Search results for: flight disruptions management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9810

Search results for: flight disruptions management

9750 The Influence of Variable Geometrical Modifications of the Trailing Edge of Supercritical Airfoil on the Characteristics of Aerodynamics

Authors: P. Lauk, K. E. Seegel, T. Tähemaa

Abstract:

The fuel consumption of modern, high wing loading, commercial aircraft in the first stage of flight is high because the usable flight level is lower and the weather conditions (jet stream) have great impact on aircraft performance. To reduce the fuel consumption, it is necessary to raise during first stage of flight the L/D ratio value within Cl 0.55-0.65. Different variable geometrical wing trailing edge modifications of SC(2)-410 airfoil were compared at M 0.78 using the CFD software STAR-CCM+ simulation based Reynolds-averaged Navier-Stokes (RANS) equations. The numerical results obtained show that by increasing the width of the airfoil by 4% and by modifying the trailing edge airfoil, it is possible to decrease airfoil drag at Cl 0.70 for up to 26.6% and at the same time to increase commercial aircraft L/D ratio for up to 5.0%. Fuel consumption can be reduced in proportion to the increase in L/D ratio.

Keywords: L/D ratio, miniflaps, mini-TED, supercritical airfoil

Procedia PDF Downloads 190
9749 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: adaptive differentiators, second order sliding modes, dynamic adaptation of the gains, microsoft flight simulator, Zlin-142, MQ-1 predator

Procedia PDF Downloads 412
9748 The Enhancement of Training of Military Pilots Using Psychophysiological Methods

Authors: G. Kloudova, M. Stehlik

Abstract:

Optimal human performance is a key goal in the professional setting of military pilots, which is a highly challenging atmosphere. The aviation environment requires substantial cognitive effort and is rich in potential stressors. Therefore, it is important to analyze variables such as mental workload to ensure safe conditions. Pilot mental workload could be measured using several tools, but most of them are very subjective. This paper details research conducted with military pilots using psychophysiological methods such as electroencephalography (EEG) and heart rate (HR) monitoring. The data were measured in a simulator as well as under real flight conditions. All of the pilots were exposed to highly demanding flight tasks and showed big individual response differences. On that basis, the individual pattern for each pilot was created counting different EEG features and heart rate variations. Later on, it was possible to distinguish the most difficult flight tasks for each pilot that should be more extensively trained. For training purposes, an application was developed for the instructors to decide which of the specific tasks to focus on during follow-up training. This complex system can help instructors detect the mentally demanding parts of the flight and enhance the training of military pilots to achieve optimal performance.

Keywords: cognitive effort, human performance, military pilots, psychophysiological methods

Procedia PDF Downloads 220
9747 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay

Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira

Abstract:

Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.

Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO

Procedia PDF Downloads 252
9746 Effect of Design Parameters on a Two Stage Launch Vehicle Performance

Authors: Assem Sallam, Aly Elzahaby, Ahmed Makled, Mohamed Khalil

Abstract:

Change in design parameters of launch vehicle affects its overall flight path trajectory. In this paper, several design parameters are introduced to study their effect. Selected parameters are the launch vehicle mass, which is presented in the form of payload mass, the maximum allowable angle of attack the launch vehicle can withstand, the flight path angle that is predefined for the launch vehicle second stage, the required inclination and its effect on the launch azimuth and finally by changing the launch pad coordinate. Selected design parameters are studied for their effect on the variation of altitude, ground range, absolute velocity and the flight path angle. The study gives a general mean of adjusting the design parameters to reach the required launch vehicle performance.

Keywords: launch vehicle azimuth, launch vehicle trajectory, launch vehicle payload, launch pad location

Procedia PDF Downloads 300
9745 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error

Procedia PDF Downloads 313
9744 Design for Flight Endurance and Mapping Area Enhancement of a Fixed Wing Unmanned Air Vehicle

Authors: P. Krachangthong, N. Limsumalee, L. Sawatdipon, A. Sasipongpreecha, S. Pisailert, J. Thongta, N. Hongkarnjanakul, C. Thipyopas

Abstract:

The design and development of new UAV are detailed in this paper. The mission requirement is setup for enhancement of flight endurance of a fixed wing UAV. The goal is to achieve flight endurance more than 60 minutes. UAV must be able launched by hand and can be equipped with the Sony A6000 camera. The design of sizing and aerodynamic analysis is conducted. The XFLR5 program and wind tunnel test are used for determination and comparison of aerodynamic characteristics. Lift, drag and pitching moment characteristics are evaluated. Then Kreno-V UAV is designed and proved its better efficiency compared to the Heron UAV who is currently used for mapping mission of Geo-Informatics and Space Technology Development Agency (Public Organization), Thailand. The endurance is improved by 19%. Finally, Kreno-V UAV with a wing span of 2meters, the aspect ratio of 7, and V-tail shape is constructed and successfully test.

Keywords: UAV design, fixed-wing UAV, wind tunnel test, long endurance

Procedia PDF Downloads 373
9743 Tuning of Fixed Wing Micro Aerial Vehicles Using Tethered Setup

Authors: Shoeb Ahmed Adeel, Vivek Paul, K. Prajwal, Michael Fenelon

Abstract:

Techniques have been used to tether and stabilize a multi-rotor MAV but carrying out the same process to a fixed wing MAV is a novel method which can be utilized in order to reduce damage occurring to the fixed wing MAVs while conducting flight test trials and PID tuning. A few sensors and on board controller is required to carry out this experiment in horizontal and vertical plane of the vehicle. Here we will be discussing issues such as sensitivity of the air vehicle, endurance and external load of the string acting on the vehicle.

Keywords: MAV, PID tuning, tethered flight, UAV

Procedia PDF Downloads 624
9742 Exploring Antifragility Principles in Humanitarian Supply Chain: The key Role of Information Systems

Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan

Abstract:

The COVID-19 pandemic has been a major and global disruption that has affected all supply chains on a worldwide scale. Consequently, the question posed by this communication is to understand how - in the face of such disruptions - supply chains, including their actors, management tools, and processes, react, survive, adapt, and even improve. To do so, the concepts of resilience and antifragility applied to a supply chain have been leveraged. This article proposes to perceive resilience as a step to surpass in moving towards antifragility. The research objective is to propose an analytical framework to measure and compare resilience and antifragility, with antifragility seen as a property of a system that improves when subjected to disruptions rather than merely resisting these disruptions, as is the case with resilience. A unique case study was studied - MSF logistics (France) - using a qualitative methodology. Semi-structured interviews were conducted in person and remotely in multiple phases: during and immediately after the COVID crisis (8 interviews from March 2020 to April 2021), followed by a new round from September to November 2023. A Delphi method was employed. The interviews were analyzed using coding and a thematic framework. One of the theoretical contributions is consolidating the field of supply chain resilience research by precisely characterizing the dimensions of resilience for a humanitarian supply chain (Reorganization, Collaboration mediated by IS, Humanitarian culture). In this regard, a managerial contribution of this study is providing a guide for managers to identify the four dimensions and sub-dimensions of supply chain resilience. This enables managers to focus their decisions and actions on dimensions that will enhance resilience. Most importantly, another contribution is comparing the concepts of resilience and antifragility and proposing an analytical framework for antifragility—namely, the mechanisms on which MSF logistics relied to capitalize on uncertainties, contingencies, and shocks rather than simply enduring them. For MSF Logistics, antifragility manifested through the ability to identify opportunities hidden behind the uncertainties and shocks of COVID-19, reducing vulnerability, and fostering a culture that encourages innovation and the testing of new ideas. Logistics, particularly in the humanitarian domain, must be able to adapt to environmental disruptions. In this sense, this study identifies and characterizes the dimensions of resilience implemented by humanitarian logistics. Moreover, this research goes beyond the concept of resilience to propose an analytical framework for the concept of antifragility. The organization studied emerged stronger from the COVID-19 crisis due to the mechanisms we identified, allowing us to characterize antifragility. Finally, the results show that the information system plays a key role in antifragility.

Keywords: antifragility, humanitarian supply chain, information systems, qualitative research, resilience.

Procedia PDF Downloads 56
9741 Assessing the Incapacity of Indonesian Aviators Medical Conditions in 2016 – 2017

Authors: Ferdi Afian, Inne Yuliawati

Abstract:

Background: The change in causes of death from infectious diseases to non-communicable diseases also occurs in the aviation community in Indonesia. Non-communicable diseases are influenced by several internal risk factors, such as age, lifestyle changes and the presence of other diseases. These risk factors will increase the incidence of heart diseases resulting in the incapacity of Indonesian aviators which will disrupt flight safety. Method: The study was conducted by collecting secondary data. The retrieval of primary data was obtained from medical records at the Indonesian Aviation Health Center in 2016-2017. The subjects in this study were all cases of incapacity in Indonesian aviators medical conditions. Results: In this study, there were 15 cases of aviators in Indonesia who experienced incapacity of medical conditions related to heart and lung diseases in 2016-2017. Based on the secondary data contained in the flight medical records at the Aviation Health Center Aviation, it was found that several factors related to aviators incapacity causing its inability to carried out flight duties. Conclusion: Incapacity of Indonesian aviators medical conditions are most affected by the high value of Body Mass Index (86%) and less affected by high of Uric Acid in the blood (26%) and Hyperglycemia (26%).

Keywords: incapacity, aviators, flight, Indonesia

Procedia PDF Downloads 121
9740 Paradox of Growing Adaptive Capacities for Sustainability Transformation in Urban Water Management in Bangladesh

Authors: T. Yasmin, M. A. Farrelly, B. C. Rogers

Abstract:

Urban water governance in developing countries faces numerous challenges arising from uncontrolled urban population expansion, water pollution, greater economic push and more recently, climate change impact while undergoing transitioning towards a sustainable system. Sustainability transition requires developing adaptive capacities of the socio-ecological and socio-technical system to be able to deal with complexity. Adaptive capacities deliver strategies to connect individuals, organizations, agencies and institutions at multiple levels for dealing with such complexity. Understanding the level of adaptive capacities for sustainability transformation thus has gained significant research attention within developed countries, much less so in developing countries. Filling this gap, this article develops a conceptual framework for analysing the level of adaptive capacities (if any) within a developing context. This framework then applied to the chronological development of urban water governance strategies in Bangladesh for almost two centuries. The chronological analysis of governance interventions has revealed that crisis (public health, food and natural hazards) became the opportunities and thus opened the windows for experimentation and learning to occur as a deviation from traditional practices. Self-organization and networks thus created the platform for development or disruptions to occur for creating change. Leadership (internal or external) is important for nurturing and upscaling theses development or disruptions towards guiding policy vision and targets as well as championing ground implementation. In the case of Bangladesh, the leadership from the international and national aid organizations and targets have always lead the development whereas more often social capital tools (trust, power relations, cultural norms) act as disruptions. Historically, this has been evident in the development pathways of urban water governance in Bangladesh. Overall this research has shown some level of adaptive capacities is growing for sustainable urban growth in big cities, nevertheless unclear regarding the growth in medium and small cities context.

Keywords: adaptive capacity, Bangladesh, sustainability transformation, water governance

Procedia PDF Downloads 380
9739 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts

Procedia PDF Downloads 113
9738 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification

Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah

Abstract:

The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.

Keywords: aircraft aerodynamic model, total least squares estimation, piloting the aircraft, robust control, Microsoft Flight Simulator, MQ-1 predator

Procedia PDF Downloads 274
9737 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems

Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis

Abstract:

Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.

Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties

Procedia PDF Downloads 136
9736 ASEAN Air Transport Liberalization and Its Impact to Indonesian Air Service

Authors: Oentoeng Wahjoe

Abstract:

Liberalisation of air transportation practically is known as open sky policy. In the practice, the liberalisation of air transportation is divided into two group of services, i.e.: air transportation services, for passengers and goods (air service) which is categorized as hard rights and supporting services of the air transportation services (ancillary services) which is categorized as soft rights. The research in this paper focused in air transportation services for passengers and goods, consists of nine freedom of the air. The impact of the policy such as the Agreement regarding ASEAN open sky policy, is the readiness of Indonesian air transportation companies to compete with foreign air transportation companies. The goverment of Indonesia has to regulate the implementation of ASEAN Open Sky Policy to be projected in order to comply with national development, i.e. the function of air law in national development. The policy has been implemented by enact or amend the existing law as air law that regulate flight lines, the following provisions: To regulate flight line for foreign airlines to open flight lines in Indonesia region which may not or have not land and sea transportation. The regulation is intended to supprot mobility of humans, goods and services that may fulfil the needs of the people of Indonesia, which materially and spiritually and the development of the region. The regulation of flight lines of foreign air transportation for region of tourism, industrial and trade centre. The regulation is intended to support the national economic development of Indonesia.

Keywords: transport, liberalization, impact, Indonesian air service

Procedia PDF Downloads 321
9735 A Detailed Study of Two Different Airfoils on Flight Performance of MAV of Same Physical Dimension

Authors: Shoeb A. Adeel, Shashant Anand, Vivek Paul, Dinesh, Suraj, Roshan

Abstract:

The paper presents a study of micro air vehicles (MAVs) with wingspans of 20 Cm with two different airfoil configurations. MAVs have vast potential applications in both military and civilian areas. These MAVs are fully autonomous and supply real-time data. The paper focuses on two different designs of the MAVs one being N22 airfoil and the other a flat plate with similar dimension. As designed, the MAV would fly in a low Reynolds-number regime at airspeeds of 15 & 20 m/sec. Propulsion would be provided by an electric motor with an advanced lithium. Because of the close coupling between vehicle elements, system integration would be a significant challenge, requiring tight packaging and multifunction components to meet mass limitations and Centre of Gravity (C.G) balancing. These MAVs are feasible and within a couple of years of technology development in key areas including sensors, propulsion, Aerodynamics, and packaging these would be easily available to the users at affordable prices. The paper finally compares the flight performance of the two configurations.

Keywords: airfoil, CFD, MAV, flight performance, endurance, climb, lift, drag

Procedia PDF Downloads 481
9734 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 259
9733 Flight Safety Hazard: An Investigation into Bird Strike Prevention in the Vicinity of Suvarnabhumi Airport, Thailand

Authors: Chantarat Manvichien

Abstract:

The purpose of this research paper was aimed to examine the bird strike prevention in the vicinity of Suvarnabhumi Airport, Thailand. A bird strike event occurs when a bird or a flock of birds collide with an operating airplane and results in flight interruption. This is the reason why International Civil Aviation Organization (ICAO), a part of the United Nations, has an assumption that birds, including other wildlife, are a serious hazard to aircraft and attempts should be accomplished to overcome this hazard. ICAO requires all airports worldwide to set up proactive countermeasures in order to reduce the risk from bird strike and wildlife hazard. In Thailand, the Airports of Thailand Public Company Limited which manages Suvarnabhumi Airport, also known as Bangkok International Airport, responds to the requirements and spends a lot of effort to ensure this hazard is manageable. An intensive study on the countermeasures to prevent aircraft accident from bird strike and other wildlife have been continuously executed since the early construction of the Airport until nowadays.

Keywords: bird strike, flight safety, wildlife hazard, Suvarnabhumi airport

Procedia PDF Downloads 350
9732 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: aerodynamic heating, heat conduction, numerical simulation, supersonic flight, launch vehicle

Procedia PDF Downloads 442
9731 Blockchain: Institutional and Technological Disruptions in the Public Sector

Authors: Maria Florencia Ferrer, Saulo Fabiano Amancio-Vieira

Abstract:

The use of the blockchain in the public sector is present today and no longer the future of disruptive institutional and technological models. There are still some cultural barriers and resistance to the proper use of its potential. This research aims to present the strengths and weaknesses of using a public-permitted and distributed network in the context of the public sector. Therefore, bibliographical/documentary research was conducted to raise the main aspects of the studied platform, focused on the use of the main demands of the public sector. The platform analyzed was LACChain, which is a global alliance composed of different actors in the blockchain environment, led by the Innovation Laboratory of the Inter-American Development Bank Group (IDB Lab) for the development of the blockchain ecosystem in Latin America and the Caribbean. LACChain provides blockchain infrastructure, which is a distributed ratio technology (DLT). The platform focuses on two main pillars: community and infrastructure. It is organized as a consortium for the management and administration of an infrastructure classified as public, following the ISO typologies (ISO / TC 307). It is, therefore, a network open to any participant who agrees with the established rules, which are limited to being identified and complying with the regulations. As benefits can be listed: public network (open to all), decentralized, low transaction cost, greater publicity of transactions, reduction of corruption in contracts / public acts, in addition to improving transparency for the population in general. It is also noteworthy that the platform is not based on cryptocurrency and is not anonymous; that is, it is possible to be regulated. It is concluded that the use of record platforms, such as LACChain, can contribute to greater security on the part of the public agent in the migration process of their informational applications.

Keywords: blockchain, LACChain, public sector, technological disruptions

Procedia PDF Downloads 161
9730 Cooling of Exhaust Gases Emitted Into the Atmosphere as the Possibility to Reduce the Helicopter Radiation Emission Level

Authors: Mateusz Paszko, Mirosław Wendeker, Adam Majczak

Abstract:

Every material body that temperature is higher than 0K (absolute zero) emits infrared radiation to the surroundings. Infrared radiation is highly meaningful in military aviation, especially in military applications of helicopters. Helicopters, in comparison to other aircraft, have much lower flight speeds and maneuverability, which makes them easy targets for actual combat assets like infrared-guided missiles. When designing new helicopter types, especially for combat applications, it is essential to pay enormous attention to infrared emissions of the solid parts composing the helicopter’s structure, as well as to exhaust gases egressing from the engine’s exhaust system. Due to their high temperature, exhaust gases, egressed to the surroundings are a major factor in infrared radiation emission and, in consequence, detectability of a helicopter performing air combat operations. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. This paper presents the analysis of possibilities to decrease the infrared radiation level that is emitted to the environment by helicopter in flight, by cooling exhaust in special ejection-based coolers. The paper also presents the concept 3D model and results of numeric analysis of ejective-based cooler cooperation with PA-10W turbine engine. Numeric analysis presented promising results in decreasing the infrared emission level by PA W-3 helicopter in flight.

Keywords: exhaust cooler, helicopter propulsion, infrared radiation, stealth

Procedia PDF Downloads 337
9729 Ways to Spend Time at an Airport before Boarding a Flight

Authors: Amol Parikh

Abstract:

The goal of this study is to understand the most preferred ways to spend time at an airport while waiting for a flight to board. Survey was done on 1639 people of the United States of America. In the overall data, it was found that majority people always preferred spending time doing something in their mobile phone. Second most preferred option was reading something, followed by wanting a companion to talk to or to eat/drink. Least preferred option was to eat/drink alone. Overall data was then filtered based on age, gender, income and urban density groups. Percentage of people wanting to use a mobile phone was highest in the age group of 18-24. People aged 45 and above chose reading as the most preferred option. In any of the ranges of income, gender or urban density using mobile phone was the most preferred option. Conclusion of this study is that introducing a mobile app to search for a companion at an airport to do like minded activity would get noticed by majority travelers and would be a business idea worth trying as wanting a companion to talk or eat/drink with is not the least preferred option.

Keywords: waiting for a flight, airport, mobile phone, companion

Procedia PDF Downloads 273
9728 3D Stereoscopic Measurements from AR Drone Squadron

Authors: R. Schurig, T. Désesquelles, A. Dumont, E. Lefranc, A. Lux

Abstract:

A cost-efficient alternative is proposed to the use of a single drone carrying multiple cameras in order to take stereoscopic images and videos during its flight. Such drone has to be particularly large enough to take off with its equipment, and stable enough in order to make valid measurements. Corresponding performance for a single aircraft usually comes with a large cost. Proposed solution consists in using multiple smaller and cheaper aircrafts carrying one camera each instead of a single expensive one. To give a proof of concept, AR drones, quad-rotor UAVs from Parrot Inc., are experimentally used.

Keywords: drone squadron, flight control, rotorcraft, Unmanned Aerial Vehicle (UAV), AR drone, stereoscopic vision

Procedia PDF Downloads 460
9727 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach

Authors: Jens Ehm

Abstract:

Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.

Keywords: production, logistics, integrated scheduling, real-time scheduling

Procedia PDF Downloads 360
9726 The Incesant Subversion of Judiciary by African Political Leaders

Authors: Joy Olayemi Gbala, Fatai Olatokunbo, Philip Cloud

Abstract:

Catastrophic dictatorship has been discovered to be the major leadership challenge that orchestrates stagnated and contrasted economy with dysfunctional democracy in Africa through willful misappropriation of resources and egregious subversion of the rule of law. Almost invariably, most African leaders inexplicably often become power drunk and addicted which usually leads to abuse of state power, abdication of constitutional duties, unjustly withdrawal of business license of operation, human right violation, election malpractices, financial corruption, disruptions of policies of democratic government transition, annulment of free and fair election, and disruptions of legal electoral procedures and unachievable dividends of democracy and many more. Owing to this, most African nations have gone and still go through political unrest and insurgencies leading to loss of lives and property, violent protests, detention of detractors and political activists and massive human displacement. This research work is concerned with, and investigates the causes, menace, consequences and impacts of subverting the rule of law in Africa on the economy and the development of the continent with a suggested practical solution to the plights.

Keywords: corruption, law, leadership, violation

Procedia PDF Downloads 140
9725 Design of Electromagnetic Field of PMSG for VTOL Series-Hybrid UAV

Authors: Sooyoung Cho, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Series hybrid UAV(Unmanned aerial vehicle) that is proposed in this paper performs VTOL(Vertical take-off and landing) using the battery and generator, and it applies the series hybrid system with combination of the small engine and generator when cruising flight. This system can be described as the next-generation system that can dramatically increase the UAV flight times. Also, UAV systems require a large energy at the time of VTOL to be conducted for a short time. Therefore, this paper designs PMSG(Permanent Magnet Synchronous Generator) having a high specific power considering VTOL through the FEA.

Keywords: PMSG, VTOL, UAV, high specific power density

Procedia PDF Downloads 501
9724 Pandemic-Related Disruption to the Home Environment and Early Vocabulary Acquisition

Authors: Matthew McArthur, Margaret Friend

Abstract:

The COVID-19 pandemic disrupted the stability of the home environment for families across the world. Potential disruptions include parent work modality (in-person vs. remote), levels of health anxiety, family routines, and caregiving. These disruptions may have interfered with the processes of early vocabulary acquisition, carrying lasting effects over the life course. Our justification for this research is as follows: First, early, stable, caregiver-child reciprocal interactions, which may have been disrupted during the pandemic, contribute to the development of the brain architecture that supports language, cognitive, and social-emotional development. Second, early vocabulary predicts several cognitive outcomes, such as numeracy, literacy, and executive function. Further, disruption in the home is associated with adverse cognitive, academic, socio-emotional, behavioral, and communication outcomes in young children. We are interested in how disruptions related to the COVID-19 pandemic are associated with vocabulary acquisition in children born during the first two waves of the pandemic. We are conducting a moderated online experiment to assess this question. Participants are 16 children (10F) ranging in age from 19 to 39 months (M=25.27) and their caregivers. All child participants were screened for language background, health history, and history of language disorders, and were typically developing. Parents completed a modified version of the COVID-19 Family Stressor Scale (CoFaSS), a published measure of COVID-19-related family stressors. Thirteen items from the original scale were replaced to better capture change in family organization and stability specifically related to disruptions in income, anxiety, family relations, and childcare. Following completion of the modified CoFaSS, children completed a Web-Based version of the Computerized Comprehension Task and the Receptive One Word Picture Vocabulary if 24 months or older or the MacArthur-Bates Communicative Development Inventory if younger than 24 months. We report our preliminary data as a partial correlation analysis controlling for age. Raw vocabulary scores on the CCT, ROWPVT-4, and MCDI were all negatively associated with pandemic-related disruptions related to anxiety (r12=-.321; r1=-.332; r9=-.509), family relations (r12=-.590*; r1=-.155; r9=-.468), and childcare (r12=-.294; r1=-.468; r9=-.177). Although the small sample size for these preliminary data limits our power to detect significance, this trend is in the predicted direction, suggesting that increased pandemic-related disruption across multiple domains is associated with lower vocabulary scores. We anticipate presenting data on a full sample of 50 monolingual English participants. A sample of 50 participants would provide sufficient statistical power to detect a moderate effect size, adhering to a nominal alpha of 0.05 and ensuring a power level of 0.80.

Keywords: COVID-19, early vocabulary, home environment, language acquisition, multiple measures

Procedia PDF Downloads 51
9723 System-Driven Design Process for Integrated Multifunctional Movable Concepts

Authors: Oliver Bertram, Leonel Akoto Chama

Abstract:

In today's civil transport aircraft, the design of flight control systems is based on the experience gained from previous aircraft configurations with a clear distinction between primary and secondary flight control functions for controlling the aircraft altitude and trajectory. Significant system improvements are now seen particularly in multifunctional moveable concepts where the flight control functions are no longer considered separate but integral. This allows new functions to be implemented in order to improve the overall aircraft performance. However, the classical design process of flight controls is sequential and insufficiently interdisciplinary. In particular, the systems discipline is involved only rudimentarily in the early phase. In many cases, the task of systems design is limited to meeting the requirements of the upstream disciplines, which may lead to integration problems later. For this reason, approaching design with an incremental development is required to reduce the risk of a complete redesign. Although the potential and the path to multifunctional moveable concepts are shown, the complete re-engineering of aircraft concepts with less classic moveable concepts is associated with a considerable risk for the design due to the lack of design methods. This represents an obstacle to major leaps in technology. This gap in state of the art is even further increased if, in the future, unconventional aircraft configurations shall be considered, where no reference data or architectures are available. This means that the use of the above-mentioned experience-based approach used for conventional configurations is limited and not applicable to the next generation of aircraft. In particular, there is a need for methods and tools for a rapid trade-off between new multifunctional flight control systems architectures. To close this gap in the state of the art, an integrated system-driven design process for multifunctional flight control systems of non-classical aircraft configurations will be presented. The overall goal of the design process is to find optimal solutions for single or combined target criteria in a fast process from the very large solution space for the flight control system. In contrast to the state of the art, all disciplines are involved for a holistic design in an integrated rather than a sequential process. To emphasize the systems discipline, this paper focuses on the methodology for designing moveable actuation systems in the context of this integrated design process of multifunctional moveables. The methodology includes different approaches for creating system architectures, component design methods as well as the necessary process outputs to evaluate the systems. An application example of a reference configuration is used to demonstrate the process and validate the results. For this, new unconventional hydraulic and electrical flight control system architectures are calculated which result from the higher requirements for multifunctional moveable concept. In addition to typical key performance indicators such as mass and required power requirements, the results regarding the feasibility and wing integration aspects of the system components are examined and discussed here. This is intended to show how the systems design can influence and drive the wing and overall aircraft design.

Keywords: actuation systems, flight control surfaces, multi-functional movables, wing design process

Procedia PDF Downloads 129
9722 Some Aspects on Formation Initialization and Its Maintenance of Leo Satellites

Authors: Y. Johnson

Abstract:

Study of multi-satellite formation flight systems has drawn wide attention recently due to so many potential advantages. The present work aims to model the relative motion dynamics in terms of change in classical orbital parameters between the two satellites-chief and deputy- under Earth’s oblateness effect. The required impulsive thrust control is calculated to minimize these orbital parameter changes. The formation configuration is initialized by selecting a set of orbital parameters for the chief and deputy satellites such that bounded motion is maintained for a long time in a J_2-invariant relative non-circular orbit between the satellites. The solution of J_2-modified Hill’s equations is also derived in this paper.

Keywords: satellite, formation flight, j2 effect, control

Procedia PDF Downloads 260
9721 Solar and Galactic Cosmic Ray Impacts on Ambient Dose Equivalent Considering a Flight Path Statistic Representative to World-Traffic

Authors: G. Hubert, S. Aubry

Abstract:

The earth is constantly bombarded by cosmic rays that can be of either galactic or solar origin. Thus, humans are exposed to high levels of galactic radiation due to altitude aircraft. The typical total ambient dose equivalent for a transatlantic flight is about 50 μSv during quiet solar activity. On the contrary, estimations differ by one order of magnitude for the contribution induced by certain solar particle events. Indeed, during Ground Level Enhancements (GLE) event, the Sun can emit particles of sufficient energy and intensity to raise radiation levels on Earth's surface. Analyses of GLE characteristics occurring since 1942 showed that for the worst of them, the dose level is of the order of 1 mSv and more. The largest of these events was observed on February 1956 for which the ambient dose equivalent rate is in the orders of 10 mSv/hr. The extra dose at aircraft altitudes for a flight during this event might have been about 20 mSv, i.e. comparable with the annual limit for aircrew. The most recent GLE, occurred on September 2017 resulting from an X-class solar flare, and it was measured on the surface of both the Earth and Mars using the Radiation Assessment Detector on the Mars Science Laboratory's Curiosity Rover. Recently, Hubert et al. proposed a GLE model included in a particle transport platform (named ATMORAD) describing the extensive air shower characteristics and allowing to assess the ambient dose equivalent. In this approach, the GCR is based on the Force-Field approximation model. The physical description of the Solar Cosmic Ray (i.e. SCR) considers the primary differential rigidity spectrum and the distribution of primary particles at the top of the atmosphere. ATMORAD allows to determine the spectral fluence rate of secondary particles induced by extensive showers, considering altitude range from ground to 45 km. Ambient dose equivalent can be determined using fluence-to-ambient dose equivalent conversion coefficients. The objective of this paper is to analyze the GCR and SCR impacts on ambient dose equivalent considering a high number statistic of world-flight paths. Flight trajectories are based on the Eurocontrol Demand Data Repository (DDR) and consider realistic flight plan with and without regulations or updated with Radar Data from CFMU (Central Flow Management Unit). The final paper will present exhaustive analyses implying solar impacts on ambient dose equivalent level and will propose detailed analyses considering route and airplane characteristics (departure, arrival, continent, airplane type etc.), and the phasing of the solar event. Preliminary results show an important impact of the flight path, particularly the latitude which drives the cutoff rigidity variations. Moreover, dose values vary drastically during GLE events, on the one hand with the route path (latitude, longitude altitude), on the other hand with the phasing of the solar event. Considering the GLE occurred on 23 February 1956, the average ambient dose equivalent evaluated for a flight Paris - New York is around 1.6 mSv, which is relevant to previous works This point highlights the importance of monitoring these solar events and of developing semi-empirical and particle transport method to obtain a reliable calculation of dose levels.

Keywords: cosmic ray, human dose, solar flare, aviation

Procedia PDF Downloads 199