Search results for: lanthanide tags
34 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification
Authors: Bing Li, Zhi Li, Yilong Yang
Abstract:
Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery
Procedia PDF Downloads 13733 Optimization of Energy Harvesting Systems for RFID Applications
Authors: P. Chambe, B. Canova, A. Balabanian, M. Pele, N. Coeur
Abstract:
To avoid battery assisted tags with limited lifetime batteries, it is proposed here to replace them by energy harvesting systems, able to feed from local environment. This would allow total independence to RFID systems, very interesting for applications where tag removal from its location is not possible. Example is here described for luggage safety in airports, and is easily extendable to similar situation in terms of operation constraints. The idea is to fix RFID tag with energy harvesting system not only to identify luggage but also to supply an embedded microcontroller with a sensor delivering luggage weight making it impossible to add or to remove anything from the luggage during transit phases. The aim is to optimize the harvested energy for such RFID applications, and to study in which limits these applications are theoretically possible. Proposed energy harvester is based on two energy sources: piezoelectricity and electromagnetic waves, so that when the luggage is moving on ground transportation to airline counters, the piezo module supplies the tag and its microcontroller, while the RF module operates during luggage transit thanks to readers located along the way. Tag location on the luggage is analyzed to get best vibrations, as well as harvester better choice for optimizing the energy supply depending on applications and the amount of energy harvested during a period of time. Effects of system parameters (RFID UHF frequencies, limit distance between the tag and the antenna necessary to harvest energy, produced voltage and voltage threshold) are discussed and working conditions for such system are delimited.Keywords: RFID tag, energy harvesting, piezoelectric, EM waves
Procedia PDF Downloads 45232 Performance Analysis of Different PSK Scheme on Receiver Sensitivity and Round Trip Distance for Chipless RFID System for UWB with Rayleigh Fading Channels in Outdoor NLOS Environment
Authors: Khalid Mahmud
Abstract:
In this paper, an analytic approach is presented to evaluate the Bit Error Rate (BER) and round trip distance for a UWB chipless RFID system using diversity technique at the reader receiver using different modulation technique. The analysis is carried out with multiresonator based chipless RFID tags using frequency range from 3 GHz − 6 GHz and bandwidth of 500 M Hz in outdoor non-line-of-sight (NLOS) environment. SISO configuration is used to communicate from the reader to the tag and SIMO configuration is used do vice versa. Maximal Ratio Combining (MRC) technique is used in the reader. MPSK, DQPSK, DBPSK, BPSK, QPSK and DMPSK modulation techniques are considered with coherent demodulation to evaluate the BER performance. From the numerical analysis of the results, it is found that at a given BER maximum possible round trip distance can be achieved using DMPSK modulation technique. In addition, it has been proved that, while using DMPSK modulation technique, the application of diversity has very little effect on the overall improvement in reader receiver sensitivity and achievable distance. Finally the method not only proves to be a very good way for tag detection in case of a chipless RFID system but also gives a clear insight regarding the interrelationship between BER, read range, reader received power, number of receiving antenna in outdoor NLOS environment.Keywords: EGC, MRC, BER, read range, diversity
Procedia PDF Downloads 35231 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 10630 Verbal Prefix Selection in Old Japanese: A Corpus-Based Study
Authors: Zixi You
Abstract:
There are a number of verbal prefixes in Old Japanese. However, the selection or the compatibility of verbs and verbal prefixes is among the least investigated topics on Old Japanese language. Unlike other types of prefixes, verbal prefixes in dictionaries are more often than not listed with very brief information such as ‘unknown meaning’ or ‘rhythmic function only’. To fill in a part of this knowledge gap, this paper presents an exhaustive investigation based on the newly developed ‘Oxford Corpus of Old Japanese’ (OCOJ), which included nearly all existing resource of Old Japanese language, with detailed linguistics information in TEI-XML tags. In this paper, we propose the possibility that the following three prefixes, i-, sa-, ta- (with ta- being considered as a variation of sa-), are relevant to split intransitivity in Old Japanese, with evidence that unergative verbs favor i- and that unergative verbs favor sa-(ta-). This might be undermined by the fact that transitives are also found to follow i-. However, with several manifestations of split intransitivity in Old Japanese discussed, the behavior of transitives in verbal prefix selection is no longer as surprising as it may seem to be when one look at the selection of verbal prefix in isolation. It is possible that there are one or more features that played essential roles in determining the selection of i-, and the attested transitive verbs happen to have these features. The data suggest that this feature is a sense of ‘change’ of location or state involved in the event donated by the verb, which is a feature of typical unaccusatives. This is further discussed in the ‘affectedness’ hierarchy. The presentation of this paper, which includes a brief demonstration of the OCOJ, is expected to be of the interest of both specialists and general audiences.Keywords: old Japanese, split intransitivity, unaccusatives, unergatives, verbal prefix selection
Procedia PDF Downloads 41529 Computational Insight into a Mechanistic Overview of Water Exchange Kinetics and Thermodynamic Stabilities of Bis and Tris-Aquated Complexes of Lanthanides
Authors: Niharika Keot, Manabendra Sarma
Abstract:
A thorough investigation of Ln3+ complexes with more than one inner-sphere water molecule is crucial for designing high relaxivity contrast agents (CAs) used in magnetic resonance imaging (MRI). This study accomplished a comparative stability analysis of two hexadentate (H3cbda and H3dpaa) and two heptadentate (H4peada and H3tpaa) ligands with Ln3+ ions. The higher stability of the hexadentate H3cbda and heptadentate H4peada ligands has been confirmed by the binding affinity and Gibbs free energy analysis in aqueous solution. In addition, energy decomposition analysis (EDA) reveals the higher binding affinity of the peada4− ligand than the cbda3− ligand towards Ln3+ ions due to the higher charge density of the peada4− ligand. Moreover, a mechanistic overview of water exchange kinetics has been carried out based on the strength of the metal–water bond. The strength of the metal–water bond follows the trend Gd–O47 (w) > Gd–O39 (w) > Gd–O36 (w) in the case of the tris-aquated [Gd(cbda)(H2O)3] and Gd–O43 (w) > Gd–O40 (w) for the bis-aquated [Gd(peada)(H2O)2]− complex, which was confirmed by bond length, electron density (ρ), and electron localization function (ELF) at the corresponding bond critical points. Our analysis also predicts that the activation energy barrier decreases with the decrease in bond strength; hence kex increases. The 17O and 1H hyperfine coupling constant values of all the coordinated water molecules were different, calculated by using the second-order Douglas–Kroll–Hess (DKH2) approach. Furthermore, the ionic nature of the bonding in the metal–ligand (M–L) bond was confirmed by the Quantum Theory of Atoms-In-Molecules (QTAIM) and ELF along with energy decomposition analysis (EDA). We hope that the results can be used as a basis for the design of highly efficient Gd(III)-based high relaxivity MRI contrast agents for medical applications.Keywords: MRI contrast agents, lanthanide chemistry, thermodynamic stability, water exchange kinetics
Procedia PDF Downloads 8428 Lipidomic Profiling of Chlorella sp. and Scenedesmus abundans towards Deciphering Phospholipids and Glycolipids under Nitrogen Limited Condition
Authors: J. Singh, Swati Dubey, R. P. Singh
Abstract:
Microalgal strains can accumulate greatly enhanced levels of lipids under nitrogen-deficient condition, making these as one of the most promising sustainable sources for biofuel production. High-grade biofuel production from microalgal biomass could be facilitated by analysing the lipid content of the microalgae and enumerating its dynamics under varying nutrient conditions. In the present study, a detailed investigation of changes in lipid composition in Chlorella species and Scenedesmus abundans in response to nitrogen limited condition was performed to provide novel mechanistic insights into the lipidome during stress conditions. The mass spectroscopic approaches mainly LC-MS and GC-MS were employed for lipidomic profiling in both the microalgal strains. The analyses of lipid profiling using LC-MS revealed distinct forms of lipids mainly phospho- and glycolipids, including betaine lipids, and various other forms of lipids in both the microalgal strains. As detected, an overall decrease in polar lipids was observed. However, GC-MS analyses had revealed that the synthesis of the storage lipid i.e. triacylglycerol (TAG) was substantially stimulated in both the strains under nitrogen limited conditions. The changes observed in the overall fatty acid profile were primarily due to the decrease in proportion of polar lipids to TAGs. This study had enabled in analysing a detailed and orchestrated form of lipidomes in two different microalgal strains having potential for biodiesel production.Keywords: biofuel, GC-MS, LC-MS, lipid, microalgae
Procedia PDF Downloads 37127 Automated Digital Mammogram Segmentation Using Dispersed Region Growing and Pectoral Muscle Sliding Window Algorithm
Authors: Ayush Shrivastava, Arpit Chaudhary, Devang Kulshreshtha, Vibhav Prakash Singh, Rajeev Srivastava
Abstract:
Early diagnosis of breast cancer can improve the survival rate by detecting cancer at an early stage. Breast region segmentation is an essential step in the analysis of digital mammograms. Accurate image segmentation leads to better detection of cancer. It aims at separating out Region of Interest (ROI) from rest of the image. The procedure begins with removal of labels, annotations and tags from the mammographic image using morphological opening method. Pectoral Muscle Sliding Window Algorithm (PMSWA) is used for removal of pectoral muscle from mammograms which is necessary as the intensity values of pectoral muscles are similar to that of ROI which makes it difficult to separate out. After removing the pectoral muscle, Dispersed Region Growing Algorithm (DRGA) is used for segmentation of mammogram which disperses seeds in different regions instead of a single bright region. To demonstrate the validity of our segmentation method, 322 mammographic images from Mammographic Image Analysis Society (MIAS) database are used. The dataset contains medio-lateral oblique (MLO) view of mammograms. Experimental results on MIAS dataset show the effectiveness of our proposed method.Keywords: CAD, dispersed region growing algorithm (DRGA), image segmentation, mammography, pectoral muscle sliding window algorithm (PMSWA)
Procedia PDF Downloads 31326 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries
Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras
Abstract:
The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).Keywords: deep learning models, film industry, geospatial data management, location scouting
Procedia PDF Downloads 7125 Life Stage Customer Segmentation by Fine-Tuning Large Language Models
Authors: Nikita Katyal, Shaurya Uppal
Abstract:
This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication
Procedia PDF Downloads 2724 Label Free Detection of Small Molecules Using Surface-Enhanced Raman Spectroscopy with Gold Nanoparticles Synthesized with Various Capping Agents
Authors: Zahra Khan
Abstract:
Surface-Enhanced Raman Spectroscopy (SERS) has received increased attention in recent years, focusing on biological and medical applications due to its great sensitivity as well as molecular specificity. In the context of biological samples, there are generally two methodologies for SERS based applications: label-free detection and the use of SERS tags. The necessity of tagging can make the process slower and limits the use for real life. Label-free detection offers the advantage that it reports direct spectroscopic evidence associated with the target molecule rather than the label. Reproducible, highly monodisperse gold nanoparticles (Au NPs) were synthesized using a relatively facile seed-mediated growth method. Different capping agents (TRIS, citrate, and CTAB) were used during synthesis, and characterization was performed. They were then mixed with different analyte solutions before drop-casting onto a glass slide prior to Raman measurements to see which NPs displayed the highest SERS activity as well as their stability. A host of different analytes were tested, both non-biomolecules and biomolecules, which were all successfully detected using this method at concentrations as low as 10-3M with salicylic acid reaching a detection limit in the nanomolar range. SERS was also performed on samples with a mixture of analytes present, whereby peaks from both target molecules were distinctly observed. This is a fast and effective rapid way of testing samples and offers potential applications in the biomedical field as a tool for diagnostic and treatment purposes.Keywords: gold nanoparticles, label free, seed-mediated growth, SERS
Procedia PDF Downloads 12723 Brokerage and Value-Creation: Trading Practices in the English Market of 20th-Century Maps
Authors: Shaun Lim
Abstract:
This paper presents a 9-month ethnographic case study of the value creating strategies employed by an Oxford market-trader of 20th-century maps. Maps are usually valued and sold as either antique objets d’art or useful navigational tools, with 20th-century maps precariously lying between the boundary of the aesthetic and utilitarian value-regimes. Here, the brokerage practices involved in the framing of outdated, lowly valued maps into vintage commodities will be examined. Ethnographic material of the unstudied market of old maps is introduced and situated in the second-hand, antique and collectible spheres of exchange. The map-trader as a broker is the ethnographic and methodological starting point of this paper. Brokerage is understood through the activity of framing that defines and brackets the value-regimes of commodities with the aid of market and framing devices. The trader’s activities will be examined in three parts. (1) The post-sourcing industry: the altering, mounting and tagging of maps before putting them into market circulation. Mounts, frames and tags are seen as market devices that authenticates and frames maps with aesthetic and symbolic values along with the disentanglement of its use value. (2) The market-display: the constitution of space that encourages the relations of looking at maps as aesthetic objects, while the categorical arrangement of the display contributes to legitimising of the collectability of maps. (3) The salesmanship strategies of the trader: the match-making of customers with maps of meaningful value, and the mediating of knowledge through the verbal articulation of the map’s symbolic values. Ultimately, value is not created in an accumulative sense, but is layered and superimposed to cater to a wide spectrum of patrons. The trader creates demand for his goods by mediating and articulating value-regimes already coherent to potential patrons.Keywords: art and material culture, brokerage, commodification, framing, markets, value
Procedia PDF Downloads 15122 Iot-Based Interactive Patient Identification and Safety Management System
Authors: Jonghoon Chun, Insung Kim, Jonghyun Lim, Gun Ro
Abstract:
We believe that it is possible to provide a solution to reduce patient safety accidents by displaying correct medical records and prescription information through interactive patient identification. Our system is based on the use of smart bands worn by patients and these bands communicate with the hybrid gateways which understand both BLE and Wifi communication protocols. Through the convergence of low-power Bluetooth (BLE) and hybrid gateway technology, which is one of short-range wireless communication technologies, we implement ‘Intelligent Patient Identification and Location Tracking System’ to prevent medical malfunction frequently occurring in medical institutions. Based on big data and IOT technology using MongoDB, smart band (BLE, NFC function) and hybrid gateway, we develop a system to enable two-way communication between medical staff and hospitalized patients as well as to store locational information of the patients in minutes. Based on the precise information provided using big data systems, such as location tracking and movement of in-hospital patients wearing smart bands, our findings include the fact that a patient-specific location tracking algorithm can more efficiently operate HIS (Hospital Information System) and other related systems. Through the system, we can always correctly identify patients using identification tags. In addition, the system automatically determines whether the patient is a scheduled for medical service by the system in use at the medical institution, and displays the appropriateness of the medical treatment and the medical information (medical record and prescription information) on the screen and voice. This work was supported in part by the Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Korean Small and Medium Business Administration (No. S2410390).Keywords: BLE, hybrid gateway, patient identification, IoT, safety management, smart band
Procedia PDF Downloads 31121 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score
Procedia PDF Downloads 20020 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection
Authors: Fatemeh Babaeian, Nemai Chandra Karmakar
Abstract:
Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS
Procedia PDF Downloads 20019 Automated Method Time Measurement System for Redesigning Dynamic Facility Layout
Authors: Salam Alzubaidi, G. Fantoni, F. Failli, M. Frosolini
Abstract:
The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.Keywords: dynamic facility layout problem, internet of things, method time measurement, radio frequency identification, simulation
Procedia PDF Downloads 12218 A Modern Method for Secure Online Voting System Using Blockchain and RFID Technology
Authors: Ali El Ksimi
Abstract:
In the modern digital landscape, the integrity and security of voting processes are paramount. Traditional voting methods have faced numerous challenges, including fraud, lack of transparency, and administrative inefficiencies. As these issues become increasingly critical, there is a growing need for advanced solutions that can enhance the security and reliability of elections. Blockchain technology, with its decentralized architecture, immutable nature, and advanced cryptographic techniques, offers a robust framework for transforming the voting process. By integrating Radio Frequency Identification (RFID) technology, voter authentication can be further streamlined, ensuring the authenticity of each vote cast. This article presents a decentralized IoT-based online voting system that utilizes blockchain, RFID, and cryptography to create a secure, transparent, and user-friendly voting experience. The proposed decentralized application (DApp) leverages Ethereum's blockchain and cryptographic protocols to manage the entire voting lifecycle, ensuring that each vote is recorded securely and transparently. By employing RFID tags for voter identification, this solution mitigates the risks associated with traditional identification methods while enhancing the accessibility of the voting process. We discuss the technical architecture, cryptographic mechanisms, scalability, and security advantages of this approach alongside its potential limitations, such as the dependence on RFID infrastructure, blockchain transaction costs, and possible latency in large-scale elections. Additionally, we explore the challenges in implementing the system across different jurisdictions and the regulatory hurdles that might arise with such decentralized solutions. Ultimately, this solution aims to redefine electoral processes, promoting trust and participation in democratic governance.Keywords: blockchain, RFID, authentication, security, IoT
Procedia PDF Downloads 1317 Unfolding Global Biodiversity Patterns of Marine Planktonic Diatom Communities across the World's Oceans
Authors: Shruti Malviya, Chris Bowler
Abstract:
Analysis of microbial eukaryotic diversity is fundamental to understanding ecosystems’ structure, biology, and ecology. Diatoms (Stramenopiles, Bacillariophyceae) are one of the most diverse and ecologically prominent groups of phytoplankton. This study was performed to enhance the understanding of global biodiversity patterns and structure of planktonic diatom communities across the world's oceans. We used the metabarcoding data set generated from the biological samples and associated environmental data collected during the Tara Oceans (2009-2013) global circumnavigation covering all major oceanic provinces. A total of ~18 million diatom V9-18S rDNA tags from 126 sampling stations, constituting 631 size-fractionated plankton communities were generated. Using ~250,000 unique diatom metabarcodes, the global diatom distribution and diversity across size classes, genus and ecological niches was assessed. Notably, our analysis revealed: (i) a new estimate of the total number of planktonic diatom species, (ii) a considerable unknown diversity and exceptionally high diversity in the open ocean, and (iii) complex diversity patterns across oceanic provinces. Also, co-occurrence of several ribotypes in locations separated by great geographic distances (equatorial stations) demonstrated a widespread but not ubiquitous distribution. This work provides a comprehensive perspective on diatom distribution and diversity in the world’s oceans and elaborates interconnections between associated theories and underlying drivers. It shows how meta-barcoding approaches can provide a framework to investigate environmental diversity at a global scale, which is deemed as an essential step in answering various ecological research questions. Consequently, this work also provides a reference point to explore how microbial communities will respond to environmental conditions.Keywords: diatoms, Tara Oceans, biodiversity, metabarcoding
Procedia PDF Downloads 15416 Economic Important of Manta Ray Watching Tourism in Dampier Strait, Raja Ampat, West Papua, Indonesia
Authors: Maulita Sari Hani, Abraham B. Sianipar, Jamaluddin Jompa, Natsir Nessa, Alan T. White
Abstract:
Manta ray is an icon for tourism in Raja Ampat. The tourist volume has been increased for the past ten years which up to approximately 23,000 tourists in 2017. Since 2013, Conservation International Indonesia deployed satellite and acoustic tags on manta ray in Dampier strait to track the species and identify the aggregation areas. These findings encourage the government and the local community to boost conservation through the management of marine protected areas for tourism purposes. Community in Dampier strait including the village of Arborek, Kurkapa, Kapisawar, and Sawingray involved in variety of small scale tourism business including homestay, dive shop, tour operator, and crafts. Working groups of related local businesses were established to support the local community and to ensure the sustainability of the economic viability and environmental sustainability. In order to analyze the economic benefits of manta ray tourism, this study was conducted to identify the number of local business in Dampier Strait and the economic impacts in terms of local finance security, social, humanity, individual, and physical assets. The results of this study identify 30 homestays, 2 dive shops, 10 tour operators, 30 women involved in crafts, and about 50 villagers worked for dive resorts. In addition to community assets, we confirmed the welfare of community has been improved in terms of food security, households, education for children, savings, and health insurance.Keywords: marine wildlife tourism, elasmobranch, conservation, ecotourism, co-management, economic viability, environmental sustainability
Procedia PDF Downloads 21815 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies
Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading
Abstract:
In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors
Procedia PDF Downloads 22214 Competitive DNA Calibrators as Quality Reference Standards (QRS™) for Germline and Somatic Copy Number Variations/Variant Allelic Frequencies Analyses
Authors: Eirini Konstanta, Cedric Gouedard, Aggeliki Delimitsou, Stefania Patera, Samuel Murray
Abstract:
Introduction: Quality reference DNA standards (QRS) for molecular testing by next-generation sequencing (NGS) are essential for accurate quantitation of copy number variations (CNV) for germline and variant allelic frequencies (VAF) for somatic analyses. Objectives: Presently, several molecular analytics for oncology patients are reliant upon quantitative metrics. Test validation and standardisation are also reliant upon the availability of surrogate control materials allowing for understanding test LOD (limit of detection), sensitivity, specificity. We have developed a dual calibration platform allowing for QRS pairs to be included in analysed DNA samples, allowing for accurate quantitation of CNV and VAF metrics within and between patient samples. Methods: QRS™ blocks up to 500nt were designed for common NGS panel targets incorporating ≥ 2 identification tags (IDTDNA.com). These were analysed upon spiking into gDNA, somatic, and ctDNA using a proprietary CalSuite™ platform adaptable to common LIMS. Results: We demonstrate QRS™ calibration reproducibility spiked to 5–25% at ± 2.5% in gDNA and ctDNA. Furthermore, we demonstrate CNV and VAF within and between samples (gDNA and ctDNA) with the same reproducibility (± 2.5%) in a clinical sample of lung cancer and HBOC (EGFR and BRCA1, respectively). CNV analytics was performed with similar accuracy using a single pair of QRS calibrators when using multiple single targeted sequencing controls. Conclusion: Dual paired QRS™ calibrators allow for accurate and reproducible quantitative analyses of CNV, VAF, intrinsic sample allele measurement, inter and intra-sample measure not only simplifying NGS analytics but allowing for monitoring clinically relevant biomarker VAF across patient ctDNA samples with improved accuracy.Keywords: calibrator, CNV, gene copy number, VAF
Procedia PDF Downloads 15313 From Waste Recycling to Waste Prevention by Households : Could Eco-Feedback Strategies Fill the Gap?
Authors: I. Dangeard, S. Meineri, M. Dupré
Abstract:
large body of research on energy consumption reveals that regular information on energy consumption produces a positive effect on behavior. The present research aims to test this feedback paradigm on waste management. A small-scale experiment on residual household waste was performed in a large french urban area, in partnership with local authorities, as part of the development of larger-scale project. A two-step door-to-door recruitment scheme led to 85 households answering a questionnaire. Among them, 54 accepted to participate in a study on waste (second step). Participants were then randomly assigned to one of the 3 experimental conditions : self-reported feedback on curbside waste, external feedback on waste weight based on information technologies, and no feedback for the control group. An additional control group was added, including households who were not requested to answer the questionnaire. Household residual waste was collected every week, and tags on curbside bins fed a database with waste weight of households. The feedback period lasted 14 weeks (february-may 2014). Quantitative data on waste weight were analysed, including these 14 weeks and the 7 previous weeks. Households were then contacted by phone in order to confirm the quantitative results. Regarding the recruitment questionnaire, results revealed high pro-environmental attitude on the NEP scale, high recycling behavior level and moderate level of source reduction behavior on the adapted 3R scale, but no statistical difference between the 3 experimental groups. Regarding the feedback manipulation paradigm, waste weight reveals important differences between households, but doesn't prove any statistical difference between the experimental conditions. Qualitative phone interviews confirm that recycling is a current practice among participants, whereas source reduction of waste is not, and mainly appears as a producer problem of packaging limitation. We conclude that triggering waste prevention behaviors among recycling households involves long-term feedback and should promote benchmarking, in order to clearly set waste reduction as an objective to be managed through feedback figures.Keywords: eco-feedback, household waste, waste reduction, experimental research
Procedia PDF Downloads 39412 Polyclonal IgG glycosylation in Patients with Pediatric Appendicitis
Authors: Dalma Dojcsák, Csaba Váradi, Flóra Farkas, Tamás Farkas, János Papp, Béla Viskolcz
Abstract:
Background: Appendicitis is a common acute inflammatory condition in both children and adults, but current laboratory markers such as C-reactive protein (CRP), white blood cell count (WBC), absolute neutrophil count (ANC), and red blood cell count (RNC) lack specificity in detecting appendicitis-related inflammation. N-glycosylation, an asparagine-linked glycosylation process, plays a vital role in cellular interactions, angiogenesis, immune response, and effector functions. Altered N-glycosylation impacts tumor growth and both acute and chronic inflammatory processes. IgG, the second most abundant glycoprotein in serum, shows altered glycosylation patterns during inflammation, suggesting that IgG glycan modifications may serve as potential biomarkers for appendicitis. Specifically, increased levels of agalactosylated IgG glycans are a known feature of various inflammatory conditions, potentially including appendicitis. Identifying pediatric appendicitis remains challenging due to the absence of specific biomarkers, which makes diagnosis reliant on clinical symptoms, imaging such as ultrasound, and nonspecific lab indicators (e.g., CRP, WBC, ANC). In this study, we analyzed the IgG derived N-glycome in pediatric patients with appendicitis compared with healthy controls. Methodology: The N-glycome was analyzed by high-performance liquid-chromatography combined with mass spectrometry. IgG was isolated from serum samples by Protein G column. The IgG derived glycans were released by enzymatic deglycosylation and fluorescent tags were attached to each glycan moiety, which made necessitates the sample clean-up for further reliable quantitation. Overall, 38 controls and 40 serum samples diagnosed with pediatric appendicitis were analyzed by HILIC-MS methods. Multivariate statistical tests were performed with area percentage under the peak data derived from the integrated peaks, which were obtained from the chromatograms. Conclusions: Our results represented the altered N-glycome of IgG in pediatric appendicitis is similar with other observations. The glycosylation pattern reported so far for IgG is characterized by decreased galactosylation and sialylation, and an increase in fucosylation.Keywords: N-glycosylation, liquid chromatography, mass spectrometry, inflammation, appendicitis, immunoglobulin G
Procedia PDF Downloads 1611 The Grammar of the Content Plane as a Style Marker in Forensic Authorship Attribution
Authors: Dayane de Almeida
Abstract:
This work aims at presenting a study that demonstrates the usability of categories of analysis from Discourse Semiotics – also known as Greimassian Semiotics in authorship cases in forensic contexts. It is necessary to know if the categories examined in semiotic analysis (the ‘grammar’ of the content plane) can distinguish authors. Thus, a study with 4 sets of texts from a corpus of ‘not on demand’ written samples (those texts differ in formality degree, purpose, addressees, themes, etc.) was performed. Each author contributed with 20 texts, separated into 2 groups of 10 (Author1A, Author1B, and so on). The hypothesis was that texts from a single author were semiotically more similar to each other than texts from different authors. The assumptions and issues that led to this idea are as follows: -The features analyzed in authorship studies mostly relate to the expression plane: they are manifested on the ‘surface’ of texts. If language is both expression and content, content would also have to be considered for more accurate results. Style is present in both planes. -Semiotics postulates the content plane is structured in a ‘grammar’ that underlies expression, and that presents different levels of abstraction. This ‘grammar’ would be a style marker. -Sociolinguistics demonstrates intra-speaker variation: an individual employs different linguistic uses in different situations. Then, how to determine if someone is the author of several texts, distinct in nature (as it is the case in most forensic sets), when it is known intra-speaker variation is dependent on so many factors?-The idea is that the more abstract the level in the content plane, the lower the intra-speaker variation, because there will be a greater chance for the author to choose the same thing. If two authors recurrently chose the same options, differently from one another, it means each one’s option has discriminatory power. -Size is another issue for various attribution methods. Since most texts in real forensic settings are short, methods relying only on the expression plane tend to fail. The analysis of the content plane as proposed by greimassian semiotics would be less size-dependable. -The semiotic analysis was performed using the software Corpus Tool, generating tags to allow the counting of data. Then, similarities and differences were quantitatively measured, through the application of the Jaccard coefficient (a statistical measure that compares the similarities and differences between samples). The results showed the hypothesis was confirmed and, hence, the grammatical categories of the content plane may successfully be used in questioned authorship scenarios.Keywords: authorship attribution, content plane, forensic linguistics, greimassian semiotics, intraspeaker variation, style
Procedia PDF Downloads 24310 Variables, Annotation, and Metadata Schemas for Early Modern Greek
Authors: Eleni Karantzola, Athanasios Karasimos, Vasiliki Makri, Ioanna Skouvara
Abstract:
Historical linguistics unveils the historical depth of languages and traces variation and change by analyzing linguistic variables over time. This field of linguistics usually deals with a closed data set that can only be expanded by the (re)discovery of previously unknown manuscripts or editions. In some cases, it is possible to use (almost) the entire closed corpus of a language for research, as is the case with the Thesaurus Linguae Graecae digital library for Ancient Greek, which contains most of the extant ancient Greek literature. However, concerning ‘dynamic’ periods when the production and circulation of texts in printed as well as manuscript form have not been fully mapped, representative samples and corpora of texts are needed. Such material and tools are utterly lacking for Early Modern Greek (16th-18th c.). In this study, the principles of the creation of EMoGReC, a pilot representative corpus of Early Modern Greek (16th-18th c.) are presented. Its design follows the fundamental principles of historical corpora. The selection of texts aims to create a representative and balanced corpus that gives insight into diachronic, diatopic and diaphasic variation. The pilot sample includes data derived from fully machine-readable vernacular texts, which belong to 4-5 different textual genres and come from different geographical areas. We develop a hierarchical linguistic annotation scheme, further customized to fit the characteristics of our text corpus. Regarding variables and their variants, we use as a point of departure the bundle of twenty-four features (or categories of features) for prose demotic texts of the 16th c. Tags are introduced bearing the variants [+old/archaic] or [+novel/vernacular]. On the other hand, further phenomena that are underway (cf. The Cambridge Grammar of Medieval and Early Modern Greek) are selected for tagging. The annotated texts are enriched with metalinguistic and sociolinguistic metadata to provide a testbed for the development of the first comprehensive set of tools for the Greek language of that period. Based on a relational management system with interconnection of data, annotations, and their metadata, the EMoGReC database aspires to join a state-of-the-art technological ecosystem for the research of observed language variation and change using advanced computational approaches.Keywords: early modern Greek, variation and change, representative corpus, diachronic variables.
Procedia PDF Downloads 689 Effects of Ubiquitous 360° Learning Environment on Clinical Histotechnology Competence
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Rapid technological development and digitalization has affected also on higher education. During last twenty years multiple of electronic and mobile learning (e-learning, m-learning) platforms have been developed and have become prevalent in many universities and in the all fields of education. Ubiquitous learning (u-learning) is not that widely known or used. Ubiquitous learning environments (ULE) are the new era of computer-assisted learning. They are based on ubiquitous technology and computing that fuses the learner seamlessly into learning process by using sensing technology as tags, badges or barcodes and smart devices like smartphones and tablets. ULE combines real-life learning situations into virtual aspects and can be flexible used in anytime and anyplace. The aim of this study was to assess the effects of ubiquitous 360 o learning environment on higher education students’ clinical histotechnology competence. A quasi-experimental study design was used. 57 students in biomedical laboratory science degree program was assigned voluntarily to experiment (n=29) and to control group (n=28). Experimental group studied via ubiquitous 360o learning environment and control group via traditional web-based learning environment (WLE) in a 8-week educational intervention. Ubiquitous 360o learning environment (ULE) combined authentic learning environment (histotechnology laboratory), digital environment (virtual laboratory), virtual microscope, multimedia learning content, interactive communication tools, electronic library and quick response barcodes placed into authentic laboratory. Web-based learning environment contained equal content and components with the exception of the use of mobile device, interactive communication tools and quick response barcodes. Competence of clinical histotechnology was assessed by using knowledge test and self-report developed for this study. Data was collected electronically before and after clinical histotechnology course and analysed by using descriptive statistics. Differences among groups were identified by using Wilcoxon test and differences between groups by using Mann-Whitney U-test. Statistically significant differences among groups were identified in both groups (p<0.001). Competence scores in post-test were higher in both groups, than in pre-test. Differences between groups were very small and not statistically significant. In this study the learning environment have developed based on 360o technology and successfully implemented into higher education context. And students’ competence increases when ubiquitous learning environment were used. In the future, ULE can be used as a learning management system for any learning situation in health sciences. More studies are needed to show differences between ULE and WLE.Keywords: competence, higher education, histotechnology, ubiquitous learning, u-learning, 360o
Procedia PDF Downloads 2868 Role of Artificial Intelligence in Nano Proteomics
Authors: Mehrnaz Mostafavi
Abstract:
Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence
Procedia PDF Downloads 1027 Modification of Escherichia coli PtolT Expression Vector via Site-Directed Mutagenesis
Authors: Yakup Ulusu, Numan Eczacıoğlu, İsa Gökçe, Helen Waller, Jeremy H. Lakey
Abstract:
Besides having the appropriate amino acid sequence to perform the function of proteins, it is important to have correct conformation after this sequence to process. To consist of this conformation depends on the amino acid sequence at the primary structure, hydrophobic interaction, chaperones and enzymes in charge of folding etc. Misfolded proteins are not functional and tend to be aggregated. Cysteine originating disulfide cross-links make stable this conformation of functional proteins. When two of the cysteine amino acids come side by side, disulfide bond is established that forms a cystine bridge. Due to this feature cysteine plays an important role on the formation of three-dimensional structure of many proteins. There are two cysteine amino acids (C44, C69) in the Tol-A-III protein. Unlike protein disulfide bonds from within his own, any non-specific cystine bridge causes a change in the three dimensional structure of the protein. Proteins can be expressed in various host cells as directly or fusion (chimeric). As a result of overproduction of the recombinant proteins, aggregation of insoluble proteins in the host cell can occur by forming a crystal structure called inclusion body. In general fusion proteins are produced for provide affinity tags to make proteins more soluble and production of some toxic proteins via fusion protein expression system like pTolT. Proteins can be modified by using a site-directed mutagenesis. By this way, creation of non-specific disulfide crosslinks can be prevented at fusion protein expression system via the present cysteine replaced by another amino acid such as serine, glycine or etc. To do this, we need; a DNA molecule that contains the gene that encodes for the target protein, required primers for mutation to be designed according to site directed mutagenesis reaction. This study was aimed to be replaced cysteine encoding codon TGT with serine encoding codon AGT. For this sense and reverse primers designed (given below) and used site-directed mutagenesis reaction. Several new copy of the template plasmid DNA has been formed with above mentioned mutagenic primers via polymerase chain reaction (PCR). PCR product consists of both the master template DNA (wild type) and the new DNA sequences containing mutations. Dpn-l endonuclease restriction enzyme which is specific for methylated DNA and cuts them to the elimination of the master template DNA. E. coli cells obtained after transformation were incubated LB medium with antibiotic. After purification of plasmid DNA from E. coli, the presence of the mutation was determined by DNA sequence analysis. Developed this new plasmid is called PtolT-δ.Keywords: site directed mutagenesis, Escherichia coli, pTolT, protein expression
Procedia PDF Downloads 3766 The Social Ecology of Serratia entomophila: Pathogen of Costelytra giveni
Authors: C. Watson, T. Glare, M. O'Callaghan, M. Hurst
Abstract:
The endemic New Zealand grass grub (Costelytra giveni, Coleoptera: Scarabaeidae) is an economically significant grassland pest in New Zealand. Due to their impacts on production within the agricultural sector, one of New Zealand's primary industries, several methods are being used to either control or prevent the establishment of new grass grub populations in the pasture. One such method involves the use of a biopesticide based on the bacterium Serratia entomophila. This species is one of the causative agents of amber disease, a chronic disease of the larvae which results in death via septicaemia after approximately 2 to 3 months. The ability of S. entomophila to cause amber disease is dependant upon the presence of the amber disease associated plasmid (pADAP), which encodes for the key virulence determinants required for the establishment and maintenance of the disease. Following the collapse of grass grub populations within the soil, resulting from either natural population build-up or application of the bacteria, non-pathogenic plasmid-free Serratia strains begin to predominate within the soil. Whilst the interactions between S. entomophila and grass grub larvae are well studied, less information is known on the interactions between plasmid-bearing and plasmid-free strains, particularly the potential impact of these interactions upon the efficacy of an applied biopesticide. Using a range of constructed strains with antibiotic tags, in vitro (broth culture) and in vivo (soil and larvae) experiments were conducted using inoculants comprised of differing ratios of isogenic pathogenic and non-pathogenic Serratia strains, enabling the relative growth of pADAP+ and pADAP- strains under competition conditions to be assessed. In nutrient-rich, the non-pathogenic pADAP- strain outgrew the pathogenic pADAP+ strain by day 3 when inoculated in equal quantities, and by day 5 when applied as the minority inoculant, however, there was an overall gradual decline in the number of viable bacteria for both strains over a 7-day period. Similar results were obtained in additional experiments using the same strains and continuous broth cultures re-inoculated at 24-hour intervals, although in these cultures, the viable cell count did not diminish over the 7-day period. When the same ratios were assessed in soil microcosms with limited available nutrients, the strains remained relatively stable over a 2-month period. Additionally, in vivo grass grub co-infections assays using the same ratios of tagged Serratia strains revealed similar results to those observed in the soil, but there was also evidence of horizontal transfer of pADAP from the pathogenic to the non-pathogenic strain within the larval gut after a period of 4 days. Whilst the influence of competition is more apparent in broth cultures than within the soil or larvae, further testing is required to determine whether this competition between pathogenic and non-pathogenic Serratia strains has any influence on efficacy and disease progression, and how this may impact on the ability of S. entomophila to cause amber disease within grass grub larvae when applied as a biopesticide.Keywords: biological control, entomopathogen, microbial ecology, New Zealand
Procedia PDF Downloads 1565 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media
Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca
Abstract:
Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks
Procedia PDF Downloads 198