Search results for: intracellular signaling
482 Biologically Synthesised Silver Nanoparticles Induces Autophagy and JNK Signaling as a Pro-Survival Response by Abrogating Reactive Oxygen Species Accumulation in Cancer Cells
Authors: Sudeshna Mukherjee, Leena Fageria, R. Venkataramana Dilip, Rajdeep Chowdhury, Jitendra Panwar
Abstract:
Metal nanoparticles in recent years have gained importance in cancer therapy due to their enhanced permeability retention effect. Among various nanomaterials, silver nanoparticles (AgNPs) have received considerable attention due to their unique properties like conductivity, chemical stability, relative lower toxicity and outstanding therapeutic potential, such as anti-inflammatory, antimicrobial and anti-cancerous activities. In this study, we took a greener approach to synthesize silver nanoparticle from fungus and analyze its effects on both epithelial and mesenchymal derived cancer cells. Much research has been done on nanoparticle-induced apoptosis, but little is known about its role in autophagy. In our study, the silver nanoparticles were seen to induce autophagy which was analyzed by studying the expression of several autophagy markers like, LC3B-II and ATG genes. Monodansylcadaverine (MDC) assay also revealed the induction of autophagy upon treatment with AgNPs. Inhibition of autophagy by chloroquine resulted in increased cell death suggesting autophagy as a survival strategy adopted by the cells. In parallel to autophagy induction, silver nanoparticles induced ROS accumulation. Interestingly, autophagy inhibition by chloroquine increased ROS level, resulting in enhanced cell death. We further analyzed MAPK signaling upon AgNP treatment. It was observed that along with autophagy, activation of JNK signaling served as pro-survival while ERK signaling served as a pro-death signal. Our results provide valuable insights into the role of autophagy upon AgNP exposure and provide cues to probabilistic strategies to effectively sensitize cancer cells.Keywords: autophagy, JNK signalling, reactive oxygen species, silver nanoparticles
Procedia PDF Downloads 364481 Molecular Characterization of Arginine Sensing Response in Unravelling Host-Pathogen Interactions in Leishmania
Authors: Evanka Madan, Madhu Puri, Dan Zilberstein, Rohini Muthuswami, Rentala Madhubala
Abstract:
The extensive interaction between the host and pathogen metabolic networks decidedly shapes the outcome of infection. Utilization of arginine by the host and pathogen is critical for determining the outcome of pathogenic infection. Infections with L. donovani, an intracellular parasite, will lead to an extensive competition of arginine between the host and the parasite donovani infection. One of the major amino acid (AA) sensing signaling pathways in mammalian cells are the mammalian target of rapamycin complex I (mTORC1) pathway. mTORC1, as a sensor of nutrient, controls numerous metabolic pathways. Arginine is critical for mTORC1 activation. SLC38A9 is the arginine sensor for the mTORC1, being activated during arginine sufficiency. L. donovani transport arginine via a high-affinity transporter (LdAAP3) that is rapidly up-regulated by arginine deficiency response (ADR) in intracellular amastigotes. This study, to author’s best knowledge, investigates the interaction between two arginine sensing systems that act in the same compartment, the lysosome. One is important for macrophage defense, and the other is essential for pathogen virulence. We hypothesize that the latter modulates lysosome arginine to prevent host defense response. The work presented here identifies an upstream regulatory role of LdAAP3 in regulating the expression of SLC38A9-mTORC1 pathway, and consequently, their function in L. donovani infected THP-1 cells cultured in 0.1 mM and 1.5 mM arginine. It was found that in physiological levels of arginine (0.1 mM), infecting THP-1 with Leishmania leads to increased levels of SLC38A9 and mTORC1 via an increase in the expression of RagA. However, the reversal was observed with LdAAP3 mutants, reflecting the positive regulatory role of LdAAP3 on the host SLC38A9. At the molecular level, upon infection, mTORC1 and RagA were found to be activated at the surface of phagolysosomes which was found to form a complex with phagolysosomal localized SLC38A9. To reveal the relevance of SLC38A9 under physiological levels of arginine, endogenous SLC38A9 was depleted and a substantial reduction in the expression of host mTORC1, its downstream active substrate, p-P70S6K1 and parasite LdAAP3, was observed, thereby showing that silencing SLC38A9 suppresses ADR. In brief, to author’s best knowledge, these results reveal an upstream regulatory role of LdAAP3 in manipulating SLC38A9 arginine sensing in host macrophages. Our study indicates that intra-macrophage survival of L. donovani depends on the availability and transport of extracellular arginine. An understanding of the sensing pathway of both parasite and host will open a new perspective on the molecular mechanism of host-parasite interaction and consequently, as a treatment for Leishmaniasis.Keywords: arginine sensing, LdAAP3, L. donovani, mTORC1, SLC38A9, THP-1
Procedia PDF Downloads 124480 Relaxant Effects of Sideritis raeseri Extract on the Uterus of Rabbits
Authors: Berat Krasniqi, Shpëtim Thaçi, Miribane Dërmaku-Sopjani, Sokol Abazi, Mentor Sopjani
Abstract:
The Mediterranean native plant, Sideritis raeseri Boiss. & Heldr. (Lamiaceae), also known as "mountain tea," has a long history of use in traditional medicine. The effects of an ethanol extract of Sideritis raeseri (SR) on uterus smooth muscle activity are evaluated in this study, and the underlying mechanism is identified. S. raeseri extract (SRE) was made from air-dried components of the SR shoot system. At 37°C, the SRE (0.5-2 mg/mL) was tested on isolated rabbit uterus rings that were suspended in a Krebs solution-filled organ bath and bubbled with a mixture of 95% O₂ and 5% CO₂. The SRE alone relaxed the muscle contraction in a concentration-dependent manner in uterine rings in in vitro tests. SRE also decreased Ca²⁺-induced contractions in the uterus by a large amount when the uterus was depolarized with carbachol (CCh, 1µM), K⁺ (80 mM), or contracted by oxytocin (5 nM). The potential involvement of NO-dependent or independent cGMP mechanisms in the uterine actions of SR was investigated. For this purpose, L-NAME (NO synthase inhibitor, 100 M) or bradykinin (NO synthase stimulator, 100 nM), or indomethacin (cyclooxygenase inhibitor, 10µM) decreased the impact of SRE. These results suggest that NO-dependent signaling is involved in SRE's mediated uterine relaxant effect. Data suggests that SRE could be a powerful tocolytic agent that reduces uterine activity and could be used to treat a number of uterine conditions.Keywords: Sideritis raeseri, uterus, alternative medicine, intracellular mechanisms
Procedia PDF Downloads 116479 Genome-Wide Functional Analysis of Phosphatase in Cryptococcus neoformans
Authors: Jae-Hyung Jin, Kyung-Tae Lee, Yee-Seul So, Eunji Jeong, Yeonseon Lee, Dongpil Lee, Dong-Gi Lee, Yong-Sun Bahn
Abstract:
Cryptococcus neoformans causes cryptococcal meningoencephalitis mainly in immunocompromised patients as well as immunocompetent people. But therapeutic options are limited to treat cryptococcosis. Some signaling pathways including cyclic AMP pathway, MAPK pathway, and calcineurin pathway play a central role in the regulation of the growth, differentiation, and virulence of C. neoformans. To understand signaling networks regulating the virulence of C. neoformans, we selected the 114 putative phosphatase genes, one of the major components of signaling networks, in the genome of C. neoformans. We identified putative phosphatases based on annotation in C. neoformans var. grubii genome database provided by the Broad Institute and National Center for Biotechnology Information (NCBI) and performed a BLAST search of phosphatases of Saccharomyces cerevisiae, Aspergillus nidulans, Candida albicans and Fusarium graminearum to Cryptococcus neoformans. We classified putative phosphatases into 14 groups based on InterPro phosphatase domain annotation. Here, we constructed 170 signature-tagged gene-deletion strains through homologous recombination methods for 91 putative phosphatases. We examined their phenotypic traits under 30 different in vitro conditions, including growth, differentiation, stress response, antifungal resistance and virulence-factor production.Keywords: human fungal pathogen, phosphatase, deletion library, functional genomics
Procedia PDF Downloads 364478 Effect of Pioglitazone on Intracellular Na+ Homeostasis in Metabolic Syndrome-Induced Cardiomyopathy in Male Rats
Authors: Ayca Bilginoglu, Belma Turan
Abstract:
Metabolic syndrome, is associated impaired blood glucose level, insulin resistance, dyslipidemia caused by abdominal obesity. Also, it is related with cardiovascular risk accumulation and cardiomyopathy. The hypothesis of this study was to examine the effect of thiazolidinediones such as pioglitazone which is widely used insulin-sensitizing agents that improve glycemic control, on intracellular Na+ homeostasis in metabolic syndrome-induced cardiomyopathy in male rats. Male Wistar-Albino rats were randomly divided into three groups, namely control (Con, n=7), metabolic syndrome (MetS, n=7) and pioglitazone treated metabolic syndrome group (MetS+PGZ, n=7). Metabolic syndrome was induced by providing drinking water that was 32% sucrose, for 18 weeks. All of the animals were exposed to a 12 h light – 12 h dark cycle. Abdominal obesity and glucose intolerance had measured as a marker of metabolic syndrome. Intracellular Na+ ([Na+]i) is an important modulator of excitation–contraction coupling in heart. [Na+]i at rest and [Na+]i during pacing with electrical field stimulation in 0.2 Hz, 0.8 Hz, 2.0 Hz stimulation frequency were recorded in cardiomyocytes. Also, Na+ channel current (INa) density and I-V curve were measured to understand [Na+]i homeostasis. In results, high sucrose intake, as well as the normal daily diet, significantly increased body mass and blood glucose level of the rats in the metabolic syndrome group as compared with the non-treated control group. In MetS+PZG group, the blood glucose level and body inclined to decrease to the Con group. There was a decrease in INa density and there was a shift both activation and inactivation curve of INa. Pioglitazone reversed the shift to the control side. Basal [Na+]i either MetS and Con group were not significantly different, but there was a significantly increase in [Na+]i in stimulated cardiomyocytes in MetS group. Furthermore, pioglitazone had not effect on basal [Na+]i but it reversed the increase in [Na+]i in stimulated cardiomyocytes to the that of Con group. Results of the present study suggest that pioglitazone has a significant effect on the Na+ homeostasis in the metabolic syndrome induced cardiomyopathy in rats. All animal procedures and experiments were approved by the Animal Ethics Committee of Ankara University Faculty of Medicine (2015-2-37).Keywords: insulin resistance, intracellular sodium, metabolic syndrome, sodium current
Procedia PDF Downloads 285477 Nitric Oxide: Role in Immunity and Therapeutics
Authors: Anusha Bhardwaj, Shekhar Shinde
Abstract:
Nitric oxide (NO•) has been documented in research papers as one of the most versatile player in the therapeutics. It is identified as a biological multifunctional messenger molecule which is synthesized by the action of nitric oxide synthase (NOS) enzyme from L-arginine. The protective and the toxic effect in conjunction form the complete picture of the biological function of nitric oxide in humans. The dual nature is because of various factors such as concentration of NO, the isoform of NOS involved, type of cells in which it is synthesized, reaction partners like proteins, reactive oxygen intermediates, prosthetic groups, thiols etc., availability of the substrate L-arginine, intracellular environment in which NO is produced and generation of guanosine 3, 5’- cyclic monophosphate (cGMP). Activation of NOS through infection or trauma leads to one or more systemic effects including enhanced immune activity against invading pathogens, vaso/bronchodilatation in the cardiovascular and respiratory systems and altered neurotransmission which can be protective or toxic. Hence, NO affects the balance between healthy signaling and neurodegeneration in the brain. In lungs, it has beneficial effects on the function of airways as a bronchodilator and acts as the neurotransmitter of bronchodilator nerves. Whereas, on the other hand, NO may have deleterious effects by amplifying the asthmatic inflammatory response and also act as a vasodilator in the airways by increasing plasma exudation. But NOS Inhibitors and NO donors hamper the signalling pathway and hence a therapeutic application of NO is compromised.Keywords: nitric oxide, multifunctional, dual nature, therapeutic applications
Procedia PDF Downloads 498476 Promoting Authenticity in Employer Brands to Address the Global-Local Problem in Complex Organisations: The Case of a Developing Country
Authors: Saud Al Taj
Abstract:
Employer branding is considered as a useful tool for addressing the global-local problem facing complex organisations that have operations scattered across the globe and face challenges of dealing with the local environment alongside. Despite being an established field of study within the Western developed world, there is little empirical evidence concerning the relevance of employer branding to global companies that operate in the under-developed economies. This paper fills this gap by gaining rich insight into the implementation of employer branding programs in a foreign multinational operating in Pakistan dealing with the global-local problem. The study is qualitative in nature and employs semi-structured and focus group interviews with senior/middle managers and local frontline employees to deeply examine the phenomenon in case organisation. Findings suggest that authenticity is required in employer brands to enable them to respond to the local needs thereby leading to the resolution of the global-local problem. However, the role of signaling theory is key to the development of authentic employer brands as it stresses on the need to establish an efficient and effective signaling environment wherein signals travel in both directions (from signal designers to receivers and backwards) and facilitate firms with the global-local problem. The paper also identifies future avenues of research for the employer branding field.Keywords: authenticity, counter-signals, employer branding, global-local problem, signaling theory
Procedia PDF Downloads 368475 Production of Single-Chain Antibodies against Common Epitopes of ErbB1 and ErbB2 Using Phage Display Antibody Library
Authors: Gholamreza Hashemitabr, Reza Valadan, Alireza Rafiei, Mohammad Reza Bassami
Abstract:
Breast cancer is the most common malignancy among women worldwide. Cancer cells use a complex multilayer network of epidermal growth factor receptors (EGFRs) signaling pathways to support their survival and growth. The overlapping networks of EGFRs signaling pathways account for the failure of most ErbB-targeted therapies. The aim of this study was to enrich a pool of recombinant antibody fragments against common epitopes of ErbB1 and ErbB2 in order to simultaneous blockade of ErbBs signaling pathways. ErbB1 and ErbB2 were expressed stably in VERO cells. Selection of recombinant antibodies was performed on live cells expressing either of ErbB1 and ErbB2 receptors using subtractive phage display approach. The results of PCR and DNA fingerprinting in the last round of panning showed that most clones contained insert (80% and 85% for ErbB1 and ErbB2 respectively) with an identical restriction pattern. The selected clones showed positive reaction to both ErbB1 and ErbB2 receptors in phage-ELISA test. Furthermore, the resulting soluble antibody fragments recognized common epitopes of both immunoprecipitated ErbB1 and ErbB2 in western blot. Additionally, the antibodies directed against the dimerization domain of ErbB1 demonstrated a significant absorbance in EGF-stimulated VERO/ErbB1 cells than non-stimulated cells (1.91 and 1.09 respectively). Moreover, the results of dimerization inhibition test showed that these antibodies blocked ErbB1 and ErbB2 dimerization on the surface of ErbB1 and ErbB2 expressing VERO cells. Regarding the importance of pan-ErbB approach to cancer therapy, the antibodies developed here might provide novel therapeutics for simultaneous blockade of ErbBs signaling pathways.Keywords: breast cancer, single-chain antibody, ErbB1, ErbB2, epitope
Procedia PDF Downloads 649474 Sirt1 Promotes C2C12 Myoblast Cell Proliferation by Myostatin Signaling Pathway
Authors: Cuili Yang, Chengcao Sun, Ruilin Xue, Yongyong Xi, Liang Wang, Dejia Li
Abstract:
Backgrounds: Previous studies showed that Sirt1 plays an important role in C2C12 myoblast cell proliferation, but the mechanism(s) involved in this process remains unclear. This work was undertaken to determine if Myostatin participates in the regulation of C2C12 proliferation by Sirt1. Methods: We administrated the Sirt1 activator resveratrol, inhibitor Nicotinamide (NAM) and Myostatin inhibitor SB431542 on C2C12 myoblast cells. Cell viability was evaluated by CCK8 assay. The expression of Sirt1 and MyoD were detected by qRT-PCR. Utilizing western blot to determinate the expression of myostatin, P107 and p-P107. Results: Our results showed that resveratrol promoted the proliferation of C2C12 myoblast cells, while NAM suppressed the proliferation of C2C12 myoblast cells; SB431542 promoted the proliferation of C2C12 myoblast cells and attenuated the inhibition effect of NAM on C2C12 myoblast cells proliferation; Resveratrol can significantly increase the expression of Sirt1 and MyoD, decrease the expression of Myostatin, while NAM can significantly down-regulate the expression of Sirt1, MyoD and the phosphorylation of P107(p-P107), but up-regulate the expression of Myostatin and the protein P107; SB431542 can significantly mitigate the effect of NAM on the expression of MyoD, P107, and p-P107. Conclusions: Taken together, these results indicate that Sirt1 promotes the proliferation of C2C12 myoblast cells via Myostatin signaling pathway.Keywords: Sirt1, C2C12 cells, proliferation, myostatin signaling pathway
Procedia PDF Downloads 450473 TCTN2 Maintains the Transition Zone Stability and Controls the Entrance of the Ciliary Membrane Protein into Primary Cilia
Authors: Rueyhung Weng, Chia-En Huang, Jung-Chi-Liao
Abstract:
The transition zone (TZ) serves as a diffusion barrier to regulate the ins and outs of the proteins recruited to the primary cilia. TCTN2 is one of the TZ proteins and its mutation causes Joubert syndrome, a serious multi-organ disease. Despite its important medical relevance, the functions of TCTN2 remain elusive. Here we created a TCTN2 gene deleted retinal pigment epithelial cells (RPE1) using CRISPR/Cas9-based genome editing technique and used this knockout line to reveal roles of TCTN2. TCTN2 knockout RPE1 cells displayed a significantly reduced ciliogenesis or a shortened primary cilium length in the cilium-remaining population. Intraflagellar transport protein IFT88 aberrantly accumulated at the tip of TCTN2 deficient cells. Guanine nucleotide exchange factor Arl13B was mostly absent from the ciliary compartment, with a small population localizing at the ciliary tip. The deficient TZ was corroborated with the mislocalization of two other TZ proteins TMEM67 and MKS1. In addition, TCTN2 deficiency induced TZ impairment led to the suppression of Sonic hedgehog signaling in response to Smoothened (Smo) agonist. Together, depletion of TCTN2 destabilizes other TZ proteins and considerably alters the localization of key transport and signaling-associated proteins, including IFT88, Arl13B, and Smo.Keywords: CRISPR/Cas9, primary cilia, Sonic hedgehog signaling, transition zone
Procedia PDF Downloads 351472 Intracellular Strategies for Gene Delivery into Mammalian Cells Using Bacteria as a Vector
Authors: Kumaran Narayanan, Andrew N. Osahor
Abstract:
E. coli has been engineered by our group and by others as a vector to deliver DNA into cultured human and animal cells. However, so far conditions to improve gene delivery using this vector have not been investigated, resulting in a major gap in our understanding of the requirements for this vector to function optimally. Our group recently published novel data showing that simple addition of the DNA transfection reagent Lipofectamine increased the efficiency of the E. coli vector by almost 3-fold, providing the first strong evidence that further optimization of bactofection is possible. This presentation will discuss advances that demonstrate the effects of several intracellular strategies that improve the efficiency of this vector. Conditions that promote endosomal escape of internalized bacteria to evade lysosomal destruction after entry in the cell, a known obstacle limiting this vector, are elucidated. Further, treatments that increase bacterial lysis so that the vector can release its transgene into the mammalian environment for expression will be discussed. These experiments will provide valuable new insight to advance this E. coli system as an important class of vector technology for genetic correction of human disease models in cells and whole animals.Keywords: DNA, E. coli, gene expression, vector
Procedia PDF Downloads 358471 Systematic Exploration and Modulation of Nano-Bio Interactions
Authors: Bing Yan
Abstract:
Nanomaterials are widely used in various industrial sectors, biomedicine, and more than 1300 consumer products. Although there is still no standard safety regulation, their potential toxicity is a major concern worldwide. We discovered that nanoparticles target and enter human cells1, perturb cellular signaling pathways2, affect various cell functions3, and cause malfunctions in animals4,5. Because the majority of atoms in nanoparticles are on the surface, chemistry modification on their surface may change their biological properties significantly. We modified nanoparticle surface using nano-combinatorial chemistry library approach6. Novel nanoparticles were discovered to exhibit significantly reduced toxicity6,7, enhance cancer targeting ability8, or re-program cellular signaling machineries7. Using computational chemistry, quantitative nanostructure-activity relationship (QNAR) is established and predictive models have been built to predict biocompatible nanoparticles.Keywords: nanoparticle, nanotoxicity, nano-bio, nano-combinatorial chemistry, nanoparticle library
Procedia PDF Downloads 409470 A Cellular Automaton Model Examining the Effects of Oxygen, Hydrogen Ions, and Lactate on Early Tumour Growth
Authors: Maymona Al-Husari, Craig Murdoch, Steven Webb
Abstract:
Some tumors are known to exhibit an extracellular pH that is more acidic than the intracellular, creating a 'reversed pH gradient' across the cell membrane and this has been shown to affect their invasive and metastatic potential. Tumour hypoxia also plays an important role in tumour development and has been directly linked to both tumour morphology and aggressiveness. In this paper, we present a hybrid mathematical model of intracellular pH regulation that examines the effect of oxygen and pH on tumour growth and morphology. In particular, we investigate the impact of pH regulatory mechanisms on the cellular pH gradient and tumour morphology. Analysis of the model shows that: low activity of the Na+/H+ exchanger or a high rate of anaerobic glycolysis can give rise to a 'fingering' tumour morphology; and a high activity of the lactate/H+ symporter can result in a reversed transmembrane pH gradient across a large portion of the tumour mass. Also, the reversed pH gradient is spatially heterogenous within the tumour, with a normal pH gradient observed within an intermediate growth layer, that is the layer between the proliferative inner and outermost layer of the tumour.Keywords: acidic pH, cellular automaton, ebola, tumour growth
Procedia PDF Downloads 331469 Therapeutic Application of Light and Electromagnetic Fields to Reduce Hyper-Inflammation Triggered by COVID-19
Authors: Blanche Aguida, Marootpong Pooam, Nathalie Jourdan, Margaret Ahmad
Abstract:
COVID-19-related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called ‘cytokine storms’ are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by reactive oxygen species (ROS). Both light (photobiomodulation) and magnetic fields (e.g., pulsed electromagnetic field) stimulation are non-invasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate-intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either pulsed electromagnetic fields (PEMF) or to low-level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID 19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID 19 patients both in the home and in the hospital.Keywords: COVID 19, electromagnetic fields therapy, inflammation, photobiomodulation therapy
Procedia PDF Downloads 144468 Quantum Dot – DNA Conjugates for Biological Applications
Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret
Abstract:
Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.Keywords: bioimaging, cellular targeting, drug delivery, photostability
Procedia PDF Downloads 423467 The Quantitative Optical Modulation of Dopamine Receptor-Mediated Endocytosis Using an Optogenetic System
Authors: Qiaoyue Kuang, Yang Li, Mizuki Endo, Takeaki Ozawa
Abstract:
G protein-coupled receptors (GPCR) are the largest family of receptor proteins that detect molecules outside the cell and activate cellular responses. Of the GPCRs, dopamine receptors, which recognize extracellular dopamine, are essential to mammals due to their roles in numerous physiological events, including autonomic movement, hormonal regulation, emotions, and the reward system in the brain. To precisely understand the physiological roles of dopamine receptors, it is important to spatiotemporally control the signaling mediated by dopamine receptors, which is strongly dependent on their surface expression. Conventionally, chemical-induced interactions were applied to trigger the endocytosis of cell surface receptors. However, these methods were subjected to diffusion and therefore lacked temporal and special precision. To further understand the receptor-mediated signaling and to control the plasma membrane expression of receptors, an optogenetic tool called E-fragment was developed. The C-terminus of a light-sensitive photosensory protein cyptochrome2 (CRY2) was attached to β-Arrestin, and the E-fragment was generated by fusing the C-terminal peptide of vasopressin receptor (V2R) to CRY2’s binding partner protein CIB. The CRY2-CIB heterodimerization triggered by blue light stimulation brings β-Arrestin to the vicinity of membrane receptors and results in receptor endocytosis. In this study, the E-fragment system was applied to dopamine receptors 1 and 2 (DRD1 and DRD2) to control dopamine signaling. First, confocal fluorescence microscope observation qualitatively confirmed the light-induced endocytosis of E-fragment fused receptors. Second, NanoBiT bioluminescence assay verified quantitatively that the surface amount of E-fragment labeled receptors decreased after light treatment. Finally, GloSensor bioluminescence assay results suggested that the E-fragment-dependent receptor light-induced endocytosis decreased cAMP production in DRD1 signaling and attenuated the inhibition effect of DRD2 on cAMP production. The developed optogenetic tool was able to induce receptor endocytosis by external light, providing opportunities to further understand numerous physiological activities by controlling receptor-mediated signaling spatiotemporally.Keywords: dopamine receptors, endocytosis, G protein-coupled receptors, optogenetics
Procedia PDF Downloads 102466 Quinazoline Analogue as a Pet Tracer for Imaging PDE10A: Radiosynthesis and Biological Evaluation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The family of phosphodiesterases (PDEs) plays a critical role in control of the level, localization, and duration of intracellular 3’-5’-cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic guanosine monophosphate (cGMP) signals by specifically hydrolyzing these cyclic nucleotides. As the involvement of cyclic nucleotide second messengers in cell signaling and homeostasis is established, the regulation of these pathways in the brain by various PDE isoforms is an area of considerable interest, as they are involved in nearly all brain functions and in the etiology of neuropsychiatric diseases. The PDE10A isoform, isolated from different species and characterized regarding structure and function, has received much attention in recent years, particularly in the context of schizophrenia and Huntington’s disease, which are both related to a role of PDE10A in the regulation of striatal dopaminergic neurotransmission. Quinazoline analogue 1-(4-methoxyphenyl)-6,7-dimethoxyquinazoline, was evaluated as specific PET marker for phosphodiesterase (PDE) 10A. Here, we report the radiosynthesis of [11C]2 and the in vitro and in vivo evaluation of [11C]2 as a potential positron emission tomography (PET) radiotracer for imaging PDE10A in the central nervous system (CNS). The radiosynthesis of [11C]2 was achieved by O-methylation of the corresponding des-methyl precursor with [11C]methyl iodide. [11C]2 was obtained with ∼50% radiochemical yield. PET imaging studies in rat brain displayed initial specific uptake with very rapid clearance of [11C]2 from brain. Though [11C]2 is not an ideal radioligand for clinical imaging of PDE10A in the CNS. Modified analogue of quinazoline having a higher potency for inhibiting PDE10A and improved pharmacokinetic properties will be necessary for imaging this enzyme with PET.Keywords: PDE10A, PET, radiotracer, quinazoline
Procedia PDF Downloads 186465 Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level
Authors: Jefunnie Matahum, Yu-Chi Kuo, Chao-Ming Su, Tzong-Rong Ger
Abstract:
Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level.Keywords: magnetic nanoparticles, single cell, magnetophoresis, image analysis
Procedia PDF Downloads 333464 Signaling Using Phase Shifting in Wi-Fi Backscatter System
Authors: Chang-Bin Ha, Young-Min Ko, Seongjoo Lee, Hyoung-Kyu Song
Abstract:
In this paper, the signaling scheme using phase shifting is proposed for the improved performance of the Wi-Fi backscatter system. Because the communication in the Wi-Fi backscatter system is based on on-off modulation and impedance modulation by unit of packet, the data rate is very low compared to the conventional wireless systems. Also, because the Wi-Fi backscatter system is based on the RF-powered device, the achievement of high reliability is difficult. In order to increase the low data rate, the proposed scheme transmits information of multiple bits during one packet period. Also, in order to increase the reliability, the proposed scheme shifts the phase of signal in according to the transmitting information. The simulation result shows that the proposed scheme has the improved throughput performance.Keywords: phase shifting, RF-powered device, Wi-Fi backscatter system, IoT
Procedia PDF Downloads 442463 Adaptor Protein APPL2 Could Be a Therapeutic Target for Improving Hippocampal Neurogenesis and Attenuating Depressant Behaviors and Olfactory Dysfunctions in Chronic Corticosterone-induced Depression
Authors: Jiangang Shen
Abstract:
Olfactory dysfunction is a common symptom companied by anxiety- and depressive-like behaviors in depressive patients. Chronic stress triggers hormone responses and inhibits the proliferation and differentiation of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ)-olfactory bulb (OB), contributing to depressive behaviors and olfactory dysfunction. However, the cellular signaling molecules to regulate chronic stress mediated olfactory dysfunction are largely unclear. Adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPLs) are multifunctional adaptor proteins. Herein, we tested the hypothesis that APPL2 could inhibit hippocampal neurogenesis by affecting glucocorticoid receptor (GR) signaling, subsequently contributing to depressive and anxiety behaviors as well as olfactory dysfunctions. The major discoveries are included: (1) APPL2 Tg mice had enhanced GR phosphorylation under basic conditions but had no different plasma corticosterone (CORT) level and GR phosphorylation under stress stimulation. (2) APPL2 Tg mice had impaired hippocampal neurogenesis and revealed depressive and anxiety behaviors. (3) GR antagonist RU486 reversed the impaired hippocampal neurogenesis in the APPL2 Tg mice. (4) APPL2 Tg mice displayed higher GR activity and less capacity for neurogenesis at the olfactory system with lesser olfactory sensitivity than WT mice. (5) APPL2 negatively regulates olfactory functions by switching fate commitments of NSCs in adult olfactory bulbs via interaction with Notch1 signaling. Furthermore, baicalin, a natural medicinal compound, was found to be a promising agent targeting APPL2/GR signaling and promoting adult neurogenesis in APPL2 Tg mice and chronic corticosterone-induced depression mouse models. Behavioral tests revealed that baicalin had antidepressant and olfactory-improving effects. Taken together, APPL2 is a critical therapeutic target for antidepressant treatment.Keywords: APPL2, hippocampal neurogenesis, depressive behaviors and olfactory dysfunction, stress
Procedia PDF Downloads 76462 Identification of Potential Small Molecule Regulators of PERK Kinase
Authors: Ireneusz Majsterek, Dariusz Pytel, J. Alan Diehl
Abstract:
PKR-like ER kinase (PERK) is serine/threonie endoplasmic reticulum (ER) transmembrane kinase activated during ER-stress. PERK can activate signaling pathways known as unfolded protein response (UPR). Attenuation of translation is mediated by PERK via phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is necessary for translation initiation. PERK activation also directly contributes to activation of Nrf2 which regulates expression of anti-oxidant enzymes. An increased phosphorylation of eIF2α has been reported in Alzheimer disease (AD) patient hippocampus, indicating that PERK is activated in this disease. Recent data have revealed activation of PERK signaling in non-Hodgkins lymphomas. Results also revealed that loss of PERK limits mammary tumor cell growth in vitro and in vivo. Consistent with these observations, activation of UPR in vitro increases levels of the amyloid precursor protein (APP), the peptide from which beta-amyloid plaques (AB) fragments are derived. Finally, proteolytic processing of APP, including the cleavages that produce AB, largely occurs in the ER, and localization coincident with PERK activity. Thus, we expect that PERK-dependent signaling is critical for progression of many types of diseases (human cancer, neurodegenerative disease and other). Therefore, modulation of PERK activity may be a useful therapeutic target in the treatment of different diseases that fail to respond to traditional chemotherapeutic strategies, including Alzheimer’s disease. Our goal will be to developed therapeutic modalities targeting PERK activity.Keywords: PERK kinase, small molecule inhibitor, neurodegenerative disease, Alzheimer’s disease
Procedia PDF Downloads 482461 Implication of Oxidative Stress and Intracellular Mediators in the Protective Effect of Artemisia campestris against Aspirin-Induced Gastric Lesions in Rat Model
Authors: Hichem Sebai, Mohamed Amine Jabri, Kais Rtibi, Haifa Tounsi, Lamjed Marzouki
Abstract:
Artemisia campestris has been widely used in Tunisian traditional medicine for its health beneficial effects. However, the present study aims at evaluating the antiulcer effects of Artemisia campestris aqueous extract (ACAE) as well as the mechanism of action involved in such gastroprotection. In this respect, male Wistar rats were divided into seven groups: control, aspirin (ASPR), ASPR + various doses of ACAE (100, 200 and 400 mg/kg, b.w.), ASPR+ famotidine and ASPR+ caffeic acid. Animals were pre-treated with ACAE extract during 10 days. We firstly showed that aspirin administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) level, a decrease of sulfhydryl -(SH) groups content and depletion of antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Pre-treatment with ACAE protected against aspirin-induced gastric oxidative stress. More importantly, aspirin administration increased plasma and tissue hydrogen peroxide (H₂O₂), free iron and calcium levels while the ACAE pre-treatment reversed all aspirin-induced intracellular mediators disturbance. The results of the present study clearly indicated that AEAC gastroprotection might be related, at least in part, to its antioxidant properties as well as to various gastric mucosal defense mechanisms, including the protection of gastric sulfhydryls and an opposite effect on some intracellular mediators such as free iron, hydrogen peroxide, and calcium. However, our data confirm the use of Artemisia campestris extracts in the Tunisian traditional folk medicine for the treatment of gastrointestinal diseases.Keywords: gastric ulcer, Artemisia campestris, oxidative stress, sulfhydryl groups, Fenton reaction, rat
Procedia PDF Downloads 147460 A Novel Application of CORDYCEPIN (Cordycepssinensis Extract): Maintaining Stem Cell Pluripotency and Improving iPS Generation Efficiency
Authors: Shih-Ping Liu, Cheng-Hsuan Chang, Yu-Chuen Huang, Shih-Yin Chen, Woei-Cherng Shyu
Abstract:
Embryonic stem cells (ES) and induced pluripotnet stem cells (iPS) are both pluripotent stem cells. For mouse stem cells culture technology, leukemia inhibitory factor (LIF) was used to maintain the pluripotency of stem cells in vitro. However, LIF is an expensive reagent. The goal of this study was to find out a pure compound extracted from Chinese herbal medicine that could maintain stem cells pluripotency to replace LIF and improve the iPS generation efficiency. From 20 candidates traditional Chinese medicine we found that Cordycepsmilitaris triggered the up-regulation of stem cells activating genes (Oct4 and Sox2) expression levels in MEF cells. Cordycepin, a major active component of Cordycepsmilitaris, also could up-regulate Oct4 and Sox2 gene expression. Furthermore, we used ES and iPS cells and treated them with different concentrations of Cordycepin (replaced LIF in the culture medium) to test whether it was useful to maintain the pluripotency. The results showed higher expression levels of several stem cells markers in 10 μM Cordycepin-treated ES and iPS cells compared to controls that did not contain LIF, including alkaline phosphatase, SSEA1, and Nanog. Embryonic body formation and differentiation confirmed that 10 μM Cordycepin-containing medium was capable to maintain stem cells pluripotency after four times passages. For mechanism analysis, microarray analysis indicated extracellular matrix and Jak/Stat signaling pathway as the top two deregulated pathways. In ECM pathway, we determined that the integrin αVβ5 expression levels and phosphorylated Src levels increased after Cordycepin treatment. In addition, the phosphorylated Jak2 and phosphorylated Sat3 protein levels were increased after Cordycepin treatment and suppressed with the Jak2 inhibitor, AG490. The expression of cytokines associated with Jak2/Stat3 signaling pathway were also up-regulated by Q-PCR and ELISA assay. Lastly, we used Oct4-GFP MEF cells to test iPS generation efficiency following Cordycepin treatment. We observed that 10 Μm Cordycepin significantly increased the iPS generation efficiency in day 21. In conclusion, we demonstrated Cordycepin could maintain the pluripotency of stem cells through both of ECM and Jak2/Stat3 signaling pathway and improved iPS generation efficiency.Keywords: cordycepin, iPS cells, Jak2/Stat3 signaling pathway, molecular biology
Procedia PDF Downloads 438459 Antiproliferative and Apoptotic Effects of an Enantiomerically Pure β-Dipeptide Derivative through PI3K/Akt-Dependent and -Independent Pathways in Human Hormone-Refractory Prostate Cancer Cells
Authors: Mei-Ling Chan, Jin-Ming Wu, Konstantin V. Kudryavtsev, Jih-Hwa Guh
Abstract:
Prostate cancer is one of the most common malignant disease in men. KUD983 is an enantiomerically pure β-dipeptide derivative, which may have anti-cancer effects. In the present study, KUD983 exhibits powerful activity against hormone-refractory prostate cancer (HRPC) PC-3 and DU145 cells. The IC50 values of KUD983 in PC-3 and DU145 cells are 0.56±0.07M and 0.50±0.04 M respectively. KUD983 induced G1 arrest of the cell cycle and subsequent apoptosis associated with the down-regulation of several related proteins including cyclin D1, cyclin E and Cdk4, and the de-phosphorylation of RB. The protein expressions of nuclear and total c-Myc protein, which was able to regulate the expression of both cyclin D1 and cyclin E, were significantly suppressed by KUD983. Phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is an important signaling pathway that influences the energy metabolism, cell cycle, proliferation, survival and apoptosis of cells, and is associated with numerous other signaling pathways. The Western Blot data revealed that KUD983 inhibited PI3K/Akt and mTOR/p70S6K/4E-BP1 pathways. The transient transfection of constitutively active myristylated Akt (myr-Akt) cDNA significantly reversed KUD983-induced caspase activation but did not abolish the suppression of mTOR/p70S6K/4E-BP1 signaling cascade indicating the presence of both Akt-dependent and -independent pathways. Moreover, KUD983-induced effect was collaborated with the down-regulation of anti-apoptotic Bcl-2 members (e.g., Bcl-2, and Mcl-1) and IAP family members (e.g., survivin). Furthermore, KUD983 induced autophagic cell death using confocal microscopic examination, investigating the level of conversion of LC3-I to LC3-II and flow cytometric detection of AVO-positive cells. Taken together, the data suggest that KUD983 is an anticancer β-dipeptide against HRPCs through the inhibition of cell proliferation and induction of apoptotic and autophagic cell death. The suppression of signaling pathways mediated by c-Myc, PI3K/Akt and mTOR/p70S6K/4E-BP1 and the collaboration with down-regulation of Mcl-1 and survivin may indicate the mechanism of KUD983 against HRPC.Keywords: β-dipeptide, hormone-refractory prostate cancer, mTOR, PI3K/Akt
Procedia PDF Downloads 282458 Anti-Prostate Cancer Effect of GV-1001, a Novel Gonadotropin-Releasing Hormone Receptor Ligand
Authors: Ji Won Kim, Moo Yeol Lee, Keon Wook Kang
Abstract:
GV-1001, 16 amino acid fragment of human telomerase reverse transcriptase catalytic subunit (hTERT), has been developed as an injectable cancer vaccine for many types of solid tumors showing high-level of telomerase activity. In the present study, we evaluated the anti-cancer effect of GV-1001 on androgen-receptor-positive prostate cancer. Two signaling pathways, Gs-adenylate cyclase-cAMP and Gq-IP3-Ca2+ pathways play a central role in GnRH receptor (GnRHR)-mediated activities. We found that leuprolide acetate (LA) mainly acted on Gq-mediated Ca2+ signaling, while GV-1001 preferentially acted on cAMP signaling; and both the effects were counteracted by cetrorelix, a GnRHR antagonist. We further tested whether GV-1001 affects tumor growth of human prostate cancer cells in vivo. Prostate tumor xenografts were established using LNCap, androgen receptor-positive prostate cancer cells, and the nude mice bearing tumors were subcutaneously injected with GV-1001 (0.01, 0.1, 1, 10 microg/kg/day) and LA (0.01 microg/kg/day) for 2 weeks. GV-1001 (1 and 10 microg/kg/day) significantly inhibited tumor growth of LNCap xenografts. Interestingly, mRNA expression of MMP2 and MMP9 was significantly suppressed by GV-1001 injection, but not by LA administration. Boyden chamber assay revealed that GV-1001 potently inhibited cell migration of LNCap. Our finding suggests that GV-1001 as a novel GnRHR ligand, has anti-proliferative and anti-migratory effects on androgen receptor-positive prostate cancer cells.Keywords: GV-1001, GnRH, hTERT, prostate cancer
Procedia PDF Downloads 371457 Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans
Authors: Yee-Seul So, Guiseppe Ianiri, Alex Idnurm, Yong-Sun Bahn
Abstract:
Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans.Keywords: fungal pathogen, serine/threonine kinase, target of rapamycin, transcription factor
Procedia PDF Downloads 221456 Engineered Control of Bacterial Cell-to-Cell Signaling Using Cyclodextrin
Authors: Yuriko Takayama, Norihiro Kato
Abstract:
Quorum sensing (QS) is a cell-to-cell communication system in bacteria to regulate expression of target genes. In gram-negative bacteria, activation on QS is controlled by a concentration increase of N-acylhomoserine lactone (AHL), which can diffuse in and out of the cell. Effective control of QS is expected to avoid virulence factor production in infectious pathogens, biofilm formation, and antibiotic production because various cell functions in gram-negative bacteria are controlled by AHL-mediated QS. In this research, we applied cyclodextrins (CDs) as artificial hosts for the AHL signal to reduce the AHL concentration in the culture broth below its threshold for QS activation. The AHL-receptor complex induced under the high AHL concentration activates transcription of the QS-target gene. Accordingly, artificial reduction of the AHL concentration is one of the effective strategies to inhibit the QS. A hydrophobic cavity of the CD can interact with the acyl-chain of the AHL due to hydrophobic interaction in aqueous media. We studied N-hexanoylhomoserine lactone (C6HSL)-mediated QS in Serratia marcescens; accumulation of C6HSL is responsible for regulation of the expression of pig cluster. Inhibitory effects of added CDs on QS were demonstrated by determination of prodigiosin amount inside cells after reaching stationary phase, because production of prodigiosin depends on the C6HSL-mediated QS. By adding approximately 6 wt% hydroxypropyl-β-CD (HP-β-CD) in Luria-Bertani (LB) medium prior to inoculation of S. maecescens AS-1, the intracellularly accumulated prodigiosin was drastically reduced to 7-10%, which was determined after the extraction of prodigiosin in acidified ethanol. The AHL retention ability of HP-β-CD was also demonstrated by Chromobacterium violacuem CV026 bioassay. The CV026 strain is an AHL-synthase defective mutant that activates QS solely by adding AHLs from outside of cells. A purple pigment violacein is induced by activation of the AHL-mediated QS. We demonstrated that the violacein production was effectively suppressed when the C6HSL standard solution was spotted on a LB agar plate dispersing CV026 cells and HP-β-CD. Physico-chemical analysis was performed to study the affinity between the immobilized CD and added C6HSL using a quartz crystal microbalance (QCM) sensor. The COOH-terminated self-assembled monolayer was prepared on a gold electrode of 27-MHz AT-cut quartz crystal. Mono(6-deoxy-6-N, N-diethylamino)-β-CD was immobilized on the electrode using water-soluble carbodiimide. The C6HSL interaction with the β-CD cavity was studied by injecting the C6HSL solution to a cup-type sensor cell filled with buffer solution. A decrement of resonant frequency (ΔFs) clearly showed the effective C6HSL complexation with immobilized β-CD and its stability constant for MBP-SpnR-C6HSL complex was on the order of 102 M-1. The CD has high potential for engineered control of QS because it is safe for human use.Keywords: acylhomoserine lactone, cyclodextrin, intracellular signaling, quorum sensing
Procedia PDF Downloads 239455 STAT6 Mediates Local and Systemic Fibrosis and Type Ii Immune Response via Macrophage Polarization during Acute and Chronic Pancreatitis in Murine Model
Authors: Hager Elsheikh, Matthias Sendler, Juliana Glaubnitz
Abstract:
In pancreatitis, an inflammatory reaction occurs in the pancreatic secretory cells due to premature activation of proteases, leading to pancreatic self-digestion and necrotic cell death of acinar cells. Acute pancreatitis in patients is characterized by a severe immune reaction that could lead to serious complications, such as organ failure or septic shock, if left untreated. Chronic pancreatitis is a recurrence of episodes of acute pancreatitis resulting in a fibro-inflammatory immune response, in which the type 2 immune response is primarily driven by AAMs in the pancreas. One of the most important signaling pathways for M2 macrophage activation is the IL-4/STAT6 pathway. Pancreatic fibrosis is induced by the hyperactivation of pancreatic stellate cells by dysregulation in the inflammatory response, leading to further damage, autodigestion and possibly necrosis of pancreatic acinar cells. The aim of this research is to investigate the effect of STAT6 knockout in disease severity and development of fibrosis wound healing in the presence of different macrophage populations, regulated by the type 2 immune response, after inducing chronic and/or acute pancreatitis in mice models via cerulean injection. We further investigate the influence of the JAK/STAT6 signaling pathway on the balance of fibrosis and regeneration in STAT6 deficient and wild-type mice. The characterization of resident and recruited macrophages will provide insight into the influence of the JAK/STAT6 signaling pathway on infiltrating cells and, ultimately, tissue fibrosis and disease severity.Keywords: acute and chronic pancreatitis, tissue regeneration, macrophage polarization, Gastroenterology
Procedia PDF Downloads 68454 New Photosensitizers Encapsulated within Arene-Ruthenium Complexes Active in Photodynamic Therapy: Intracellular Signaling and Evaluation in Colorectal Cancer Models
Authors: Suzan Ghaddar, Aline Pinon, Manuel Gallardo-villagran, Mona Diab-assaf, Bruno Therrien, Bertrand Liagre
Abstract:
Colorectal cancer (CRC) is the third most common cancer and exhibits a consistently rising incidence worldwide. Despite notable advancements in CRC treatment, frequent occurrences of side effects and the development of therapy resistance persistently challenge current approaches. Eventually, innovations in focal therapies remain imperative to enhance the patient’s overall quality of life. Photodynamic therapy (PDT) emerges as a promising treatment modality, clinically used for the treatment of various cancer types. It relies on the use of photosensitive molecules called photosensitizers (PS), which are photoactivated after accumulation in cancer cells, to induce the production of reactive oxygen species (ROS) that cause cancer cell death. Among commonly used metal-based drugs in cancer therapy, ruthenium (Ru) possesses favorable attributes that demonstrate its selectivity towards cancer cells and render it suitable for anti-cancer drug design. In vitro studies using distinct arene-Ru complexes, encapsulating porphin PS, are conducted on human HCT116 and HT-29 colorectal cancer cell lines. These studies encompass the evaluation of the antiproliferative effect, ROS production, apoptosis, cell cycle progression, molecular localization, and protein expression. Preliminary results indicated that these complexes exert significant photocytotoxicity on the studied colorectal cancer cell lines, representing them as promising and potential candidates for anti- cancer agents.Keywords: colorectal cancer, photodynamic therapy, photosensitizers, arene-ruthenium complexes, apoptosis
Procedia PDF Downloads 100453 A Secreted Protein Can Attenuate High Fat Diet Induced Obesity and Metabolic Syndrome in Mice
Authors: Abdul Soofi, Katherine Wolf, Egon Ranghini, Gregory Dressler
Abstract:
Obesity and its associated complications, such as insulin resistance and non-alcoholic fatty liver disease, are reaching epidemic proportions. In mice, the TGF-β superfamily is implicated in the regulation of white and brown adipose tissues differentiation. The Kielin/Chordin-like Protein (KCP) is a secreted regulator of the TGF-β superfamily pathways that can inhibit both TGF-β and Activin signals while enhancing the Bone Morphogenetic protein (BMP) signaling. However, the effects of KCP on metabolism and obesity have not been studied in animal models. Thus, we examined the effects of KCP loss or gain of function in mice that were maintained on either a regular or a high fat diet. Loss of KCP sensitized mice to obesity and associated complications such as hepatic steatosis and glucose intolerance. In contrast, transgenic mice that expressed KCP in the kidney, liver and adipose tissues were resistant to developing high fat diet induced obesity and had significantly reduced white adipose tissue. KCP over-expression was able to shift the pattern of Smad signaling in vivo, to increase the levels of P-Smad1 and decrease P-Smad3, resulting in resistance to high fat diet induced hepatic steatosis and glucose intolerance. In aging mice, loss of KCP promoted liver pathology even when mice were fed a normal diet. The data demonstrate that shifting the TGF-β superfamily signaling with a secreted inhibitor or enhancer can alter the physiology of adipose tissue to reduce obesity and can inhibit the initiation and progression of hepatic steatosis to significantly reduce the effects of high fat diet induced metabolic disease.Keywords: adipose tissue, KCP, obesity, TGF-β, BMP, hepatic steatosis, metabolic syndrome
Procedia PDF Downloads 353