Search results for: environmental aging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7367

Search results for: environmental aging

7307 Study of Age-Dependent Changes of Peripheral Blood Leukocytes Apoptotic Properties

Authors: Anahit Hakobjanyan, Zdenka Navratilova, Gabriela Strakova, Martin Petrek

Abstract:

Aging has a suppressive influence on human immune cells. Apoptosis may play important role in age-dependent immunosuppression and lymphopenia. Prevention of apoptosis may be promoted by BCL2-dependent and BCL2-independent manner. BCL2 is an antiapoptotic factor that has an antioxidative role by locating the glutathione at mitochondria and repressing oxidative stress. STAT3 may suppress apoptosis in BCL2-independent manner and promote cell survival blocking cytochrome-c release and reducing ROS production. The aim of our study was to estimate the influence of aging on BCL2-dependent and BCL2-independent prevention of apoptosis via measurement of BCL2 and STAT3 mRNAs expressions. The study was done on Armenian population (2 groups: 37 healthy young (mean age±SE; min/max age, male/female: 37.6±1.1; 20/54, 15/22), 28 healthy aged (66.7±1.5; 57/85, 12/16)). mRNA expression in peripheral blood leukocytes (PBL) was determined by RT-PCR using PSMB2 as the reference gene. Statistical analysis was done with Graph-Pad Prism 5; P < 0.05 considered as significant. The expression of BCL2 mRNA was lower in aged group (0.199) compared with young ones (0.643)(p < 0.01). Decrease expression was also recorded for female and male subgroups (p < 0.01). The expression level of STAT3 mRNA was increased (young, 0.228; aged, 0.428) (p < 0.05) during aging (in the whole age group and male/female subgroups). Decreased level of BCL2 mRNA may indicate about the suppression of BCL2-dependent prevention of apoptosis during aging in peripheral blood leukocytes. At the same time increased the level of STAT3 may suggest about activation of BCL2-independent prevention of apoptosis during aging.

Keywords: BCL2, STAT3, aging, apoptosis

Procedia PDF Downloads 325
7306 Development of A MG-Gd-Er-Zn-Zr Alloy with Ultrahigh Strength and Ductility via Extrusion, Pre-Deformation, and Two-Stage Aging

Authors: Linyue Jia, Wenbo Du, Zhaohui Wang, Ke Liu, Shubo Li

Abstract:

Due to the great potential for weight reduction in aerospace and automotive industries, magnesium-rare earth (Mg-RE) based alloys with outstanding mechanical performance have been widely investigated for decades. However, magnesium alloys are still restricted in engineering applications because of their lower strength and ductility. Hence, there are large spaces and challenges in achieving high-performance Mg alloys. This work reports an Mg-Gd-Er-Zn-Zr alloy with ultrahigh strength and good ductility developed via hot extrusion, pre-deformation, and two-stage aging. The extruded alloy comprises fine dynamically recrystallized (DRXed) grains and coarse worked grains with a large aspect ratio. Pre-deformation has little effect on the microstructure and macro-texture and serves primarily to introduce a large number of dislocations, resulting in strain hardening and higher precipitation strengthening during subsequent aging due to more nucleation sites. As a result, the alloy exhibits a yield strength (YS) of 506 MPa, an ultimate tensile strength (UTS) of 549 MPa, and elongation (EL) of 8.2% at room temperature, showing superior strength-ductility balance than the other wrought Mg-RE alloys previously reported. The current study proposes a combination of pre-deformation and two-stage aging to further improve the mechanical properties of wrought Mg alloys for engineering applications.

Keywords: magnesium alloys, mechanical properties, microstructure, pre-deformation, two-stage aging

Procedia PDF Downloads 163
7305 Exploring the Factors That Influence the Choices of Senior on Sporting Goods and Brands: A Case Study of Wufeng District, Taichung City

Authors: Ting Hsiang Chang, Cheng Zuo Tsai

Abstract:

In recent years, sports culture dominated in Taiwan, which spurred the rapid development of the sports industry. More innovative and high-tech sporting goods were developed to provide choices for consumers. Nowadays, Taiwan has gradually entered the aging society where people pay more attention to health promotion, delay of aging and other related issues among senior. However, it is an undeniable fact that moderate exercise is a great help to delay aging. Therefore, how senior select the appropriate sporting goods, including sports shoes, sportswear, sports equipment, and even the sports brands when engaged in various kinds of sports, are explored in this research. Therefore, this study sets the reference indicators by exploring the brands of sporting goods, that senior aged 50-70 choose in a fog peak district, the Taichung City, as the subjects of study by answering a questionnaire. Also, this study offers recommendations in terms of the design, marketing or selling of sporting goods for the senior, and how owners of sports brands or related sports industries should target them.

Keywords: senior, aging, sporting goods, sports brand

Procedia PDF Downloads 199
7304 Static Strain Aging in Ferritic and Austenitic Stainless Steels

Authors: Songul Kurucay, Mustafa Acarer, Harun Sepet

Abstract:

Static strain aging occurs when metallic materials are subjected to deformation and then heat treated at low temperatures such as 150-200oC. Static strain aging occurs in BCC metals and results and increasing in yield and tensile strength and decreasing ductility due to carbon and/or nitrogen atoms locking dislocations. The locked dislocations increase yield and tensile strength. In this study, static strain aging behaviors of ferritic and austenitic stainless steel were investigated. Ferritic stainless steel was prestained at %5, %10 and %15 and then aged at 150oC and 200oC for 30 minutes. Austenitic stainless steel was also prestained at %20 and %30 and then heat treated at 200, 400 and 600oC for 30 minutes. After the heat treatment, the tensile test was performed to determine the effect of prestain and heat treatment on the steels. Hardness measurements and detailed microstructure characterization were also done. While AISI 430 ferritic stainless steel sample which was prestained at 15% and aged at 200oC, showed the highest increasing in the yield strength, AISI 304 austenitic stainless steel which was prestained at 30% and aged at 600oC, has the highest yield strength. Microstructure photographs also support the mechanical test results.

Keywords: austenitic stainless steel, ferritic stainless steel, static strain aging, tensile strength

Procedia PDF Downloads 439
7303 Effects of Aging on Auditory and Visual Recall Abilities

Authors: Rashmi D. G., Aishwarya G., Niharika M. K.

Abstract:

Purpose: Free recall tasks target cognitive and linguistic processes like episodic memory, lexical access and retrieval. Consequently, the free recall paradigm is suitable for assessing memory deterioration caused by aging; this also depends on linguistic factors, including the use of first and second languages and their relative ability. Hence, the present study aimed to determine if aging has an effect on visual and auditory recall abilities. Method: Twenty young adults (mean age: 25.4±0.99) and older adults (mean age: 63.3±3.51) participated in the study. Participants performed a free recall task under two conditions – related and unrelated and two modalities - visual and auditory where they were instructed to recall as many items as possible with no specific order and time limit. Results: Free recall performance was calculated as the mean number of correctly recalled items. Although younger participants recalled a higher number of items, the performance across conditions and modality was variable. Conclusion: In summary, the findings of the present study revealed an age-related decline in the efficiency of episodic memory, which is crucial to remember recent events.

Keywords: recall, episodic memory, aging, modality

Procedia PDF Downloads 94
7302 Exercise and Aging Process Related to Oxidative Stress

Authors: B. Dejanova, S. Petrovska, L. Todorovska, J. Pluncevic, S. Mancevska, V. Antevska, E. Sivevska, I. Karagjozova

Abstract:

Introduction: Aging process is mainly related to endothelial function which may be impaired by oxidative stress (OS). Exercise is known to be beneficial to aging process, which may improve health and prevent appearance of chronic diseases in elderly. The aim of the study was to investigate the OS markers related to exercise. Methods: A number of 80 subjects (healthy volunteers) were examined (38 male and 32 female), divided in 3 age groups: group I ≤ 30 years (n=24); group II – 31-50 years (n=24); group III - ≥ 51 year (n=32). Each group was divided to subgroups of sedentary subjects (SS) and subjects who exercise (SE). Group I: SS (n=11), SE (n=13); group II: SS (n=13), SE (n=10); group III: SS (n=23) SE (n=9). Lipid peroxidation (LP) as a fluorimetric method with thiobarbituric acid was used to estimate OS. Antioxidative status was determined by cell antioxidants such as enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPx) and glucose 6 phosphate (G-6-PD); and by extra cell antioxidants such as glutathione reductase (GR), nitric oxide (NO) and total antioxidant capacity (TAC). Results: Increased values of LP were noticed along the aging process: group I – 3.30±0.3 µmol/L; group II – 3.91±0.2 µmol/L; group III – 3.94±0.8 µmol/L (p<0.05), while no statistical significance was found between male and female subjects. Statistical significance for OS was not found between SS and SE in group I as it was found in group II (p<0.05) and in group III (p<0.01). No statistical significance was found for all cell antioxidants and GR within the groups, while NO and TAC showed lower values in SS compared to SE in II (p<0.05) and in group III (p<0.05). Discussion and conclusion: Aging process showed increased OS which may be either due to impaired function of scavengers of free radicals or due to their enormous production. Well balanced exercise might be one of the factors that keep the integrity of blood vessel endothelium which slows down the aging process. Possible mechanism of exercise beneficial influence is shear stress by upregulation of genes coding for nitric oxide bioavailability. Thus, due to obtained results we may conclude that OS is found to be diminished in the subject groups who perform exercise.

Keywords: oxidative stress, aging process, exercise, endothelial function

Procedia PDF Downloads 386
7301 Seismic Fragility for Sliding Failure of Weir Structure Considering the Process of Concrete Aging

Authors: HoYoung Son, Ki Young Kim, Woo Young Jung

Abstract:

This study investigated the change of weir structure performances when durability of concrete, which is the main material of weir structure, decreased due to their aging by mean of seismic fragility analysis. In the analysis, it was assumed that the elastic modulus of concrete was reduced by 10% in order to account for their aged deterioration. Additionally, the analysis of seismic fragility was based on Monte Carlo Simulation method combined with a 2D nonlinear finite element in ABAQUS platform with the consideration of deterioration of concrete. Finally, the comparison of seismic fragility of model pre- and post-deterioration was made to study the performance of weir. Results show that the probability of failure in moderate damage for deteriorated model was found to be larger than pre-deterioration model when peak ground acceleration (PGA) passed 0.4 g.

Keywords: weir, FEM, concrete, fragility, aging

Procedia PDF Downloads 423
7300 The Effect of Aging of ZnO, AZO, and GZO films on the Microstructure and Photoelectric Property

Authors: Zue-Chin Chang

Abstract:

RF magnetron sputtering is used on the ceramic targets, each of which contains zinc oxide (ZnO), zinc oxide doped with aluminum (AZO) and zinc oxide doped with gallium (GZO). The XRD analysis showed a preferred orientation along the (002) plane for ZnO, AZO, and GZO films. The AZO film had the best electrical properties; it had the lowest resistivity of 6.6 × 10-4 cm, the best sheet resistance of 2.2 × 10-1 Ω/square, and the highest carrier concentration of 4.3 × 1020 cm-3, as compared to the ZnO and GZO films.

Keywords: aging, films, microstructure, photoelectric property

Procedia PDF Downloads 474
7299 Microstructure and Mechanical Properties of A201 Alloys with Additions of Si

Authors: Suzan Abd El Majid, Menachem Bamberger, Alexander Katsman

Abstract:

Two Al-4 wt. % Cu based alloys, A201 and A201+Si were investigated in the as-cast, solution treated and aged conditions. The addition of Si was used to improve the castability of the basic alloy. The all investigated alloys in the as-cast condition contained a eutectic structure along grain boundaries (GBs) with the composition Al-50at. %Cu that was found by HRSEM EDS. Addition of Si refined the grain structure and changed the amount of the eutectic regions, their size and shape. Additionally, the A201+Si microstructure contained Si rods and small amount of Al6Mn4Cu3Fe2Si-phase. Solution treatment (ST) at 550°C for ~ 20 hours resulted in a slight dissolution of the eutectic structure in the A201 alloy while substantial dissolution and change of the eutectic composition was detected in the A201+Si alloy. After ST, the A201alloy contained θ-Al2Cu, Al5Cu2Mn3 and Al9Cu7Mn3(Fe) phases associated to the GBs, while the ST A201+Si alloy contained θ-Al2Cu, Al6Mn4Cu3(Fe,Si) and Si94Mn3Al2Cu phases. Precipitation hardening during aging at 170°C was investigated for both alloys. The microhardness of the ST A201alloy increased during aging and reached the maximum value ~ 140 HV after 2 h of aging. Initial microhardness of the ST A201+Si alloy was distinctly higher than one of the ST A201 alloy, but it decreased during the first hour of aging, then increased and reached the same maximum value ~ 140 HV after ~ 4 h of aging. It was concluded that the Si addition influenced the precipitation sequence and slowed down the age hardening process. The Si induced grain refining and evolution of the eutectic structure during the heat treatments applied are discussed.

Keywords: A201 alloys, castability, microstructure, micro-hardness

Procedia PDF Downloads 289
7298 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 68
7297 Psychological Stress and Accelerated Aging in SCI Patients - A Longitudinal Pilot Feasibility Study

Authors: Simona Capossela, Ramona Schaniel, Singer Franziska, Aquino Fournier Catharine, Daniel Stekhoven, Jivko Stoyanov

Abstract:

A spinal cord injury (SCI) is a traumatic life event that often results in ageing associated health conditions such as muscle mass decline, adipose tissue increase, decline in immune function, frailty, systemic chronic inflammation, and psychological distress and depression. Psychological, oxidative, and metabolic stressors may facilitate accelerated ageing in the SCI population with reduced life expectancy. Research designs using biomarkers of aging and stress are needed to elucidate the role of psychological distress in accelerated aging. The aim of this project is a feasibility pilot study to observe changes in stress biomarkers and correlate them with aging markers in SCI patients during their first rehabilitation (longitudinal cohort study). Biological samples were collected in the SwiSCI (Swiss Spinal Cord Injury Cohort Study) Biobank in Nottwil at 4 weeks±12 days after the injury (T1) and at the end of the first rehabilitation (discharge, T4). The "distress thermometer" is used as a selfassessment tool for psychological distress. Stress biomarkers, as cortisol and protein carbonyl content (PCC), and markers of cellular aging, such as telomere lengths, will be measured. 2 Preliminary results showed that SCI patients (N= 129) are still generally distressed at end of rehabilitation, however we found a statistically significant (p< 0.001) median decrease in distress from 6 (T1) to 5 (T4) during the rehabilitation. In addition, an explorative transcriptomics will be conducted on N=50 SCI patients to compare groups of persons with SCI who have different trajectories of selfreported distress at the beginning and end of the first rehabilitation after the trauma. We identified 4 groups: very high chronic stress (stress thermometer values above 7 at T1 and T4; n=14); transient stress (high to low; n=14), low stress (values below 5 at T1 and T4; n=14), increasing stress (low to high; n=8). The study will attempt to identify and address issues that may occur in relation to the design and conceptualization of future study on stress and aging in the SCI population.

Keywords: stress, aging, spinal cord injury, biomarkers

Procedia PDF Downloads 102
7296 A Crystal Plasticity Approach to Model Dynamic Strain Aging

Authors: Burak Bal, Demircan Canadinc

Abstract:

Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity.

Keywords: crystal plasticity, dynamic strain aging, Hadfield steel, negative strain rate sensitivity

Procedia PDF Downloads 258
7295 Effect of Aging Time and Mass Concentration on the Rheological Behavior of Vase of Dam

Authors: Hammadi Larbi

Abstract:

Water erosion, the main cause of the siltation of a dam, is a natural phenomenon governed by natural physical factors such as aggressiveness, climate change, topography, lithology, and vegetation cover. Currently, a vase from certain dams is released downstream of the dikes during devastation by hydraulic means. The vases are characterized by complex rheological behaviors: rheofluidification, yield stress, plasticity, and thixotropy. In this work, we studied the effect of the aging time of the vase in the dam and the mass concentration of the vase on the flow behavior of a vase from the Fergoug dam located in the Mascara region. In order to test the reproducibility of results, two replicates were performed for most of the experiments. The flow behavior of the vase studied as a function of storage time and mass concentration is analyzed by the Herschel Bulkey model. The increase in the aging time of the vase in the dam causes an increase in the yield stress and the consistency index of the vase. This phenomenon can be explained by the adsorption of the water by the vase and the increase in volume by swelling, which modifies the rheological parameters of the vase. The increase in the mass concentration in the vase leads to an increase in the yield stress and the consistency index as a function of the concentration. This behavior could be explained by interactions between the granules of the vase suspension. On the other hand, the increase in the aging time and the mass concentration of the vase in the dam causes a reduction in the flow index of the vase. The study also showed an exponential decrease in apparent viscosity with the increase in the aging time of the vase in the dam. If a vase is allowed to age long enough for the yield stress to be close to infinity, its apparent viscosity is also close to infinity; then the apparent viscosity also tends towards infinity; this can, for example, subsequently pose problems when dredging dams. For good dam management, it could be then deduced to reduce the dredging time of the dams as much as possible.

Keywords: vase of dam, aging time, rheological behavior, yield stress, apparent viscosity, thixotropy

Procedia PDF Downloads 27
7294 A Thematic Analysis of Aging in Blue Zone Regions: Lessons from Okinawa and the Nicoya Peninsula

Authors: Theresa MacNeil-Kelly

Abstract:

Blue Zones are particular regions of the world with a high prevalence of centenarians who share common characteristics, lifestyles and environments. There are currently only five recognized Blue Zones, two of which include Okinawa, Japan and the Nicoya Peninsula in Costa Rica. Individuals living in these areas tend to have positive outlooks on life, utilize daily movement, rely on strong social support groups, and eat little to no processed foods. The current research sought to further understand how centenarians living in Okinawa and in the Nicoya Peninsula utilize Blue Zone lifestyle elements in their daily living habits. To accomplish this, the author traveled to both Okinawa and the Nicoya Peninsula, Costa Rica, and interviewed several centenarians, paying particular attention to lifestyle choices and their effects on the aging process. Thematic analysis was used to analyze interview responses, and several themes emerged, such as the importance of family, friends, faith/spirituality, mindfulness, nutrition and daily movement as key foundations to aging in healthy and productive ways. Suggestions for ways to implement these habits globally was also discussed.

Keywords: aging, blue zones, centenarians, nicoya peninsula, okinawa

Procedia PDF Downloads 256
7293 Effects of Copper Oxide Doping on Hydrothermal Ageing in Alumina Toughened Zirconia

Authors: Mohamed Abbas, Ramesh Singh

Abstract:

This study investigates the hydrothermal aging behavior of undoped and copper oxide-doped alumina-toughened zirconia (ATZ). The ATZ ceramic composites underwent conventional sintering at temperatures ranging from 1250 to 1500°C with a holding time of 12 minutes. XRD analysis revealed a stable 100% tetragonal phase for conventionally sintered ATZ samples up to 1450°C, even after 100 hours of exposure. At 1500℃, XRD patterns of both undoped and doped ATZ samples showed no phase transformation after up to 3 hours of exposure to superheated steam. Extended exposure, however, resulted in phase transformation beyond 10 hours. CuO-doped ATZ samples initially exhibited lower monoclinic content, gradually increasing with aging. Undoped ATZ demonstrated better-aging resistance, maintaining ~40% monoclinic content after 100 hours. FESEM images post-aging revealed surface roughness changes due to the tetragonal-to-monoclinic phase transformation, with limited nucleation in the largest tetragonal grains. Fracture analysis exhibited macrocracks and microcracks on the transformed surface layer after aging. This study found that 0.2wt% CuO doping did not prevent the low-temperature degradation (LTD) phenomenon at elevated temperatures. Transformation zone depth (TZD) calculations supported the trend observed in the transformed monoclinic phase.

Keywords: alumina toughened zirconia, conventional sintering, copper oxide, hydrothermal ageing

Procedia PDF Downloads 64
7292 The Interrelation of Institutional Care and Successful Aging

Authors: Naphaporn Sapsopha

Abstract:

Aging population has been growing rapidly in Thailand due to several factors – namely, the declining size of the average Thai family, changing family structure, higher survival rates of women, and job migration patterns – there are fewer working-age citizens who are able to care for and support their aging family members. When a family can no longer provide for their elders, the responsibility shifts to the government. Many non-profit institutional care facilities for older adults have already been established, but having such institutions are not enough. In addition to the provisions that a reliable shelter can provide, older adults also need efficient social services, physical wellness, and mental health, all of which are crucial for successful aging. Yet, to date, there is no consensus or a well-accepted definition of what constitutes successful aging. The issue is further complicated by cultural expectations, and the gendered experience of the older adults. These issues need to be better understood to promote effective care and wellness. This qualitative research investigates the relationship between institutional care and successful aging among the institutionalized Thai older adults at a non-profit facility in Bangkok, Thailand. Specifically, it examines: a) How do institutionalized older adults define successful aging?, b) What factors do they believe contribute to successful aging?, and c) Do their beliefs vary by gender? Data was collected using a phenomenological research approach that included focus groups and in-depth interviews using open-ended questions, conducted on 10 institutionalized older adults (5 men and 5 women) ages 60 or over. Interview transcripts were coded and analyzed using grounded theory methodology. The participants aged between 70-91 years old, and they varied in terms of gender, education, occupation, and life background. The results revealed that Thai institutionalized older adults viewed successful aging as a result of multiple interrelated factors: maintaining physical health, good mental and cognitive abilities. Remarkably, the participants identified as successful aging include independence for self-care and financial support, adhering to moral principles and religious practice, seeing the success of their loved ones, and making social contributions to their community. In addition, three primary themes were identified as a coping strategy to age successfully: self-acceptance by being sufficient and satisfied with all aspects of life, preparedness and adaptation for every stage of life, and self-esteem by maintaining their self. These beliefs are shared across gender and age differences. However, participants highlighted the importance of the interrelationship among these attributes similar to the need for a secure environment, the thoughtfulness and social support of institutional care in order to maintain positive attitude and well-being. With highly increased Thai aging population, many of these older adults will find themselves living in the institutional care; therefore, it is important to intensively understand how older adults viewed successful aging, what constituted successful aging and what could be done to promote it. Interventions to enhance successful aging may include meaningful practice and along with an effective coping strategy in order to lead a better quality of life those living in institutional care.

Keywords: institutional care, older adults, self-acceptant, successful aging

Procedia PDF Downloads 310
7291 Microstructure of Virgin and Aged Asphalts by Small-Angle X-Ray Scattering

Authors: Dong Tang, Yongli Zhao

Abstract:

The study of the microstructure of asphalt is of great importance for the analysis of its macroscopic properties. However, the peculiarities of the chemical composition of the asphalt itself and the limitations of existing direct imaging techniques have caused researchers to face many obstacles in studying the microstructure of asphalt. The advantage of small-angle X-ray scattering (SAXS) is that it allows quantitative determination of the internal structure of opaque materials and is suitable for analyzing the microstructure of materials. Therefore, the SAXS technique was used to study the evolution of microstructures on the nanoscale during asphalt aging. And the reasons for the change in scattering contrast during asphalt aging were also explained with the help of Fourier transform infrared spectroscopy (FTIR). SAXS experimental results show that the SAXS curves of asphalt are similar to the scattering curves of scattering objects with two-level structures. The Porod curve for asphalt shows that there is no obvious interface between the micelles and the surrounding mediums, and there is only a fluctuation of the hot electron density between the two. The Beaucage model fit SAXS patterns shows that the scattering coefficient P of the asphaltene clusters as well as the size of the micelles, gradually increase with the aging of the asphalt. Furthermore, aggregation exists between the micelles of asphalt and becomes more pronounced with increasing aging. During asphalt aging, the electron density difference between the micelles and the surrounding mediums gradually increases, leading to an increase in the scattering contrast of the asphalt. Under long-term aging conditions due to the gradual transition from maltenes to asphaltenes, the electron density difference between the micelles and the surrounding mediums decreases, resulting in a decrease in the scattering contrast of asphalt SAXS. Finally, this paper correlates the macroscopic properties of asphalt with microstructural parameters, and the results show that the high-temperature rutting resistance of asphalt is enhanced and the low-temperature cracking resistance decreases due to the aggregation of micelles and the generation of new micelles. These results are useful for understanding the relationship between changes in microstructure and changes in properties during asphalt aging and provide theoretical guidance for the regeneration of aged asphalt.

Keywords: asphalt, Beaucage model, microstructure, SAXS

Procedia PDF Downloads 78
7290 Absorption Behavior of Some Acids During Chemical Aging of HDPE-100 Polyethylene

Authors: Berkas Khaoula

Abstract:

Based on selection characteristics, high-density polyethylene (HDPE) extruded pipes are among the most economical and durable materials as well-designed solutions for water and gas transmission systems. The main reasons for such a choice are the high quality-performance ratio and the long-term service durability under aggressive conditions. Due to inevitable interactions with soils of different chemical compositions and transported fluids, aggressiveness becomes a key factor in studying resilient strength and life prediction limits. This phenomenon is known as environmental stress cracking resistance (ESCR). In this work, the effect of 3 acidic environments (5% acetic, 20% hydrochloric and 20% sulfuric) on HDPE-100 samples (~10x11x24 mm3). The results presented in the form (Δm/m0, %) as a function of √t indicate that the absorption, in the case of strong acids (HCl and H2SO4), evolves towards negative values involving material losses such as antioxidants and some additives. On the other hand, acetic acid and deionized water (DW) give a form of linear Fickean (LF) and B types, respectively. In general, the acids cause a slow but irreversible alteration of the chemical structure, composition and physical integrity of the polymer. The DW absorption is not significant (~0.02%) for an immersion duration of 69 days. Such results are well accepted in actual applications, while changes caused by acidic environments are serious and must be subjected to particular monitoring of the OIT factor (Oxidation Induction Time). After 55 days of aging, the H2SO4 and HCl media showed particular values with a loss of % mass in the interval [0.025-0.038] associated with irreversible chemical reactions as well as physical degradations. This state is usually explained by hydrolysis of the polymer, causing the loss of functions and causing chain scissions. These results are useful for designing and estimating the lifetime of the tube in service and in contact with adverse environments.

Keywords: HDPE, environmental stress cracking, absorption, acid media, chemical aging

Procedia PDF Downloads 88
7289 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, mechanical properties, SCC resistance, heat Treatment

Procedia PDF Downloads 429
7288 Enhancing Mitochondrial Activity and Metabolism in Aging Female Germ Cells: Synergistic Effects of Dual ROCK and ROS Inhibition

Authors: Kuan-Hao Tsui, Li-Te Lin, Chia-Jung Li

Abstract:

The combination of Y-27632 and Vitamin C significantly enhances the quality of aging germ cells by reducing reactive oxygen species (ROS) production, restoring mitochondrial membrane potential balance, and promoting mitochondrial fusion. The age-related decline in oocyte quality contributes to reduced fertility, increased aneuploidy, and diminished embryo quality, with mitochondrial dysfunction in both oocytes and granulosa cells being a key factor in this decline. Experiments on aging germ cells investigated the effects of the Y-27632 and Vitamin C combination. In vivo studies involved aged mice to assess oocyte maturation and ROS accumulation during culture. The assessment included mitochondrial activity, ROS levels, mitochondrial membrane potential, and mitochondrial dynamics. Cellular energy metabolism and ATP production were also measured. The combination treatment effectively addressed mitochondrial dysfunction and regulated cellular energy metabolism, promoting oxygen respiration and increasing ATP production. In aged mice, this supplement treatment enhanced in vitro oocyte maturation and prevented ROS accumulation in aging oocytes during culture. While these findings are promising, further research is needed to explore the long-term effects and potential side effects of the Y-27632 and Vitamin C combination. Additionally, translating these findings to human subjects requires careful consideration. Overall, the study suggests that the Y-27632 and Vitamin C combination could be a promising intervention to mitigate aging-related dysfunction in germ cells, potentially enhancing oocyte quality, particularly in the context of in vitro fertilization.

Keywords: ovarian aging, supplements, ROS, mitochondria

Procedia PDF Downloads 39
7287 Energy Metabolism and Mitochondrial Biogenesis in Muscles of Rats Subjected to Cold Water Immersion

Authors: Bosiacki Mateusz, Anna Lubkowska, Dariusz Chlubek, Irena Baranowska-Bosiacka

Abstract:

Exposure to cold temperatures can be considered a stressor that can lead to adaptive responses. The present study hypothesized the possibility of a positive effect of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The purpose of this study was to evaluate the effects of cold water exercise on energy status, purine compounds, and mitochondrial biogenesis in the muscles of aging rats as indicators of the effects of cold water exercise and their usefulness in monitoring adaptive changes. The study was conducted on 64 aging rats of both sexes, 15 months old at the time of the experiment. The rats (male and female separately) were randomly assigned to the following study groups: control, sedentary animals; 5°C groups animals - training swimming in cold water at 5°C; 36°C groups - animals training swimming in water at thermal comfort temperature. The study was conducted with the approval of the Local Ethical Committee for Animal Experiments. The animals in the experiment were subjected to swimming training for 9 weeks. During the first week of the study, the duration of the first swimming training was 2 minutes (on the first day), increasing daily by 0.5 minutes up to 4 minutes on the fifth day of the first week. From the second to the eighth week, the swimming training was 4 minutes per day, five days a week. At the end of the study, forty-eight hours after the last swim training, the animals were dissected. In the skeletal muscle tissue of the thighs of the rats, we determined the concentrations of ATP, ADP, AMP, Ado (HPLC), PGC-1a protein expression (Western blot), PGC1A, Mfn1, Mfn2, Opa1, and Drp1 gene expression (qRT PCR). The study showed that swimming in water at a thermally comfortable temperature improved the energy metabolism of the aging rat muscles by increasing the metabolic rate (increase in ATP, ADP, TAN, AEC) and enhancing mitochondrial fusion (increase in mRNA expression of regulatory proteins Mfn1 and Mfn2). Cold water swimming improved muscle energy metabolism in aging rats by increasing the rate of muscle energy metabolism (increase in ATP, ADP, TAN, AEC concentrations) and enhancing mitochondrial biogenesis and dynamics (increase in the mRNA expression of proteins of fusion-regulating factors – Mfn1, Mfn2, and Opa1, and the factor regulating mitochondrial fission – Drp1). The concentration of high-energy compounds and the expression of proteins regulating mitochondrial dynamics in the muscle may be a useful indicator in monitoring adaptive changes occurring in aging muscles under the influence of exercise in cold water. It represents a short-term adaptation to changing environmental conditions and has a beneficial effect on maintaining the bioenergetic capacity of muscles in the long term. Conclusion: exercise in cold water can exert positive effects on energy metabolism, biogenesis and dynamics of mitochondria in aging rat muscles. Enhancement of mitochondrial dynamics under cold water exercise conditions can improve mitochondrial function and optimize the bioenergetic capacity of mitochondria in aging rat muscles.

Keywords: cold water immersion, adaptive responses, muscle energy metabolism, aging

Procedia PDF Downloads 79
7286 Thermal Perception by Older People in Open Spaces in Madrid: Relationships between Weather Parameters and Personal Characteristics

Authors: María Teresa Baquero, Ester Higueras

Abstract:

One of the challenges facing 21st century cities, is their adaptation to the phenomenon of an ageing population. International policies have been developed, such as the "Global Network for Age-friendly Cities and Communities". These cities must recognize the diversity of the elderly population, and facilitate an active, healthy, satisfied aging and promote inclusion. In order to promote active and healthy aging, older people should be encouraged to engage in physical activity, sunbathe, socialize and enjoy the public open spaces in the city. Some studies recognize thermal comfort as one of the factors that most influence the use of public open spaces. However, although some studies have shown vulnerability to thermal extremes and environmental conditions in older people, there is little research on thermal comfort for older adults, because it is usually analyzed based on the characteristics of the ¨average young person¨ without considering the physiological, physical and psychological differences that characterize the elderly. This study analyzes the relationship between the microclimate parameters as air temperature, relative humidity, wind speed and sky view factor (SVF) with the personal thermal perception of older adults in three public spaces in Madrid, through a mixed methodology that combines weather measurements with interviews, made during the year 2018. Statistical test like Chi-square, Spearman, and analysis of variance were used to analyze the relationship between preference votes and thermal sensation votes with environmental and personal parameters. The results show that there is a significant correlation between thermal sensation and thermal preference with the measured air temperature, age, level of clothing, the color of clothing, season, time of the day and kind of space while no influence of gender or other environmental variables was detected. These data would contribute to the design of comfortable public spaces that improve the welfare of the elderly contributing to "active and healthy aging" as one of the 21st century challenges cities face.

Keywords: healthy ageing, older adults, outdoor public space, thermal perception

Procedia PDF Downloads 134
7285 Well-Being of Elderly with Nanonutrients

Authors: Naqvi Shraddha Rathi

Abstract:

During the aging process, physical frailty may develop. A more sedentary lifestyle, a reduction in metabolic cell mass and, consequently, lower energy expenditure and dietary intake are important contributors to the progression of frailty. A decline in intake is in turn associated with the risk of developing a suboptimal nutritional state or multiple micro nutrient deficiencies.The tantalizing potential of nanotechnology is to fabricate and combine nano scale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm.

Keywords: aging, cells frailty, micronutrients, biochemical reactivity

Procedia PDF Downloads 396
7284 Dynamical Heterogeneity and Aging in Turbulence with a Nambu-Goldstone Mode

Authors: Fahrudin Nugroho, Halim Hamadi, Yusril Yusuf, Pekik Nurwantoro, Ari Setiawan, Yoshiki Hidaka

Abstract:

We investigate the Nikolaevskiy equation numerically using exponential time differencing method and pseudo-spectral method. This equation develops a long-wavelength modulation that behaves as a Nambu–Goldstone mode, and short-wavelength instability and exhibit turbulence. Using the autocorrelation analysis, the statistical properties of the turbulence governed by the equation are investigated. The autocorrelation then has been fitted with The Kohlrausch– Williams–Watts (KWW) expression. By varying the control parameter, we show a transition from compressed to stretched exponential for the auto-correlation function of Nikolaevskiy turbulence. The compressed exponential is an indicator of the existence of dynamical heterogeneity while the stretched indicates aging process. Thereby, we revealed the existence of dynamical heterogeneity and aging in the turbulence governed by Nikolaevskiy equation.

Keywords: compressed exponential, dynamical heterogeneity, Nikolaevskiy equation, stretched exponential, turbulence

Procedia PDF Downloads 434
7283 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 120
7282 Effect of cold water immersion on bone mineral metabolism in aging rats

Authors: Irena Baranowska-Bosiacka, Mateusz Bosiacki, Patrycja Kupnicka, Anna Lubkowska, Dariusz Chlubek

Abstract:

Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density.

Keywords: swimming in cold water, adaptation to cold water, bone mineral metabolism, aging

Procedia PDF Downloads 59
7281 Characterization of CuO Incorporated CMOS Dielectric for Fast Switching System

Authors: Nissar Mohammad Karim, Norhayati Soin

Abstract:

To ensure fast switching in high-K incorporated Complementary Metal Oxide Semiconductor (CMOS) transistors, the results on the basis of d (NBTI) by incorporating SiO2 dielectric with aged samples of CuO sol-gels have been reported. Precursor ageing has been carried out for 4 days. The minimum obtained refractive index is 1.0099 which was found after 3 hours of adhesive UV curing. Obtaining a low refractive index exhibits a low dielectric constant and hence a faster system.

Keywords: refractive index, Sol-Gel, precursor aging, aging

Procedia PDF Downloads 471
7280 Useful Lifetime Prediction of Rail Pads for High Speed Trains

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluations of rail-pads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.

Keywords: rail pads, accelerated test, Arrhenius plot, useful lifetime prediction, mechanical engineering design

Procedia PDF Downloads 324
7279 Thermo-Mechanical Treatments of Cu-Ti Alloys

Authors: M. M. Morgham, A. A. Hameda, N. A. Zriba, H. A. Jawan

Abstract:

This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. Metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most effective hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as a long grain boundaries were responsible for the averaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well know that plate like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature a classic widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).

Keywords: metallographic, hardness, precipitation, aging

Procedia PDF Downloads 404
7278 The Analysis on the Renewal Strategy of Public Space in Old Communities with an Example of GeDa Community in Xi'An

Authors: Xiyue Wen

Abstract:

With the rapid development of the city, old communities in the city are facing a series of problems. On one hand, aging facilities, obsolete spatial patterns, aging populations arouse in the aging of the community. On the other hand, public space is reduced and is taking up by cars parking or facilities setting, which lead to the collapse of traditional life in the old communities. That is to say, modern amenities haven’t helped to reform the old community, but have leading to tedious and inefficient, when it is not accommodated in the traditional space. Exploring a way is imminent to the east the contradiction between modern living facilities and spatial patterns of traditional. We select a typical site-GeDa Community in Xi’an, built in 70-80s,and carry out a concept calling 'Raising Landscape', which enables a convenient and efficient space for parking, as well as a high-quality yard for activities. In addition, the design implements low cost, simple construction, resident participation, so that it can be spread in the same texture of urban space.

Keywords: old communities, renewal strategy, raising landscape, public space, parking space

Procedia PDF Downloads 479