Search results for: fault detection and recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5605

Search results for: fault detection and recovery

5545 Performing Diagnosis in Building with Partially Valid Heterogeneous Tests

Authors: Houda Najeh, Mahendra Pratap Singh, Stéphane Ploix, Antoine Caucheteux, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology.

Keywords: heterogeneous tests, validity, building system, sensor grids, sensor fault, diagnosis, fault detection and isolation

Procedia PDF Downloads 295
5544 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction

Authors: Somia Bouzid, Messaoud Ramdani

Abstract:

The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.

Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network

Procedia PDF Downloads 390
5543 Neighbor Caring Environment System (NCE) Using Parallel Replication Mechanism

Authors: Ahmad Shukri Mohd Noor, Emma Ahmad Sirajudin, Rabiei Mamat

Abstract:

Pertaining to a particular Marine interest, the process of data sampling could take years before a study can be concluded. Therefore, the need for a robust backup system for the data is invariably implicit. In recent advancement of Marine applications, more functionalities and tools are integrated to assist the work of the researchers. It is anticipated that this modality will continue as research scope widens and intensifies and at the same to follow suit with current technologies and lifestyles. The convenience to collect and share information these days also applies to the work in Marine research. Therefore, Marine system designers should be aware that high availability is a necessary attribute in Marine repository applications as well as a robust backup system for the data. In this paper, the approach to high availability is related both to hardware and software but the focus is more on software. We consider a NABTIC repository system that is primitively built on a single server and does not have replicated components. First, the system is decomposed into separate modules. The modules are placed on multiple servers to create a distributed system. Redundancy is added by placing the copies of the modules on different servers using Neighbor Caring Environment System(NCES) technique. NCER is utilizing parallel replication components mechanism. A background monitoring is established to check servers’ heartbeats to confirm their aliveness. At the same time, a critical adaptive threshold is maintained to make sure a failure is timely detected using Adaptive Fault Detection (AFD). A confirmed failure will set the recovery mode where a selection process will be done before a fail-over server is instructed. In effect, the Marine repository service is continued as the fail-over masks a recent failure. The performance of the new prototype is tested and is confirmed to be more highly available. Furthermore, the downtime is not noticeable as service is immediately restored automatically. The Marine repository system is said to have achieved fault tolerance.

Keywords: availability, fault detection, replication, fault tolerance, marine application

Procedia PDF Downloads 323
5542 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 408
5541 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 159
5540 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique

Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah

Abstract:

An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.

Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic

Procedia PDF Downloads 490
5539 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis

Authors: Syamala Krishnannair

Abstract:

A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.

Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale

Procedia PDF Downloads 209
5538 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network

Authors: Amel Ourici

Abstract:

An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.

Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network

Procedia PDF Downloads 610
5537 Reconfigurable Consensus Achievement of Multi Agent Systems Subject to Actuator Faults in a Leaderless Architecture

Authors: F. Amirarfaei, K. Khorasani

Abstract:

In this paper, reconfigurable consensus achievement of a team of agents with marginally stable linear dynamics and single input channel has been considered. The control algorithm is based on a first order linear protocol. After occurrence of a LOE fault in one of the actuators, using the imperfect information of the effectiveness of the actuators from fault detection and identification module, the control gain is redesigned in a way to still reach consensus. The idea is based on the modeling of change in effectiveness as change of Laplacian matrix. Then as special cases of this class of systems, a team of single integrators as well as double integrators are considered and their behavior subject to a LOE fault is considered. The well-known relative measurements consensus protocol is applied to a leaderless team of single integrator as well as double integrator systems, and Gersgorin disk theorem is employed to determine whether fault occurrence has an effect on system stability and team consensus achievement or not. The analyses show that loss of effectiveness fault in actuator(s) of integrator systems affects neither system stability nor consensus achievement.

Keywords: multi-agent system, actuator fault, stability analysis, consensus achievement

Procedia PDF Downloads 337
5536 Analysis of Vibratory Signals Based on Local Mean Decomposition (LMD) for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Medkour Mihoub, Slimane Mekhilef

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally nonstationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA), and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, rolling element bearing, local mean decomposition, condition monitoring

Procedia PDF Downloads 390
5535 Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault

Authors: Yingxin Hui

Abstract:

Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage.

Keywords: bridge engineering, seismic response feature, across faults, rupture directivity effect, fling step

Procedia PDF Downloads 433
5534 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks

Authors: Ather Saeed, Arif Khan, Jeffrey Gosper

Abstract:

Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.

Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering

Procedia PDF Downloads 77
5533 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 500
5532 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.

Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation

Procedia PDF Downloads 447
5531 Application of Neural Petri Net to Electric Control System Fault Diagnosis

Authors: Sadiq J. Abou-Loukh

Abstract:

The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.

Keywords: petri net, neural petri net, electric control system, fault diagnosis

Procedia PDF Downloads 477
5530 Application of the Seismic Reflection Survey to an Active Fault Imaging

Authors: Nomin-Erdene Erdenetsogt, Tseedulam Khuut, Batsaikhan Tserenpil, Bayarsaikhan Enkhee

Abstract:

As the framework of 60 years of development of Astronomical and Geophysical science in modern Mongolia, various geophysical methods (electrical tomography, ground-penetrating radar, and high-resolution reflection seismic profiles) were used to image an active fault in-depth range between few decimeters to few tens meters. An active fault was fractured by an earthquake magnitude 7.6 during 1967. After geophysical investigations, trench excavations were done at the sites to expose the fault surfaces. The complex geophysical survey in the Mogod fault, Bulgan region of central Mongolia shows an interpretable reflection arrivals range of < 5 m to 50 m with the potential for increased resolution. Reflection profiles were used to help interpret the significance of neotectonic surface deformation at earthquake active fault. The interpreted profiles show a range of shallow fault structures and provide subsurface evidence with support of paleoseismologic trenching photos, electrical surveys.

Keywords: Mogod fault, geophysics, seismic processing, seismic reflection survey

Procedia PDF Downloads 129
5529 Robust Diagnosis Efficiency by Bond-Graph Approach

Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi

Abstract:

This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.

Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR

Procedia PDF Downloads 306
5528 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 116
5527 The Impact of Level and Consequence of Service Co-Recovery on Post-Recovery Satisfaction and Repurchase Intent

Authors: Chia-Ching Tsai

Abstract:

In service delivery, interpersonal interaction is the key to customer satisfaction, and apparently, the factor of human is critical in service delivery. Besides, customers quite care about the consequences of co-recovery. Thus, this research focuses on service failure caused by other customers and uses a 2x2 factorial design to investigate the impact of consequence and level of service co-recovery on post-recovery satisfaction and repurchase intent. 150 undergraduates were recruited as participants, and assigned to one of the four cells randomly. Every participant was requested to read the scenario and then rated the post-recovery satisfaction and repurchase intent. The results show that under the condition of failed co-recovery, level of co-recovery has no effect on post-recovery satisfaction, while under the condition of successful co-recovery, high-level co-recovery causes significantly higher post-recovery satisfaction than low-level co-recovery. Moreover, post-recovery satisfaction has significantly positive impact on repurchase intent. In the system of service delivery, customers interact with other customers frequently. Therefore, comparing with the literature, this research focuses on the service failure caused by other customers. This research also supplies a better understanding of customers’ view on consequences of different levels of co-recovery, which is helpful for the practitioners to make use of co-recovery.

Keywords: service failure, service co-recovery, consequence of co-recovery, level of co-recovery, post-recovery satisfaction, repurchase intent

Procedia PDF Downloads 421
5526 Influence of the Line Parameters in Transmission Line Fault Location

Authors: Marian Dragomir, Alin Dragomir

Abstract:

In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.

Keywords: estimation algorithms, fault location, line parameters, simulation tool

Procedia PDF Downloads 357
5525 Pilot Directional Protection Scheme Using Wireless Communication

Authors: Nitish Sharma, G. G. Karady

Abstract:

This paper presents a scheme for the protection of loop system from all type of faults using the direction of fault current. The presence of distributed generation in today’s system increases the complexity of fault detection as the power flow is bidirectional. Hence, protection scheme specific to this purpose needs to be developed. This paper shows a fast protection scheme using communication which can be fiber optic or wireless. In this paper, the possibility of wireless communication for protection is studied to exchange the information between the relays. The negative sequence and positive sequence directional elements are used to determine the direction of fault current. A PSCAD simulation is presented and validated using commercial SEL relays.

Keywords: smart grid protection, pilot protection, power system simulation, wireless communication

Procedia PDF Downloads 636
5524 Fault Tolerant and Testable Designs of Reversible Sequential Building Blocks

Authors: Vishal Pareek, Shubham Gupta, Sushil Chandra Jain

Abstract:

With increasing high-speed computation demand the power consumption, heat dissipation and chip size issues are posing challenges for logic design with conventional technologies. Recovery of bit loss and bit errors is other issues that require reversibility and fault tolerance in the computation. The reversible computing is emerging as an alternative to conventional technologies to overcome the above problems and helpful in a diverse area such as low-power design, nanotechnology, quantum computing. Bit loss issue can be solved through unique input-output mapping which require reversibility and bit error issue require the capability of fault tolerance in design. In order to incorporate reversibility a number of combinational reversible logic based circuits have been developed. However, very few sequential reversible circuits have been reported in the literature. To make the circuit fault tolerant, a number of fault model and test approaches have been proposed for reversible logic. In this paper, we have attempted to incorporate fault tolerance in sequential reversible building blocks such as D flip-flop, T flip-flop, JK flip-flop, R-S flip-flop, Master-Slave D flip-flop, and double edge triggered D flip-flop by making them parity preserving. The importance of this proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault and single bit fault. In our opinion our design of reversible building blocks is superior to existing designs in term of quantum cost, hardware complexity, constant input, garbage output, number of gates and design of online testable D flip-flop have been proposed for the first time. We hope our work can be extended for building complex reversible sequential circuits.

Keywords: parity preserving gate, quantum computing, fault tolerance, flip-flop, sequential reversible logic

Procedia PDF Downloads 547
5523 A Data-Mining Model for Protection of FACTS-Based Transmission Line

Authors: Ashok Kalagura

Abstract:

This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.

Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC

Procedia PDF Downloads 424
5522 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals

Procedia PDF Downloads 380
5521 Autonomic Recovery Plan with Server Virtualization

Authors: S. Hameed, S. Anwer, M. Saad, M. Saady

Abstract:

For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone.

Keywords: autonomous intelligence, disaster recovery, cloud computing, server virtualization

Procedia PDF Downloads 162
5520 Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings

Authors: Mehmet Akköse

Abstract:

In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other.

Keywords: near-fault ground motion, pounding analysis, RC buildings, SAP2000

Procedia PDF Downloads 263
5519 Shopping Cart System: Load Balancing and Fault Tolerance in the OSGi Service Platform

Authors: Irina Astrova, Arne Koschel, Thole Schneider, Johannes Westhuis, Jürgen Westerkamp

Abstract:

The main purpose of this paper was to find a simple solution for load balancing and fault tolerance in OSGi. The challenge was to implement a highly available web application such as a shopping cart system with load balancing and fault tolerance, without having to change the core of OSGi.

Keywords: fault tolerance, load balancing, OSGi, shopping cart system

Procedia PDF Downloads 421
5518 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene

Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen

Abstract:

A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.

Keywords: CdS quantum dots, modification, detection, naphthalene

Procedia PDF Downloads 493
5517 Dynamic Fault Tree Analysis of Dynamic Positioning System through Monte Carlo Approach

Authors: A. S. Cheliyan, S. K. Bhattacharyya

Abstract:

Dynamic Positioning System (DPS) is employed in marine vessels of the offshore oil and gas industry. It is a computer controlled system to automatically maintain a ship’s position and heading by using its own thrusters. Reliability assessment of the same can be analyzed through conventional fault tree. However, the complex behaviour like sequence failure, redundancy management and priority of failing of events cannot be analyzed by the conventional fault trees. The Dynamic Fault Tree (DFT) addresses these shortcomings of conventional Fault Tree by defining additional gates called dynamic gates. Monte Carlo based simulation approach has been adopted for the dynamic gates. This method of realistic modeling of DPS gives meaningful insight into the system reliability and the ability to improve the same.

Keywords: dynamic positioning system, dynamic fault tree, Monte Carlo simulation, reliability assessment

Procedia PDF Downloads 775
5516 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, fault location, underground cable, wavelet transform

Procedia PDF Downloads 515