Search results for: feed forward network
6778 Development and Performance Evaluation of a Gladiolus Planter in Field for Planting Corms
Authors: T. P. Singh, Vijay Gautam
Abstract:
Gladiolus is an important cash crop and is grown mainly for its elegant spikes. Traditionally the gladiolus corms are planted manually which is very tedious, time consuming and labor intensive operation. So far, there is no planter available for planting of gladiolus corms. With a view to mechanize the planting operation of this horticultural crop, a prototype of 4-row gladiolus planter was developed and its performance was evaluated in-situ condition. Cup-chain type metering device was used to singulate the gladiolus corms while planting. Three levels of corm spacing viz 15, 20 and 25 cm and four levels of forward speed viz 1.0, 1.5, 2.0 and 2.5 km/h was taken as evaluation parameter for the planter. The performance indicators namely corm spacing in each row, coefficient of uniformity, missing index, multiple index, quality of feed index, number of corms per meter length, mechanical damage to the corms etc. were determined during the field test. The data was statistically analyzed using Completely Randomized Design (CRD) for testing the significance of the parameters. The result indicated that planter was able to drop the corms at required nominal spacing with minor variations. The highest deviation from the mean corm spacing was observed as 3.53 cm with maximum coefficient of variation as 13.88%. The highest missing and quality of feed indexes were observed as 6.33% and 97.45% respectively with no multiples. The performance of the planter was observed better at lower forward speed and wider corm spacing. The field capacity of the planter was found as 0.103 ha/h with an observed field efficiency of 76.57%.Keywords: coefficient of uniformity, corm spacing, gladiolus planter, mechanization
Procedia PDF Downloads 2396777 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification
Authors: Malgorzata Schwab, Ashis Kumer Biswas
Abstract:
In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.Keywords: trusted, neural, invertible, API
Procedia PDF Downloads 1496776 Camel Mortalities Due to Accidental Intoxcation with Ionophore
Authors: M. A. Abdelfattah, F. K. Waleed
Abstract:
Anticoccidials were utilized widely in veterinary practice for the avoidance of coccidiosis in poultry and assume a huge job as development promotants in ruminants. Ionophore harming is every now and again happens because of accidental access to medicated feed, errors in feed mixing, incorrect dosage calculation or misuse in non-recommended species. Camels on several farms in Eastern area of Saudi Arabia were accidently fed with a feed pellet containing 13 ppm salinomycin. One hundred and sixty-three camels died with mortality rate of 100%. The poisoning was clinically characterized by restlessness with tail lift to the top, jerk in the muscles of legs and thighs, excessive sweating, frequent setting and standing with body imbalance, lateral and sternal recumbences with the legs stretched back, eye tears with dilated pupil, vomiting of the stomach content, loss of consciousness and death of some of them. Feed analysis indicated the presence of salinomycin in pelleted feed in a range of 13 mg/kg-47 mg/kg. Necropsy findings and histopathological examinations were presented. Regulations and legal implications concerning with sale of contaminated feed in Saudi market are discussed in the light of feed law and by-law. The necessity for an effective implication of regulation concerning application of quality assurance systems based on the principles of Good Manufacturing Practice (GMP) and the application of Hazard Analysis of Critical Control Point (HACCP) during feed production is necessary to avoid feed accident.Keywords: medicated feed, salinomycin, anticoccidial, camel, toxicity
Procedia PDF Downloads 1146775 Effect of Sweet Potato (Ipomoea batatas) Leaves on Wheat Offal Replacement for Chicks Feed Production
Authors: C. C. Okafor, T. M. Ezeh
Abstract:
The effect of addition of sweet potato leaves in replacement of wheat offal in the production of broiler chicks feed was studied. 72 day-old marshal strain chicks were used and brooded for two weeks with a normal commercial feed in Nigeria called top feed and weighed separately at the end of the two weeks, complete randomized design (CRD) was used. The weighed broiler chicks were randomly allocated to four dietary treatments. Each treatment was replicated to twice with eighteen birds per replicate. The four dietary treatment identified as T1, T2, T3 and T4. T1 served as control diet with 21% crude protein content, while T2 was prepared with Enzyme and in T3 and T4, wheat offal was replaced with sweet potato leaves and in T4 with inclusion of enzyme. Growth performance was studied using the following daily feed intake, daily weight gain and feed efficiency. The result in daily weight gain showed that chicks fed with T2 feed had the highest weight gain (93.75) while chicks fed with T3 had the least weight gain of (34.5 gm). In daily feed intake chicks fed with T4 fed more (53.06 gm) than chicks fed with T2 (51.08 gm). In feed efficiency T3 had the highest value of 30% while the T2 had the least efficiency of 22%. There was no significant difference (P≥ 0.05) in all the three parameter tested. Sweet potato leaves can replace wheat offal in broiler feed production without any adverse effect on the growth performance.Keywords: broiler, diet, dietary, potato leaves, wheat offal
Procedia PDF Downloads 5316774 The Effect of Fermented Organic Feed into Nutritive Contents of Kampong Chicken Meat
Authors: Wahyu Widodo, Imbang Dwi Rahayu, Adi Sutanto
Abstract:
The purpose of this research was to analyze the effect of the fermented organic feed to dry matter, ash, organic matter, protein, fat and crude fiber contents of kampong chicken meat. The research had conducted at January until June, 2016. One hundreds chickens were used in this research. Experimental method and completely randomized design were used to support this research. We had 4 treatment namely P0: organic feed without fermentation, P1: Organic feed with fermented rice bran, P2: Organic feed with fermented corn, P3: Organic feed with fermented rice bran and corn with 5 replication. The conclusion was the treatment had not a significant effect in the dry matter, ash, organic matter and protein contents of chicken meat. On the other hand, it had a significant effect in the fat and crude fiber contents of chicken meat.Keywords: corn, fermented organic feed, nutritive contents, rice bran
Procedia PDF Downloads 3166773 Concrete Mix Design Using Neural Network
Authors: Rama Shanker, Anil Kumar Sachan
Abstract:
Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.Keywords: aggregate proportions, artificial neural network, concrete grade, concrete mix design
Procedia PDF Downloads 3906772 Effects of Moringa oleifera Leaf Powder on the Feed Intake and Average Weight of Pullets
Authors: Cajethan U. Ugwuoke, Hyginus O. Omeje, Emmanuel C. Osinem
Abstract:
The study was carried out to determine the effects of Moringa oleifera leaf powder additive on the feed intake and average weight of pullets. A completely Randomized Design (CRD) was adopted for the study. On the procedure of the experiment, 240 chicks were randomly selected from 252 Isa Brown day-old chicks. The chicks were equally randomly allotted to 12 pens with 20 chicks each. The pens were randomly assigned to four different treatment groups with three replicates each. T1 was fed with control feed while T2, T3, and T4 were fed with 2.5%, 5% and 7.5% Moringa oleifera leaf powder fortified feed respectively. The chicks were fed with uniform feed up to week four. From week five, experimental feeds were given to the pullet up to 20 weeks of age. The birds were placed on the same treatment conditions except different experimental feeds given to different groups. Data on the feed intake were collected daily while the average weight of the pullets was collected weekly using weighing scale. Data collected were analyzed using mean, bar charts and Analysis of Variance. The layers fed with control feed consumed the highest amount of feed in most of the weeks under study. The average weights of all the treatment groups were equal from week 1 to week 4. Little variation in average weight started in week 5 with T2 topping the groups. However, there was no statistically significant difference (p>0.05) in the feed intake and average weight of layers fed with different inclusion rates of Moringa oleifera leaf powder in feeds.Keywords: average weight, feed intake, Moringa oleifera, pullets
Procedia PDF Downloads 1926771 Recovery of Iodide Ion from TFT-LCD Wastewater by Forward Osmosis
Authors: Yu-Ting Chen, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray
Abstract:
Forward osmosis (FO) is a crucial technology with low operating pressure and cost for water reuse and reclamation. In Taiwan, with the advance of science and technology, thin film transistor liquid crystal displays (TFT-LCD) based industries are growing exponentially. In the optoelectronic industry wastewater, the iodide is one of the valuable element; it is also used in the medical industry. In this study, it was intended to concentrate iodide by utilizing FO system and can be reused for TFT-LCD production. Cellulose triacetate (CTA) membranes were used for all these FO experiments, and potassium iodide solution was used as the feed solution. It has been found that EDTA-2Na as draw solution at pH 8 produced high water flux and minimized salt leakage. The result also demonstrated that EDTA-2Na of concentration 0.6M could achieve the highest water flux (6.69L/m2 h). Additionally, from the recovered iodide ion from pH 3-8, the I- species was found to be more than 99%, whereas I2 was measured to be less than 1%. When potassium iodide solution was used from low to high concentration (1000 ppm to 10000 ppm), the iodide rejection was found to be than more 90%. Since, CTA membrane is negatively charged and I- is anionic in nature, so it will from electrostatic repulsion and hence there will be higher rejection. The overall performance demonstrates that recovery of concentrated iodide using FO system is a promising technology.Keywords: draw solution, EDTA-2Na, forward osmosis, potassium iodide
Procedia PDF Downloads 3676770 The Classification Accuracy of Finance Data through Holder Functions
Authors: Yeliz Karaca, Carlo Cattani
Abstract:
This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).Keywords: artificial neural networks, finance data, Holder regularity, multifractals
Procedia PDF Downloads 2476769 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: acoustic features, autonomous robots, feature extraction, terrain classification
Procedia PDF Downloads 3706768 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 3606767 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor
Authors: Yash Jain
Abstract:
The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier
Procedia PDF Downloads 1636766 Laying Hens' Feed Fortified with Pectin, Xanthan Gum and Guar Gum Aims to Reduce the Cholesterol in Muscle and Egg Yolk
Authors: Novia Dwi Prabandari, Diah Ayu Asmarani
Abstract:
Soluble fiber can accelerate the metabolism of cholesterol. Pectin and gum has been used in the form of substance additive for material stabilizer and emulsifier. Pectin supplementation in laying hens can decimate the cholesterol content in egg yolk and muscle. Therefore, this laying hens’ feed is regular feed chickens enriched with soluble fiber (Pectin, Xanthan gum, and Guar gum) to produce eggs and muscle with lower cholesterol than usual.The ingredients are mixed in the ratio of concentrate 45%, corn flour 25%, soybean meal 20%, and extract of soluble fiber 10%. Once all the ingredients are mixed and then evaporated with temperature < 80 °C. Then put in the grinding machine resulting in a circular shape with holes 2-3 mm in diameter, after it dried up the water content in the feed is less than 14%. Eggs from laying hen with soluble fiber fortification feed intake will have lower cholesterol levels in eggs than regular feed. So even with the cholesterol content in the muscle, it is because chicken feed fortified with soluble fiber will accelerate the metabolism of cholesterol and cause cholesterol deposits in the chicken less. The use of this kind of laying hens feed is produce eggs with high protein content can be consumed more for people who have hypercholesterolemia.Keywords: pectin, xanthan gum, guar gum, laying hen, cholesterol
Procedia PDF Downloads 4446765 Effect of Feed Rate on Grinding Circuits and Cyclone Efficiency
Authors: Patel Himeshkumar Ashokbhai, Suchit Sharma, Arvind Kumar Garg
Abstract:
The purpose of this paper is to study the effect of change in feed rate on grinding circuit and cyclone efficiency in case of lead-zinc ore. The following experiments and analysis were conducted on beneficiation circuit of Sindesar Khurd (SK) mines under Hindustan Zinc Ltd. subsidiary of Vedanta Group of Companies, a leading producer of lead-Zinc, silver and cadmium (as by products) in India. Feed rate is an important variable in beneficiation circuit operation. Optimizing feed rate is indispensable for any grinding circuit and directly effects cyclone efficiency. The size analysis of ore in grinding circuit along with cyclone efficiency on varying feed rates establishes their interdependence. Feed rate determines retention time ore gets within grinding circuit. Retention time in turn determines degree of liberation of mineral. Inadequate liberation causes decreased circuit efficiency. In this paper we have studied the effect of varying feed rate on (1) D80 particle size of different sections of different streams of grinding circuit (2) Re-circulating load (3) Cyclone efficiency. As a conclusion, this study gives some clues to operate grinding circuits and hydro-cyclones in more efficient way regarding beneficiation of Lead-zinc ore.Keywords: cyclone efficiency, feed rate, grinding circuit, re-circulating load
Procedia PDF Downloads 3986764 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network
Authors: Amit Verma, Pardeep Kaur
Abstract:
In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval
Procedia PDF Downloads 3796763 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4826762 Recovery of Draw Solution in Forward Osmosis by Direct Contact Membrane Distillation
Authors: Su-Thing Ho, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray
Abstract:
Forward osmosis (FO) is an emerging technology for direct and indirect potable water reuse application. However, successful implementation of FO is still hindered by the lack of draw solution recovery with high efficiency. Membrane distillation (MD) is a thermal separation process by using hydrophobic microporous membrane that is kept in sandwich mode between warm feed stream and cold permeate stream. Typically, temperature difference is the driving force of MD which attributed by the partial vapor pressure difference across the membrane. In this study, the direct contact membrane distillation (DCMD) system was used to recover diluted draw solution of FO. Na3PO4 at pH 9 and EDTA-2Na at pH 8 were used as the feed solution for MD since it produces high water flux and minimized salt leakage in FO process. At high pH, trivalent and tetravalent ions are much easier to remain at draw solution side in FO process. The result demonstrated that PTFE with pore size of 1 μm could achieve the highest water flux (12.02 L/m2h), followed by PTFE 0.45 μm (10.05 L/m2h), PTFE 0.1 μm (7.38 L/m2h) and then PP (7.17 L/m2h) while using 0.1 M Na3PO4 draw solute. The concentration of phosphate and conductivity in the PTFE (0.45 μm) permeate were low as 1.05 mg/L and 2.89 μm/cm respectively. Although PTFE with the pore size of 1 μm could obtain the highest water flux, but the concentration of phosphate in permeate was higher than other kinds of MD membranes. This study indicated that four kinds of MD membranes performed well and PTFE with the pore size of 0.45 μm was the best among tested membranes to achieve high water flux and high rejection of phosphate (99.99%) in recovery of diluted draw solution. Besides that, the results demonstrate that it can obtain high water flux and high rejection of phosphate when operated with cross flow velocity of 0.103 m/s with Tfeed of 60 ℃ and Tdistillate of 20 ℃. In addition to that, the result shows that Na3PO4 is more suitable for recovery than EDTA-2Na. Besides that, while recovering the diluted Na3PO4, it can obtain the high purity of permeate water. The overall performance indicates that, the utilization of DCMD is a promising technology to recover the diluted draw solution for FO process.Keywords: membrane distillation, forward osmosis, draw solution, recovery
Procedia PDF Downloads 1856761 The Influence of Feedgas Ratio on the Ethene Hydroformylation using Rh-Co Bimetallic Catalyst Supported by Reduced Graphene Oxide
Authors: Jianli Chang, Yusheng Zhang, Yali Yao, Diane Hildebrandt, Xinying Liu
Abstract:
The influence of feed-gas ratio on the ethene hydroformylation over an Rh-Co bimetallic catalyst supported by reduced graphene oxide (RGO) has been investigated in a tubular fixed bed reactor. Argon was used as balance gas when the feed-gas ratio was changed, which can keep the partial pressure of the other two kinds of gas constant while the ratio of one component in feed-gas was changed. First, the effect of single-component gas ratio on the performance of ethene hydroformylation was studied one by one (H₂, C₂H₄ and CO). Then an optimized ratio was found to obtain a high selectivity to C₃ oxygenates. The results showed that: (1) 0.5%Rh-20%Co/RGO is a promising heterogeneous catalyst for ethene hydroformylation. (2) H₂ and CO have a more significant influence than C₂H₄ on selectivity to oxygenates. (3) A lower H₂ ratio and a higher CO ratio in feed-gas can lead to a higher selectivity to oxygenates. (4) The highest selectivity to oxygenates, 61.70%, was obtained at the feed-gas ratio CO: C₂H₄: H₂ = 4: 2: 1.Keywords: ethene hydroformylation, reduced graphene oxide, rhodium cobalt bimetallic catalyst, the effect of feed-gas ratio
Procedia PDF Downloads 1646760 The Effects of Production, Transportation and Storage Conditions on Mold Growth in Compound Feeds
Authors: N. Cetinkaya
Abstract:
The objective of the present study is to determine the critical control points during the production, transportation and storage conditions of compound feeds to be used in the Hazard Analysis Critical Control Point (HACCP) feed safety management system. A total of 40 feed samples were taken after 20 and 40 days of storage periods from the 10 dairy and 10 beef cattle farms following the transportation of the compound feeds from the factory. In addition, before transporting the feeds from factory immediately after production of dairy and beef cattle compound feeds, 10 from each total 20 samples were taken as 0 day. In all feed samples, chemical composition and total aflatoxin levels were determined. The aflatoxin levels in all feed samples with the exception of 2 dairy cattle feeds were below the maximum acceptable level. With the increase in storage period in dairy feeds, the aflatoxin levels were increased to 4.96 ppb only in a BS8 dairy farm. This value is below the maximum permissible level (10 ppb) in beef cattle feed. The aflatoxin levels of dairy feed samples taken after production varied between 0.44 and 2.01 ppb. Aflatoxin levels were found to be between 0.89 and 3.01 ppb in dairy cattle feeds taken on the 20th day of storage at 10 dairy cattle farm. On the 40th day, feed aflatoxin levels in the same dairy cattle farm were found between 1.12 and 7.83 ppb. The aflatoxin levels were increased to 7.83 and 6.31 ppb in 2 dairy farms, after a storage period of 40 days. These obtained aflatoxin values are above the maximum permissible level in dairy cattle feeds. The 40 days storage in pellet form in the HACCP feed safety management system can be considered as a critical control point.Keywords: aflatoxin, beef cattle feed, compound feed, dairy cattle feed, HACCP
Procedia PDF Downloads 4006759 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4506758 The Use of the Phytase in Aquaculture, Its Zootechnical Interests and the Possibilities of Incorporation in the Aquafeed
Authors: Niang Mamadou Sileye
Abstract:
The study turns on the use of the phytase in aquaculture, its zootechnical interests and the possibilities of incorporation in the feed. The goal is to reduce the waste in phosphorus linked to the feeding of fishes, without any loss of zootechnical performances and with a decrease of feed costs. We have studied the literature in order to evaluate the raw materials (total phosphorus, phytate and available phosphorus) used by a company to manufacture feed for rainbow trout; to determine the phosphorus requirements for aquaculture species; to determine the requirements of phosphorus for aquaculture species, to determine the sings of lack of phosphorus for fishes; to study the antagonism between the phosphorus and the calcium and to study also the different forms of waste for the rainbow trout. The results found in the bibliography enable us test several Hypothesis of feed formulation for rainbow trout with different raw materials. This simulation and the calculation for wastes allowed to validate two formulation of feed: a control feed (0.5% of monocalcique phosphate) and a trial feed (supplementation with 0.002% of phytase Ronozyme PL and without inorganic phosphate). The feeds have been produced and sent to a experimental structure (agricultural college of Brehoulou).The result of the formulation give a decrease of the phosphorus waste of 28% for the trial feed compared to the feed. The supplementation enables a gain of 2.3 euro per ton. The partial results of the current test show no significant difference yet for the zootechnical parameters (growth rate, mortality, weight gain and obvious conversion rate) between control feed and the trial one. The waste measures do not show either significant difference between the control feed and the trial one, but however, the average difference would to decrease the wastes of 35.6% thanks to the use of phytase.Keywords: phosphorus, phytic acid, phytase, need, digestibility, formulation, food, waste, rainbow trout
Procedia PDF Downloads 996757 Nutritional Evaluation of Seseame Seed Husk as a Source of Fibre in the Diets of Broiler Chickens
Authors: Maidala A., Bizi A. G., Olaoyo T. G., Lawan Amaza B. I., Makinde O. J., Sudik S. D.
Abstract:
This study was aimed at evaluating the effects of full or partial replacement of wheat offal by dry Sesame Seed Husk (SSH) on the performance of broiler chickens. One-day-old chicks (n = 120) were randomly allotted to five treatments, each replicated four times. A replicate comprised of eight chicks each in a Completely Randomized Design (CRD). SSH was included at 0, 25, 50, 75, and 100%, respectively. Results showed that there were no significant differences in the Daily feed intake (76.03-88.74), Daily weight gain (35.53-37.66), Feed conversion ratio (2.31-3.21) and Carcass characteristics. The feed cost is reduced as you increase the levels of SSH, and the feed cost N/kg gain was highest in the wheat offal diet and lowest at 100% SSH. It can be concluded that higher levels of up to 100% SSH can be incorporated into broiler rations without deleterious effects on the performance of broilers and concomitant reduction in feed cost.Keywords: SSH, broilers, growth performance, economics of production, hematology, serum biochemistry
Procedia PDF Downloads 136756 Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant
Authors: Khomkrit Mongkhuntod, Chatchawal Chaichana, Atipoang Nuntaphan
Abstract:
Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision.Keywords: feed water heater, power plant efficiency, plant heat rate, thermal efficiency analysis
Procedia PDF Downloads 3696755 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2836754 Gas Network Noncooperative Game
Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos
Abstract:
The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition
Procedia PDF Downloads 1536753 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water
Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta
Abstract:
The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute
Procedia PDF Downloads 1196752 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 3546751 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming
Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi
Abstract:
Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.Keywords: Gas production, hydrate, process integration, steam reforming
Procedia PDF Downloads 1846750 Effect in Animal Nutrition of Genetical Modified Plant(GM)
Authors: Abdullah Özbilgin, Oguzhan Kahraman, Mustafa Selçuk Alataş
Abstract:
Plant breeders have made and will continue to make important contributions toward meeting the need for more and better feed and food. The use of new techniques to modify the genetic makeup of plants to improve their properties has led to a new generation of crops, grains and their by-products for feed. Plant breeders have made and will continue to make important contributions toward meeting the need for more and better feed and food. The use of new techniques to modify the genetic makeup of plants to improve their properties has led to a new generation of crops, grains and their by-products for feed. The land area devoted to the cultivation of genetically modified (GM) plants has increased in recent years: in 2012 such plants were grown on over 170 million hectares globally, in 28 different countries, and are at resent used by 17.3 million farmers worldwide. The majority of GM plants are used as feed material for food-producing farm animals. Despite the facts that GM plants have been used as feed for years and a number of feeding studies have proved their safety for animals, they still give rise to emotional public discussion.Keywords: crops, genetical modified plant(GM), plant, safety
Procedia PDF Downloads 5666749 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 199