Search results for: finite differences method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23587

Search results for: finite differences method

23527 Dynamic Modeling of a Robot for Playing a Curved 3D Percussion Instrument Utilizing a Finite Element Method

Authors: Prakash Persad, Kelvin Loutan, Trichelle Seepersad

Abstract:

The Finite Element Method is commonly used in the analysis of flexible manipulators to predict elastic displacements and develop joint control schemes for reducing positioning error. In order to preserve simplicity, regular geometries, ideal joints and connections are assumed. This paper presents the dynamic FE analysis of a 4- degrees of freedom open chain manipulator, intended for striking a curved 3D surface percussion musical instrument. This was done utilizing the new MultiBody Dynamics Module in COMSOL, capable of modeling the elastic behavior of a body undergoing rigid body type motion.

Keywords: dynamic modeling, entertainment robots, finite element method, flexible robot manipulators, multibody dynamics, musical robots

Procedia PDF Downloads 336
23526 3D Finite Element Analysis of Yoke Hybrid Electromagnet

Authors: Hasan Fatih Ertuğrul, Beytullah Okur, Huseyin Üvet, Kadir Erkan

Abstract:

The objective of this paper is to analyze a 4-pole hybrid magnetic levitation system by using 3D finite element and analytical methods. The magnetostatic analysis of the system is carried out by using ANSYS MAXWELL-3D package. An analytical model is derived by magnetic equivalent circuit (MEC) method. The purpose of magnetostatic analysis is to determine the characteristics of attractive force and rotational torques by the change of air gap clearances, inclination angles and current excitations. The comparison between 3D finite element analysis and analytical results are presented at the rest of the paper.

Keywords: yoke hybrid electromagnet, 3D finite element analysis, magnetic levitation system, magnetostatic analysis

Procedia PDF Downloads 727
23525 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion

Authors: Hebert Montegranario, Mauricio Londoño

Abstract:

Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.

Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion

Procedia PDF Downloads 547
23524 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids

Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao

Abstract:

An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.

Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.

Procedia PDF Downloads 148
23523 Non-Linear Finite Element Analysis of Bonded Single Lap Joint in Composite Material

Authors: A. Benhamena, L. Aminallah, A. Aid, M. Benguediab, A. Amrouche

Abstract:

The goal of this work is to analyze the severity of interfacial stress distribution in the single lap adhesive joint under tensile loading. The three-dimensional and non-linear finite element method based on the computation of the peel and shear stresses was used to analyze the fracture behaviour of single lap adhesive joint. The effect of the loading magnitude and the overlap length on the distribution of peel and shear stresses was highlighted. A good correlation was found between the FEM simulations and the analytical results.

Keywords: aluminum 2024-T3 alloy, single-lap adhesive joints, Interface stress distributions, material nonlinear analysis, adhesive, bending moment, finite element method

Procedia PDF Downloads 570
23522 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings

Authors: Marco Tulio C. Faria

Abstract:

Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent load-carrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steady-state and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.

Keywords: elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method

Procedia PDF Downloads 450
23521 Stability of Square Plate with Concentric Cutout

Authors: B. S. Jayashankarbabu, Karisiddappa

Abstract:

The finite element method is used to obtain the elastic buckling load factor for square isotropic plate containing circular, square and rectangular cutouts. ANSYS commercial finite element software had been used in the study. The applied inplane loads considered are uniaxial and biaxial compressions. In all the cases the load is distributed uniformly along the plate outer edges. The effects of the size and shape of concentric cutouts with different plate thickness ratios and the influence of plate edge condition, such as SSSS, CCCC and mixed boundary condition SCSC on the plate buckling strength have been considered in the analysis.

Keywords: concentric cutout, elastic buckling, finite element method, inplane loads, thickness ratio

Procedia PDF Downloads 391
23520 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 152
23519 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation

Procedia PDF Downloads 431
23518 Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey

Authors: P. M. Keshtiban, M. Zdshakoyan, G. Faragi

Abstract:

Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results.

Keywords: AL1050, experiments, finite element method, severe plastic deformation

Procedia PDF Downloads 420
23517 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 300
23516 Static and Dynamic Analysis of Timoshenko Microcantilever Using the Finite Element Method

Authors: Mohammad Tahmasebipour, Hosein Salarpour

Abstract:

Micro cantilevers are one of the components used in the manufacture of micro-electromechanical systems. Epoxy microcantilevers have a variety of applications in the manufacture of micro-sensors and micro-actuators. In this paper, the Timoshenko Micro cantilever was statically and dynamically analyzed using the finite element method. First, all boundary conditions and initial conditions governing micro cantilevers were considered. The effect of size on the deflection, angle of rotation, natural frequencies, and mode shapes were then analyzed and evaluated under different frequencies. It was observed that an increased micro cantilever thickness reduces the deflection, rotation, and resonant frequency. A good agreement was observed between our results and those obtained by the couple stress theory, the classical theory, and the strain gradient elasticity theory.

Keywords: microcantilever, microsensor; epoxy, dynamic behavior, static behavior, finite element method

Procedia PDF Downloads 416
23515 Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression

Authors: Zhengyi Kong, Xueqing Wang, Quang-Viet Vu

Abstract:

In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression.

Keywords: hot-finished, elliptical hollow section, uniaxial eccentric compression, finite element method

Procedia PDF Downloads 138
23514 Evaluation of Dynamic Behavior of a Rotor-Bearing System in Operating Conditions

Authors: Mohammad Hadi Jalali, Behrooz Shahriari, Mostafa Ghayour, Saeed Ziaei-Rad, Shahram Yousefi

Abstract:

Most flexible rotors can be considered as beam-like structures. In many cases, rotors are modeled as one-dimensional bodies, made basically of beam-like shafts with rigid bodies attached to them. This approach is typical of rotor dynamics, both analytical and numerical, and several rotor dynamic codes, based on the finite element method, follow this trend. In this paper, a finite element model based on Timoshenko beam elements is utilized to analyze the lateral dynamic behavior of a certain rotor-bearing system in operating conditions.

Keywords: finite element method, Timoshenko beam elements, operational deflection shape, unbalance response

Procedia PDF Downloads 427
23513 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid

Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis

Abstract:

This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.

Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener

Procedia PDF Downloads 78
23512 Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah

Abstract:

Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece.

Keywords: Frictions Stir Welding (FSW), temperature distribution, Finite Element Method (FEM), altair hyperwork

Procedia PDF Downloads 534
23511 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation

Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping

Abstract:

In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.

Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula

Procedia PDF Downloads 500
23510 Acoustic Finite Element Analysis of a Slit Model with Consideration of Air Viscosity

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi Y. Kurosawa, Y. Koike

Abstract:

In very narrow pathways, the speed of sound propagation and the phase of sound waves change due to the air viscosity. We have developed a new Finite Element Method (FEM) that includes the effects of air viscosity for modeling a narrow sound pathway. This method is developed as an extension of the existing FEM for porous sound-absorbing materials. The numerical calculation results for several three-dimensional slit models using the proposed FEM are validated against existing calculation methods.

Keywords: simulation, FEM, air viscosity, slit

Procedia PDF Downloads 369
23509 Optimization of Three-Layer Corrugated Metal Gasket by Using Finite Element Method

Authors: I Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

In this study, we proposed a three-layer metal gasket with Al, Cu, and SUS304 as the material, respectively. A finite element method was employed to develop simulation solution and design of experiment (DOE). Taguchi method was used to analysis the effect of each parameter design and predicts optimal design of new 25A-size three layer corrugated metal gasket. The L18 orthogonal array of Taguchi method was applied to design experiment matrix for eight factors with three levels. Based on elastic mode and plastic mode, optimum design gasket is gasket with core metal SUS304, surface layer aluminum, p1 = 4.5 mm, p2 = 4.5 mm, p3 = 4 mm, Tg = 1.2 mm, R = 3.5 mm, h = 0.4 mm and Ts = 0.3 mm.

Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation

Procedia PDF Downloads 315
23508 Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach

Authors: Djamel Remache, Serge Dos Santos, Michael Cliez, Michel Gratton, Patrick Chabrand, Jean-Marie Rossi, Jean-Louis Milan

Abstract:

Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results.

Keywords: mechanical skin tissue behavior, uniaxial tensile test, finite element analysis, inverse optimization approach

Procedia PDF Downloads 408
23507 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials

Authors: S. Bennoud, M. Zergoug

Abstract:

The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.

Keywords: eddy current, finite element method, non destructive testing, numerical simulations

Procedia PDF Downloads 443
23506 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation

Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun

Abstract:

The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.

Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence

Procedia PDF Downloads 332
23505 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran

Abstract:

In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 232
23504 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

Authors: Aymen Laadhari

Abstract:

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Keywords: finite element method, level set, Newton, membrane

Procedia PDF Downloads 330
23503 A Guide for Using Viscoelasticity in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent the behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell model and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Afterwards, a guide is illustrated to ease using of viscoelasticity tool in ANSYS.

Keywords: ANSYS, generalized Maxwell model, finite element method, Prony series, viscoelasticity, viscoelastic material curve fitting

Procedia PDF Downloads 603
23502 Dynamic Relaxation and Isogeometric Analysis for Finite Deformation Elastic Sheets with Combined Bending and Stretching

Authors: Nikhil Padhye, Ellen Kintz, Dan Dorci

Abstract:

Recent years have seen a rising interest in study and applications of materially uniform thin-structures (plates/shells) subject to finite-bending and stretching deformations. We introduce a well-posed 2D-model involving finite-bending and stretching of thin-structures to approximate the three-dimensional equilibria. Key features of this approach include: Non-Uniform Rational B-Spline (NURBS)-based spatial discretization for finite elements, method of dynamic relaxation to predict stable equilibria, and no a priori kinematic assumption on the deformation fields. The approach is validated against the benchmark problems,and the use of NURBS for spatial discretization facilitates exact spatial representation and computation of curvatures (due to C1-continuity of interpolated displacements) for this higher-order accuracy 2D-model.

Keywords: Isogeometric Analysis, Plates/Shells , Finite Element Methods, Dynamic Relaxation

Procedia PDF Downloads 168
23501 Modeling of Complex Structures: Shear Wall with Openings and Stiffened Shells

Authors: Temami Oussama, Bessais Lakhdar, Hamadi Djamal, Abderrahmani Sifeddine

Abstract:

The analysis of complex structures encourages the engineer to make simplifying assumptions, sometimes attempting the analysis of the whole structure as complex as it is, and it can be done using the finite element method (FEM). In the modeling of complex structures by finite elements, various elements can be used: beam element, membrane element, solid element, plates and shells elements. These elements formulated according to the classical formulation and do not generally share the same nodal degrees of freedom, which complicates the development of a compatible model. The compatibility of the elements with each other is often a difficult problem for modeling complicated structure. This compatibility is necessary to ensure the convergence. To overcome this problem, we have proposed finite elements with a rotational degree of freedom. The study used is based on the strain approach formulation with 2D and 3D formulation with different degrees of freedom at each node. For the comparison and confrontation of results; the finite elements available in ABAQUS/Standard are used.

Keywords: compatibility requirement, complex structures, finite elements, modeling, strain approach

Procedia PDF Downloads 443
23500 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: experimentation, forging, process modeling, strain distribution

Procedia PDF Downloads 201
23499 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations

Authors: K. Noah, F.-S. Lien

Abstract:

In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.

Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows

Procedia PDF Downloads 274
23498 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage

Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais

Abstract:

The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.

Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless

Procedia PDF Downloads 295