the integrity management system used in the Sarir oil field for its oil and gas production facilities based on standard practices of corrosion mitigation and inspection.Keywords: assets integrity management, corrosion prevention in oilfield assets, corrosion management in oilfield, corrosion prevention, inspection activities
Procedia PDF Downloads 88274 Monitoring of Wound Healing Through Structural and Functional Mechanisms Using Photoacoustic Imaging Modality
Authors: Souradip Paul, Arijit Paramanick, M. Suheshkumar Singh
Abstract:
Traumatic injury is the leading worldwide health problem. Annually, millions of surgical wounds are created for the sake of routine medical care. The healing of these unintended injuries is always monitored based on visual inspection. The maximal restoration of tissue functionality remains a significant concern of clinical care. Although minor injuries heal well with proper care and medical treatment, large injuries negatively influence various factors (vasculature insufficiency, tissue coagulation) and cause poor healing. Demographically, the number of people suffering from severe wounds and impaired healing conditions is burdensome for both human health and the economy. An incomplete understanding of the functional and molecular mechanism of tissue healing often leads to a lack of proper therapies and treatment. Hence, strong and promising medical guidance is necessary for monitoring the tissue regeneration processes. Photoacoustic imaging (PAI), is a non-invasive, hybrid imaging modality that can provide a suitable solution in this regard. Light combined with sound offers structural, functional and molecular information from the higher penetration depth. Therefore, molecular and structural mechanisms of tissue repair will be readily observable in PAI from the superficial layer and in the deep tissue region. Blood vessel formation and its growth is an essential tissue-repairing components. These vessels supply nutrition and oxygen to the cell in the wound region. Angiogenesis (formation of new capillaries from existing blood vessels) contributes to new blood vessel formation during tissue repair. The betterment of tissue healing directly depends on angiogenesis. Other optical microscopy techniques can visualize angiogenesis in micron-scale penetration depth but are unable to provide deep tissue information. PAI overcomes this barrier due to its unique capability. It is ideally suited for deep tissue imaging and provides the rich optical contrast generated by hemoglobin in blood vessels. Hence, an early angiogenesis detection method provided by PAI leads to monitoring the medical treatment of the wound. Along with functional property, mechanical property also plays a key role in tissue regeneration. The wound heals through a dynamic series of physiological events like coagulation, granulation tissue formation, and extracellular matrix (ECM) remodeling. Therefore tissue elasticity changes, can be identified using non-contact photoacoustic elastography (PAE). In a nutshell, angiogenesis and biomechanical properties are both critical parameters for tissue healing and these can be characterized in a single imaging modality (PAI).Keywords: PAT, wound healing, tissue coagulation, angiogenesis
Procedia PDF Downloads 106273 J-Integral Method for Assessment of Structural Integrity of a Pressure Vessel
Authors: Karthik K. R, Viswanath V, Asraff A. K
Abstract:
The first stage of a new-generation launch vehicle of ISRO makes use of large pressure vessels made of Aluminium alloy AA2219 to store fuel and oxidizer. These vessels have many weld joints that may contain cracks or crack-like defects during their fabrication. These defects may propagate across the vessel during pressure testing or while in service under the influence of tensile stresses leading to catastrophe. Though ductile materials exhibit significant stable crack growth prior to failure, it is not generally acceptable for an aerospace component. There is a need to predict the initiation of stable crack growth. The structural integrity of the vessel from fracture considerations can be studied by constructing the Failure Assessment Diagram (FAD) that accounts for both brittle fracture and plastic collapse. Critical crack sizes of the pressure vessel may be highly conservative if it is predicted from FAD alone. If the J-R curve for material under consideration is available apriori, the critical crack sizes can be predicted to a certain degree of accuracy. In this paper, a novel approach is proposed to predict the integrity of a weld in a pressure vessel made of AA2219 material. Fracture parameter ‘J-integral’ at the crack front, evaluated through finite element analyses, is used in the new procedure. Based on the simulation of tension tests carried out on SCT specimens by NASA, a cut-off value of J-integral value (J?ᵤₜ_ₒ??) is finalised. For the pressure vessel, J-integral at the crack front is evaluated through FE simulations incorporating different surface cracks at long seam weld in a cylinder and in dome petal welds. The obtained J-integral, at vessel level, is compared with a value of J?ᵤₜ_ₒ??, and the integrity of vessel weld in the presence of the surface crack is firmed up. The advantage of this methodology is that if SCT test data of any metal is available, the critical crack size in hardware fabricated using that material can be predicted to a better level of accuracy.Keywords: FAD, j-integral, fracture, surface crack
Procedia PDF Downloads 187272 Investigation of Ductile Failure Mechanisms in SA508 Grade 3 Steel via X-Ray Computed Tomography and Fractography Analysis
Authors: Suleyman Karabal, Timothy L. Burnett, Egemen Avcu, Andrew H. Sherry, Philip J. Withers
Abstract:
SA508 Grade 3 steel is widely used in the construction of nuclear pressure vessels, where its fracture toughness plays a critical role in ensuring operational safety and reliability. Understanding the ductile failure mechanisms in this steel grade is crucial for designing robust pressure vessels that can withstand severe nuclear environment conditions. In the present study, round bar specimens of SA508 Grade 3 steel with four distinct notch geometries were subjected to tensile loading while capturing continuous 2D images at 5-second intervals in order to monitor any alterations in their geometries to construct true stress-strain curves of the specimens. 3D reconstructions of X-ray computed tomography (CT) images at high-resolution (a spatial resolution of 0.82 μm) allowed for a comprehensive assessment of the influences of second-phase particles (i.e., manganese sulfide inclusions and cementite particles) on ductile failure initiation as a function of applied plastic strain. Additionally, based on 2D and 3D images, plasticity modeling was executed, and the results were compared to experimental data. A specific ‘two-parameter criterion’ was established and calibrated based on the correlation between stress triaxiality and equivalent plastic strain at failure initiation. The proposed criterion demonstrated substantial agreement with the experimental results, thus enhancing our knowledge of ductile fracture behavior in this steel grade. The implementation of X-ray CT and fractography analysis provided new insights into the diverse roles played by different populations of second-phase particles in fracture initiation under varying stress triaxiality conditions.Keywords: ductile fracture, two-parameter criterion, x-ray computed tomography, stress triaxiality
Procedia PDF Downloads 92271 Waste Heat Recovery System
Authors: A. Ramkumar, Anvesh Sagar, Preetham P. Karkera
Abstract:
Globalization in the modern era is dependent on the International logistics, the economic and reliable means is provided by the ocean going merchant vessel. The propulsion system which drives this massive vessels has gone through leaps and bounds of evolution. Most reliable system of propulsion adopted by the majority of vessels is by marine diesel engine. Since the first oil crisis of 1973, there is demand in increment of efficiency of main engine. Due to increase in the oil prices ship-operators explores for reduction in the operational cost of ship. And newly adopted IMO’s EEDI & SEEMP rules calls for the effective measures taken in this regard. The main engine of a ship suffers a lot of thermal losses, they mainly occur due to exhaust gas waste heat, radiation and cooling. So to increase the overall efficiency of system, we have to look into the solution to harnessing this waste energy of main engine to increase the fuel economy. During the course of research, engine manufacturers have developed many waste heat recovery systems. In our paper we see about additional options to harness this waste heat. The exhaust gas of engine coming out from the turbocharger still holds enough heat to go to the exhaust gas economiser to produce steam. This heat of exhaust gas can be used to heat a liquid of less boiling point after coming out from the turbocharger. The vapour of this secondary liquid can be superheated by a bypass exhaust or exhaust of turbocharger. This vapour can be utilized to rotate the turbine which is coupled to a generator. And the electric power for ship service can be produced with proper configuration of system. This can be included in PMS of ship. In this paper we seek to concentrate on power generation with use of exhaust gas. Thereby taking out the load on the main generator and increasing the efficiency of the system. This will help us to comply with the new rules of IMO. Our method helps to develop clean energy.Keywords: EEDI–energy efficiency design index, IMO–international maritime organization PMS-power management system, SEEMP–ship energy efficiency management plan
Procedia PDF Downloads 381270 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis
Authors: Ganbat Danaa, Chuluundorj Puntsag
Abstract:
The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability
Procedia PDF Downloads 67269 A Numerical Model for Simulation of Blood Flow in Vascular Networks
Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia
Abstract:
An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.Keywords: blood flow, morphometric data, vascular tree, Strahler ordering system
Procedia PDF Downloads 272268 Preliminary Composite Overwrapped Pressure Vessel Design for Hydrogen Storage Using Netting Analysis and American Society of Mechanical Engineers Section X
Authors: Natasha Botha, Gary Corderely, Helen M. Inglis
Abstract:
With the move to cleaner energy applications the transport industry is working towards on-board hydrogen, or compressed natural gas-fuelled vehicles. A popular method for storage is to use composite overwrapped pressure vessels (COPV) because of their high strength to weight ratios. The proper design of these COPVs are according to international standards; this study aims to provide a preliminary design for a 350 Bar Type IV COPV (i.e. a polymer liner with a composite overwrap). Netting analysis, a popular analytical approach, is used as a first step to generate an initial design concept for the composite winding. This design is further improved upon by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel standards, Section X: Fibre-reinforced composite pressure vessels. A design program based on these two approaches is developed using Python. A numerical model of a burst test simulation is developed based on the two approaches and compared. The results indicate that the netting analysis provides a good preliminary design, while the ASME-based design is more robust and accurate as it includes a better approximation of the material behaviour. Netting analysis is an easy method to follow when considering an initial concept design for the composite winding when not all the material characteristics are known. Once these characteristics have been fully defined with experimental testing, an ASME-based design should always be followed to ensure that all designs conform to international standards and practices. Future work entails more detailed numerical testing of the design for improvement, this will include the boss design. Once finalised prototype manufacturing and experimental testing will be conducted, and the results used to improve on the COPV design.Keywords: composite overwrapped pressure vessel, netting analysis, design, American Society of Mechanical Engineers section x, fiber-reinforced, hydrogen storage
Procedia PDF Downloads 247267 Improving Paper Mechanical Properties and Printing Quality by Using Carboxymethyl Cellulose as a Strength Agent
Authors: G. N. Simonian, R. F. Basalah, F. T. Abd El Halim, F. F. Abd El Latif, A. M. Adel, A. M. El Shafey.
Abstract:
Carboxymethyl cellulose (CMC) is an anionic water soluble polymer that has been introduced in paper coating as a strength agent. One of the main objectives of this research is to investigate the influence of CMC concentration in improving the strength properties of paper fiber. In this work, we coated the paper sheets; Xerox paper sheets by different concentration of carboxymethyl cellulose solution (0.1, 0.5, 1, 1.5, 2, 3%) w/v. The mechanical properties; breaking length and tearing resistance (tear factor) were measured for the treated and untreated paper specimens. The retained polymer in the coated paper samples were also calculated. The more the concentration of the coating material; CMC increases, the more the mechanical properties; breaking length and tear factor increases. It can be concluded that CMC enhance the improvement of the mechanical properties of paper sheets result in increasing paper stability. The aim of the present research was also to study the effects on the vessel element structure and vessel picking tendency of the coated paper sheets. In addition to the improved strength properties of the treated sheet, a significant decrease in the vessel picking tendency was expected whereas refining of the original paper sheets (untreated paper sheets) improved mainly the bonding ability of fibers, CMC effectively enhanced the bonding of vessels as well. Moreover, film structures were formed in the fibrillated areas of the coated paper specimens, and they were concluded to reinforce the bonding within the sheet. Also, fragmentation of vessel elements through CMC modification was found to be important and results in a decreasing picking tendency which reflects in a good printability. Moreover, Scanning – Electron Microscope (SEM) images are represented to specifically explain the improved bonding ability of vessels and fibers after CMC modification. Finally, CMC modification enhance paper mechanical properties and print quality.Keywords: carboxymethyl cellulose (CMC), breaking length, tear factor, vessel picking, printing, concentration
Procedia PDF Downloads 424266 Wharton's Jelly-Derived Mesenchymal Stem Cells Modulate Heart Rate Variability and Improve Baroreflex Sensitivity in Septic Rats
Authors: Cóndor C. José, Rodrigues E. Camila, Noronha L. Irene, Dos Santos Fernando, Irigoyen M. Claudia, Andrade Lúcia
Abstract:
Sepsis induces alterations in hemodynamics and autonomic nervous system (ASN). The autonomic activity can be calculated by measuring heart rate variability (HRV) that represents the complex interplay between ASN and cardiac pacemaker cells. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors involved in neuroprotective and immunological effects, also to improve the survival in experimental septic animals. We hypothesized, that WJ-MSCs present an important role in the autonomic activity and in the hemodynamic effects in a cecal ligation and puncture (CLP) model of sepsis. Methods: We used flow cytometry to evaluate WJ-MSCs phenotypes. We divided Wistar rats into groups: sham (shamoperated); CLP; and CLP+MSC (106 WJ-MSCs, i.p., 6 h after CLP). At 24 h post-CLP, we recorded the systolic arterial pressure (SAP) and heart rate (HR) over 20 min. The spectral analysis of HR and SAP; also the spontaneous baroreflex sensitivity (measure by bradycardic and tachycardic responses) were evaluated after recording. The one-way ANOVA and the post hoc Student– Newman– Keuls tests (P< 0.05) were used to data comparison Results: WJ-MSCs were negative for CD3, CD34, CD45 and HLA-DR, whereas they were positive for CD73, CD90 and CD105. The CLP group showed a reduction in variance of overall variability and in high-frequency power of HR (heart parasympathetic activity); furthermore, there is a low-frequency reduction of SAP (blood vessels sympathetic activity). The treatment with WJ-MSCs improved the autonomic activity by increasing the high and lowfrequency power; and restore the baroreflex sensitive. Conclusions: WJ-MSCs attenuate the impairment of autonomic control of the heart and vessels and might therefore play a protective role in sepsis. (Supported by FAPESP).Keywords: baroreflex response, heart rate variability, sepsis, wharton’s jelly-derived mesenchymal stem cells
Procedia PDF Downloads 302265 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach
Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani
Abstract:
Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery
Procedia PDF Downloads 306264 Construction Port Requirements for Floating Wind Turbines
Authors: Alan Crowle, Philpp Thies
Abstract:
As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.Keywords: floating wind, port, marine construction, offshore renewables
Procedia PDF Downloads 291263 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor
Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen
Abstract:
In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.
Procedia PDF Downloads 252262 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls
Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac
Abstract:
No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations
Procedia PDF Downloads 319261 Innovative Design of Spherical Robot with Hydraulic Actuator
Authors: Roya Khajepour, Alireza B. Novinzadeh
Abstract:
In this paper, the spherical robot is modeled using the Band-Graph approach. This breed of robots is typically employed in expedition missions to unknown territories. Its motion mechanism is based on convection of a fluid in a set of three donut vessels, arranged orthogonally in space. This robot is a non-linear, non-holonomic system. This paper utilizes the Band-Graph technique to derive the torque generation mechanism in a spherical robot. Eventually, this paper describes the motion of a sphere due to the exerted torque components.Keywords: spherical robot, Band-Graph, modeling, torque
Procedia PDF Downloads 350260 Alternative Epinephrine Injector to Combat Allergy Induced Anaphylaxis
Authors: Jeremy Bost, Matthew Brett, Jacob Flynn, Weihui Li
Abstract:
One response during anaphylaxis is reduced blood pressure due to blood vessels relaxing and dilating. Epinephrine causes the blood vessels to constrict, which raises blood pressure to counteract the symptoms. When going through an allergic reaction, an Epinephrine injector is used to administer a shot of epinephrine intramuscularly. Epinephrine injectors have become an integral part of day-to-day life for people with allergies. Current Epinephrine injectors (EpiPen) are completely mechanical and have no sensors to monitor the vital signs of patients or give suggestions the optimal time for the shot. The EpiPens are also large and inconvenient to carry daily. The current price of an EpiPen is roughly 600$ for a pack of two. This makes carrying an EpiPen very expensive, especially when they need to be switched out when the epinephrine expires. This new design is in the form of a bracelet, which has the ability to inject epinephrine. The bracelet will be equipped with vital signs monitors that can aid the patient to sense the allergic reaction. The vital signs that would be of interest are blood pressure, heart rate and Electrodermal activity (EDA). The heart rate of the patient will be tracked by a photoplethysmograph (PPG) that is incorporated into the sensors. The heart rate is expected to increase during anaphylaxis. Blood pressure will be monitored through a radar sensor, which monitors the phase changes in electromagnetic waves as they reflect off of the blood vessel. EDA is under autonomic control. Allergen-induced anaphylaxis is caused by a release of chemical mediators from mast cells and basophils, thus changes the autonomic activity of the patient. So by measuring EDA, it will give the wearer an alert on how their autonomic nervous system is reacting. After the vital signs are collected, they will be sent to an application on a smartphone to be analyzed, which can then alert an emergency contact if the epinephrine injector on the bracelet is activated. Overall, this design creates a safer system by aiding the user in keeping track of their epinephrine injector, while making it easier to track their vital signs. Also, our design will be more affordable and more convenient to replace. Rather than replacing the entire product, only the needle and drug will be switched out and not the entire design.Keywords: allergy, anaphylaxis, epinephrine, injector, vital signs monitor
Procedia PDF Downloads 252259 Control of Lymphatic Remodelling by miR-132
Authors: Valeria Arcucci, Musarat Ishaq, Steven A. Stacker, Greg J. Goodall, Marc G. Achen
Abstract:
Metastasis is the lethal aspect of cancer for most patients. Remodelling of lymphatic vessels associated with a tumour is a key initial step in metastasis because it facilitates the entry of cancer cells into the lymphatic vasculature and their spread to lymph nodes and distant organs. Although it is clear that vascular endothelial growth factors (VEGFs), such as VEGF-C and VEGF-D, are key drivers of lymphatic remodelling, the means by which many signaling pathways in endothelial cells are coordinately regulated to drive growth and remodelling of lymphatics in cancer is not understood. We seek to understand the broader molecular mechanisms that control cancer metastasis, and are focusing on microRNAs, which coordinately regulate signaling pathways involved in complex biological responses in health and disease. Here, using small RNA sequencing, we found that a specific microRNA, miR-132, is upregulated in expression in lymphatic endothelial cells (LECs) in response to the lymphangiogenic growth factors. Interestingly, ectopic expression of miR-132 in LECs in vitro stimulated proliferation and tube formation of these cells. Moreover, miR-132 is expressed in lymphatic vessels of a subset of human breast tumours which were previously found to express high levels of VEGF-D by immunohistochemical analysis on tumour tissue microarrays. In order to dissect the complexity of regulation by miR-132 in lymphatic biology, we performed Argonaute HITS-CLIP, which led us to identify the miR-132-mRNA interactome in LECs. We found that this microRNA in LECs is involved in the control of many different pathways mainly involved in cell proliferation and regulation of the extracellular matrix and cell-cell junctions. We are now exploring the functional significance of miR-132 targets in the biology of LECs using biochemical techniques, functional in vitro cell assays and in vivo lymphangiogenesis assays. This project will ultimately define the molecular regulation of lymphatic remodelling by miR-132, and thereby identify potential therapeutic targets for drugs designed to restrict the growth and remodelling of tumour lymphatics resulting in metastatic spread.Keywords: argonaute HITS-CLIP, cancer, lymphatic remodelling, miR-132, VEGF
Procedia PDF Downloads 128258 Histological and Morphometric Studies of the Liver of Goats Aborted
Authors: Toumi Farah, Charallah Salima
Abstract:
In the Algerian Sahara, goat farming is predominant, and it’s associated with other types of breeding, particularly camel and sheep; it also constitutes a significant proportion of breeding exclusively goat. This Saharan goat is a small ruminant with a black dress with white’s spots, hanging ears, and a coat more or less long. It is known for its hardiness and resistance to adverse conditions of arid zones and its perfect ecophysiological adaptation to harsh environmental conditions. However, pregnancy alterations, particularly abortion, degrade its productivity and cause economic losses, having both direct and indirect effects on animal production, like the costs of veterinary interventions and the reconstitution of livestock. The purpose of this work is to study the histological aspect of the liver of goats’ aborted living under nomadic herds in the region of Béni-Abbès (30° 7' N, 2° 10 'O). The organs were collected in physiological serum, rinsed, and then fixed with formaldehyde (37°, diluted at 10%). After that, these samples were processed for a topographic study. The morphometric study of the liver was performed by using an image analysis and processing software "Image J"; the various measurements obtained are intended to specify the supposed stage of development according to the body weight. The histological structure of the liver shows that the hepatic parenchyma consists of vascular conjunctive spaces surrounded by Glisson’s capsule. The sinusoids and hepatic portal vein are full of red blood cells, representing sinusoidal congestion and a thrombosed vein. At high magnification, the blood vessels show the presence of vascular thrombosis and haemorrhage in some areas of the hepatic parenchyma. Morphometric analysis shows that the number of liver parenchymal cells and the diameter of liver vessels vary according to the stage of development. The results obtained will provide details of the anatomical and cellular elements that can be used in the diagnosis of early or late abortion and late embryonic death. It would be interesting to find, by immunohistochemistry, some inflammatory markers useful for monitoring the progress of pregnancy and bioindicators of fetomaternal distress.Keywords: aborting goat, arid zone, liver, histopathology
Procedia PDF Downloads 99257 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection
Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld
Abstract:
In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation
Procedia PDF Downloads 265256 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 235255 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets
Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu
Abstract:
Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.Keywords: GEO SAR, radar, simulation, ship
Procedia PDF Downloads 177254 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 153253 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window
Authors: Khaled Moh. Alhamad
Abstract:
This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.Keywords: heuristic, scheduling, tabu search, transportation
Procedia PDF Downloads 506252 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage
Authors: Pranjali Sharma, Swati Neogi
Abstract:
Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance
Procedia PDF Downloads 147251 ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression
Authors: Roberto Coppo, Francesca Orso, Daniela Dettori, Elena Quaglino, Lei Nie, Mehran M. Sadeghi, Daniela Taverna
Abstract:
Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation.Keywords: melanoma, tumor microenvironment, extravasation, cell surface molecules
Procedia PDF Downloads 334250 Solar-Electric Pump-out Boat Technology: Impacts on the Marine Environment, Public Health, and Climate Change
Authors: Joy Chiu, Colin Hemez, Emma Ryan, Jia Sun, Robert Dubrow, Michael Pascucilla
Abstract:
The popularity of recreational boating is on the rise in the United States, which raises numerous national-level challenges in the management of air and water pollution, aquatic habitat destruction, and waterway access. The need to control sewage discharge from recreational vessels underlies all of these challenges. The release of raw human waste into aquatic environments can lead to eutrophication and algal blooms; can increase human exposure to pathogenic viruses, bacteria, and parasites; can financially impact commercial shellfish harvest/fisheries and marine bathing areas; and can negatively affect access to recreational and/or commercial waterways to the detriment of local economies. Because of the damage that unregulated sewage discharge can do to environments and human health/marine life, recreational vessels in the United States are required by law to 'pump-out' sewage from their holding tanks into sewage treatment systems in all designated 'no discharge areas'. Many pump-out boats, which transfer waste out of recreational vessels, are operated and maintained using funds allocated through the Federal Clean Vessel Act (CVA). The East Shore District Health Department of Branford, Connecticut is protecting this estuary by pioneering the design and construction of the first-in-the-nation zero-emissions, the solar-electric pump-out boat of its size to replace one of its older traditional gasoline-powered models through a Connecticut Department of Energy and Environmental Protection CVA Grant. This study, conducted in collaboration with the East Shore District Health Department, the Connecticut Department of Energy and Environmental Protection, States Organization for Boating Access and Connecticut’s CVA program coordinators, had two aims: (1) To perform a national assessment of pump-out boat programs, supplemented by a limited international assessment, to establish best pump-out boat practices (regardless of how the boat is powered); and (2) to estimate the cost, greenhouse gas emissions, and environmental and public health impacts of solar-electric versus traditional gasoline-powered pump-out boats. A national survey was conducted of all CVA-funded pump-out program managers and selected pump-out boat operators to gauge best practices; costs associated with gasoline-powered pump-out boat operation and management; and the regional, cultural, and policy-related issues that might arise from the adoption of solar-electric pump-out boat technology. We also conducted life-cycle analyses of gasoline-powered and solar-electric pump-out boats to compare their greenhouse gas emissions; production of air, soil and water pollution; and impacts on human health. This work comprises the most comprehensive study into pump-out boating practices in the United States to date, in which information obtained at local, state, national, and international levels is synthesized. This study aims to enable CVA programs to make informed recommendations for sustainable pump-out boating practices and identifies the challenges and opportunities that remain for the wide adoption of solar-electric pump-out boat technology.Keywords: pump-out boat, marine water, solar-electric, zero emissions
Procedia PDF Downloads 128249 All at Sea: Why OT / IT Infrastructure Is So Complex and the Challenges of Securing These on a Cruise Ship
Authors: Ken Munro
Abstract:
Cruise ships are possibly the most complex collection of systems it is possible to find in one physical, moving location. Propulsion, navigation, power generation and more, combined with a hotel, restaurant, casino, theatre etc, with safety and fire control systems to boot. That complexity creates huge challenges with keeping OT and IT systems apart. Ships engines are often remotely managed, network segregation is often defeated through troubleshooting when at sea. This session will refer to multiple entertaining and informative tales of taking control of ships, including accessing a ships Azipods via a game simulator for passengers. Fortunately, genuine attacks against vessels are very rare, but the effects and impacts to world trade are becoming increasingly obvious.Keywords: maritime security, cybersecurity, OT, IT, networks
Procedia PDF Downloads 33