Search results for: design manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13906

Search results for: design manufacturing

13846 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 190
13845 Investigating the Environmental Impact of Additive Manufacturing Compared to Conventional Manufacturing through Life Cycle Assessment

Authors: Gustavo Menezes De Souza Melo, Arnaud Heitz, Johannes Henrich Schleifenbaum

Abstract:

Additive manufacturing is a growing market that is taking over in many industries as it offers numerous advantages like new design possibilities, weight-saving solutions, ease of manufacture, and simplification of assemblies. These are all unquestionable technical or financial assets. As to the environmental aspect, additive manufacturing is often discussed whether it is the best solution to decarbonize our industries or if conventional manufacturing remains cleaner. This work presents a life cycle assessment (LCA) comparison based on the technological case of a motorbike swing-arm. We compare the original equipment manufacturer part made with conventional manufacturing (CM) methods to an additive manufacturing (AM) version printed using the laser powder bed fusion process. The AM version has been modified and optimized to achieve better dynamic performance without any regard to weight saving. Lightweight not being a priority in the creation of the 3D printed part brings us a unique perspective in this study. To achieve the LCA, we are using the open-source life cycle, and sustainability software OpenLCA combined with the ReCiPe 2016 at midpoint and endpoint level method. This allows the calculation and the presentation of the results through indicators such as global warming, water use, resource scarcity, etc. The results are then showing the relative impact of the AM version compared to the CM one and give us a key to understand and answer questions about the environmental sustainability of additive manufacturing.

Keywords: additive manufacturing, environmental impact, life cycle assessment, laser powder bed fusion

Procedia PDF Downloads 263
13844 Barriers Facing the Implementation of Lean Manufacturing in Libyan Manufacturing Companies

Authors: Mohamed Abduelmula, Martin Birkett, Chris Connor

Abstract:

Lean Manufacturing has developed from being a set of tools and methods to becoming a management philosophy which can be used to remove or reduce waste in manufacturing processes and so enhance the operational productivity of an enterprise. Several enterprises around the world have applied the lean manufacturing system and gained great improvements. This paper investigates the barriers and obstacles that face Libyan manufacturing companies to implement lean manufacturing. A mixed-method approach is suggested, starting with conducting a questionnaire to get quantitative data then using this to develop semi-structured interviews to collect qualitative data. The findings of the questionnaire results and how these can be used further develop the semi-structured interviews are then discussed. The survey was distributed to 65 manufacturing companies in Libya, and a response rate of 64.6% was obtained. The results showed that these are five main barriers to implementing lean in Libya, namely organizational culture, skills and expertise, and training program, financial capability, top management, and communication. These barriers were also identified from the literature as being significant obstacles to implementing Lean in other countries industries. Having an understanding of the difficulties that face the implementation of lean manufacturing systems, as a new and modern system and using this to develop a suitable framework will help to improve the manufacturing sector in Libya.

Keywords: lean manufacturing, barriers, questionnaire, Libyan manufacturing companies

Procedia PDF Downloads 246
13843 Simulation and Experimental Verification of Mechanical Response of Additively Manufactured Lattice Structures

Authors: P. Karlsson, M. Åsberg, R. Eriksson, P. Krakhmalev, N. Strömberg

Abstract:

Additive manufacturing of lattice structures is promising for lightweight design, but the mechanical response of the lattices structures is not fully understood. This investigation presents the results of simulation and experimental investigations of the grid and shell-based gyroid lattices. Specimens containing selected lattices were designed with an in-house software and manufactured from 316L steel with Renishaw AM400 equipment. Results of simulation and experimental investigations correlated well.

Keywords: additive manufacturing, computed tomography, material characterization, lattice structures, robust lightweight design

Procedia PDF Downloads 164
13842 Developing an Information Model of Manufacturing Process for Sustainability

Authors: Jae Hyun Lee

Abstract:

Manufacturing companies use life-cycle inventory databases to analyze sustainability of their manufacturing processes. Life cycle inventory data provides reference data which may not be accurate for a specific company. Collecting accurate data of manufacturing processes for a specific company requires enormous time and efforts. An information model of typical manufacturing processes can reduce time and efforts to get appropriate reference data for a specific company. This paper shows an attempt to build an abstract information model which can be used to develop information models for specific manufacturing processes.

Keywords: process information model, sustainability, OWL, manufacturing

Procedia PDF Downloads 430
13841 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing

Authors: O. Fiquet, P. Lemarignier

Abstract:

Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.

Keywords: nuclear, fuel, CERMET, robocasting

Procedia PDF Downloads 68
13840 Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

Authors: Liubov Magerramova, Eugene Kratt, Pavel Presniakov

Abstract:

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Keywords: additive technologies, gas turbine engine, powder technology, turbine wheel

Procedia PDF Downloads 320
13839 A Review of Fused Deposition Modeling Process: Parameter Optimization, Materials and Design

Authors: Elisaveta Doncheva, Jelena Djokikj, Ognen Tuteski, Bojana Hadjieva

Abstract:

In the past decade, additive manufacturing technology or 3D printing has been promoted as an efficient method for fabricating hybrid composite materials and structures with superior mechanical properties and complex shape and geometry. Fused deposition modeling (FDM) process is commonly used additive manufacturing technique for production of polymer products. Therefore, many studies and experiments are focused on investigating the possibilities for improving the obtained results on product properties as a key factor for expanding the spectrum of their application. This article provides an extensive review on recent research advances in FDM and reports on studies that cover the effects of process parameters, material, and design of the product properties. The paper conclusions provide a clear up-to date information for optimum efficiency and enhancement of the mechanical properties of 3D printed samples and recommends further research work and investigations.

Keywords: additive manufacturing, critical parameters, filament, print orientation, 3D printing

Procedia PDF Downloads 193
13838 Advanced Digital Manufacturing: Case Study

Authors: Abdelrahman Abdelazim

Abstract:

Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today’s manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory’s manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process.

Keywords: cloud manufacturing, automation, Kuwait industrial sector, advanced digital manufacturing

Procedia PDF Downloads 771
13837 Biomimetic Adhesive Pads for Precision Manufacturing Robots

Authors: Hoon Yi, Minho Sung, Hangil Ko, Moon Kyu Kwak, Hoon Eui Jeong

Abstract:

Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology.

Keywords: gecko, manufacturing robot, precision manufacturing

Procedia PDF Downloads 505
13836 Use of Six-sigma Concept in Discrete Manufacturing Industry

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

Efficiency in manufacturing is critical in raising the value of exports so as to gainfully trade on the regional and international markets. There seems to be increasing popularity of continuous improvement strategies availed to manufacturing entities, but this research study established that there has not been a similar popularity accorded to the Six Sigma methodology. Thus this work was conducted to investigate the applicability, effectiveness, usefulness, application and suitability of the Six Sigma methodology as a competitiveness option for discrete manufacturing entity. Development of Six-sigma center in the country with continuous improvement information would go a long way in benefiting the entire industry

Keywords: discrete manufacturing, six-sigma, continuous improvement, efficiency, competitiveness

Procedia PDF Downloads 463
13835 A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies

Authors: Saba Shams Bidhendi, Steven Goh, Andrew Wandel

Abstract:

The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author’s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers’ resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies.

Keywords: lean manufacturing, lean strategies, manufacturing wastes, manufacturing performance, optimisation, decision making

Procedia PDF Downloads 192
13834 Advanced Manufacturing Technology Adoption in Manufacturing Comapnies in Kenya

Authors: George Nyori Makari, J. M. Ogola

Abstract:

Over the past few decades, manufacturing has evolved from a more labor-intensive set of mechanical processes to a sophisticated set of information based technology processes. With the existence of various advanced manufacturing technologies (AMTs), more and more functions or jobs are performed by these machines instead of human labour. This study was undertaken in order to research the extent of AMTs adoption in manufacturing companies in Kenya. In order to investigate a survey was conducted via questionnaires that were sent to 183 selected AMT manufacturing companies in Kenya. 92 companies responded positively. All the surveyed companies were found to have a measure of investment in at least two of the 14 types of AMTs investigated. In general the company surveyed showed that the level of AMT adoption in Kenya is very low with investments levels at a mean of 2.057 and integration levels at a mean of 1.639 in a scale of 1-5.

Keywords: AMT adoption, AMT investments, AMT integration, companies in Kenya

Procedia PDF Downloads 599
13833 Understand the Concept of Agility for the Manufacturing SMEs

Authors: Adel H. Hejaaji

Abstract:

The need for organisations to be flexible to meet the rapidly changing requirements of their customers is now well appreciated and can be witnessed within companies with their use of techniques such as single-minute exchange of die (SMED) for machine change-over or Kanban as the visual production and inventory control for Just-in-time manufacture and delivery. What is not so well appreciated by companies is the need for agility. Put simply it is the need to be alert for a new and unexpected opportunity and quick to respond with the changes necessary in order to profit from it. This paper aims to study the literature of agility in manufacturing to understand the concept of agility and how it is important and critical for the small and medium size manufacturing organisations (SMEs), and to defined the specific benefits of moving towards agility, and thus what benefit it can bring to an organisation.

Keywords: SMEs, agile manufacturing, manufacturing, industrial engineering

Procedia PDF Downloads 606
13832 Optimising Apparel Digital Production in Industrial Clusters

Authors: Minji Seo

Abstract:

Fashion stakeholders are becoming increasingly aware of technological innovation in manufacturing. In 2020, the COVID-19 pandemic caused transformations in working patterns, such as working remotely rather thancommuting. To enable smooth remote working, 3D fashion design software is being adoptedas the latest trend in design and production. The majority of fashion designers, however, are still resistantto this change. Previous studies on 3D fashion design software solely highlighted the beneficial and detrimental factors of adopting design innovations. They lacked research on the relationship between resistance factors and the adoption of innovation. These studies also fell short of exploringthe perspectives of users of these innovations. This paper aims to investigate the key drivers and barriers of employing 3D fashion design software as wellas to explore the challenges faced by designers.It also toucheson the governmental support for digital manufacturing in Seoul, South Korea, and London, the United Kingdom. By conceptualising local support, this study aims to provide a new path for industrial clusters to optimise digital apparel manufacturing. The study uses a mixture of quantitative and qualitative approaches. Initially, it reflects a survey of 350 samples, fashion designers, on innovation resistance factors of 3D fashion design software and the effectiveness of local support. In-depth interviews with 30 participants provide a better understanding of designers’ aspects of the benefits and obstacles of employing 3D fashion design software. The key findings of this research are the main barriers to employing 3D fashion design software in fashion production. The cultural characteristics and interviews resultsare used to interpret the survey results. The findings of quantitative data examine the main resistance factors to adopting design innovations. The dominant obstacles are: the cost of software and its complexity; lack of customers’ interest in innovation; lack of qualified personnel, and lack of knowledge. The main difference between Seoul and London is the attitudes towards government support. Compared to the UK’s fashion designers, South Korean designers emphasise that government support is highly relevant to employing 3D fashion design software. The top-down and bottom-up policy implementation approach distinguishes the perception of government support. Compared to top-down policy approaches in South Korea, British fashion designers based on employing bottom-up approaches are reluctant to receive government support. The findings of this research will contribute to generating solutions for local government and the optimisation of use of 3D fashion design software in fashion industrial clusters.

Keywords: digital apparel production, industrial clusters, innovation resistance, 3D fashion design software, manufacturing, innovation, technology, digital manufacturing, innovative fashion design process

Procedia PDF Downloads 102
13831 Framework for Decision Support Tool for Quality Control and Management in Botswana Manufacturing Companies

Authors: Mogale Sabone, Thabiso Ntlole

Abstract:

The pressure from globalization has made manufacturing organizations to move towards three major competitive arenas: quality, cost, and responsiveness. Quality is a universal value and has become a global issue. In order to survive and be able to provide customers with good products, manufacturing organizations’ supporting systems, tools, and structures it uses must grow or evolve. The majority of quality management concepts and strategies that are practiced recently are aimed at detecting and correcting problems which already exist and serve to limit losses. In agile manufacturing environment there is no room for defect and error so it needs a quality management which is proactively directed at problem prevention. This proactive quality management avoids losses by focusing on failure prevention, virtual elimination of the possibility of premature failure, mistake-proofing, and assuring consistently high quality in the definition and design of creation processes. To achieve this, a decision support tool for quality control and management is suggested. Current decision support tools/methods used by most manufacturing companies in Botswana for quality management and control are not integrated, for example they are not consistent since some tests results data is recorded manually only whilst others are recorded electronically. It is only a set of procedures not a tool. These procedures cannot offer interactive decision support. This point brings to light the aim of this research which is to develop a framework which will help manufacturing companies in Botswana build a decision support tool for quality control and management.

Keywords: decision support tool, manufacturing, quality control, quality management

Procedia PDF Downloads 566
13830 Role of Senior Management in Implementing Lean Manufacturing Practices: A Study of Manufacturing Companies of Pakistan

Authors: Saima Yaqoob

Abstract:

Due to advancement in technologies and cutting cost competition, especially in manufacturing business, organizations are now becoming more focused toward achieving exceptional quality standards with low manufacturing cost. In this concern, many process improvement strategies are becoming popular in the way of increasing productivity and output. Lean manufacturing principles are among one of them, increasingly used for improving productivity by reducing wastages. Many success factors are involved in lean implementation. But, the role of senior management is most important in developing the lean culture in an organization. Purpose of this study is to investigate the perception of executive level management related to the successful implementation of lean practices and its comparison with the existing practices in the organization. In order to collect data, survey questionnaire comprised of eight statements rendering the critical success factors were sent to the top management of fifty (50) automotive manufacturing companies of Karachi. After analyzing their feedbacks, the trend of lean manufacturing principles and the commitment of senior management toward its implementation was identified in the manufacturing industries of Karachi, Pakistan.

Keywords: lean manufacturing, process improvement, senior management, perception, involvement, waste reduction

Procedia PDF Downloads 192
13829 Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective

Authors: Micheal O. Alabi

Abstract:

Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country.

Keywords: additive manufacturing, 3D printing technology, industrial applications, manufacturing

Procedia PDF Downloads 472
13828 An Enhanced Approach in Validating Analytical Methods Using Tolerance-Based Design of Experiments (DoE)

Authors: Gule Teri

Abstract:

The effective validation of analytical methods forms a crucial component of pharmaceutical manufacturing. However, traditional validation techniques can occasionally fail to fully account for inherent variations within datasets, which may result in inconsistent outcomes. This deficiency in validation accuracy is particularly noticeable when quantifying low concentrations of active pharmaceutical ingredients (APIs), excipients, or impurities, introducing a risk to the reliability of the results and, subsequently, the safety and effectiveness of the pharmaceutical products. In response to this challenge, we introduce an enhanced, tolerance-based Design of Experiments (DoE) approach for the validation of analytical methods. This approach distinctly measures variability with reference to tolerance or design margins, enhancing the precision and trustworthiness of the results. This method provides a systematic, statistically grounded validation technique that improves the truthfulness of results. It offers an essential tool for industry professionals aiming to guarantee the accuracy of their measurements, particularly for low-concentration components. By incorporating this innovative method, pharmaceutical manufacturers can substantially advance their validation processes, subsequently improving the overall quality and safety of their products. This paper delves deeper into the development, application, and advantages of this tolerance-based DoE approach and demonstrates its effectiveness using High-Performance Liquid Chromatography (HPLC) data for verification. This paper also discusses the potential implications and future applications of this method in enhancing pharmaceutical manufacturing practices and outcomes.

Keywords: tolerance-based design, design of experiments, analytical method validation, quality control, biopharmaceutical manufacturing

Procedia PDF Downloads 80
13827 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management

Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige

Abstract:

Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.

Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability

Procedia PDF Downloads 279
13826 The Interaction of Country-of-Manufacturing with Country-of-Design within Different Consumption Context

Authors: Ebru Genc, Shih-Ching Wang

Abstract:

In today’s globalized world, while companies move their production centers to developing countries in order to gain cost advantage, they receive negative responses from consumers because of the weak image of those countries. In this study, we looked at this tradeoff faced by multinational companies. Some companies that have headquarters in developed countries have devised a strategy of manipulating country-of-origin (COO) information by introducing the concept of country of design (COD). We analyzed the impact of country-of-manufacturing (COM) information on consumers’ product evaluation and purchase intention in the presence of different levels of COD information, namely, in terms of developed and developing countries. We found that it is not advantageous for a firm to publish a design location with a strong image if the firm is producing in a country that has a weak image. On the other hand, revealing COD information has a reinforcing effect on consumers’ product evaluation and purchase intention if the firm is producing in a country with a strong image. Second, we studied the impact of consumption context on this relationship (in terms of public or private use) and found that for products that are typically used in public, COM has significantly shown higher importance on product evaluation and purchase intention, compared to products typically used in private. However, our results show that consumption context shows no effect of an impact resulting from COD information.

Keywords: consumption context, country of design, country of manufacturing, country of origin

Procedia PDF Downloads 249
13825 A Design for Supply Chain Model by Integrated Evaluation of Design Value and Supply Chain Cost

Authors: Yuan-Jye Tseng, Jia-Shu Li

Abstract:

To design a product with the given product requirement and design objective, there can be alternative ways to propose the detailed design specifications of the product. In the design modeling stage, alternative design cases with detailed specifications can be modeled to fulfill the product requirement and design objective. Therefore, in the design evaluation stage, it is required to perform an evaluation of the alternative design cases for deciding the final design. The purpose of this research is to develop a product evaluation model for evaluating the alternative design cases by integrated evaluating the criteria of functional design, Kansei design, and design for supply chain. The criteria in the functional design group include primary function, expansion function, improved function, and new function. The criteria in the Kansei group include geometric shape, dimension, surface finish, and layout. The criteria in the design for supply chain group include material, manufacturing process, assembly, and supply chain operation. From the point of view of value and cost, the criteria in the functional design group and Kansei design group represent the design value of the product. The criteria in the design for supply chain group represent the supply chain and manufacturing cost of the product. It is required to evaluate the design value and the supply chain cost to determine the final design. For the purpose of evaluating the criteria in the three criteria groups, a fuzzy analytic network process (FANP) method is presented to evaluate a weighted index by calculating the total relational values among the three groups. A method using the technique for order preference by similarity to ideal solution (TOPSIS) is used to compare and rank the design alternative cases according to the weighted index using the total relational values of the criteria. The final decision of a design case can be determined by using the ordered ranking. For example, the design case with the top ranking can be selected as the final design case. Based on the criteria in the evaluation, the design objective can be achieved with a combined and weighted effect of the design value and manufacturing cost. An example product is demonstrated and illustrated in the presentation. It shows that the design evaluation model is useful for integrated evaluation of functional design, Kansei design, and design for supply chain to determine the best design case and achieve the design objective.

Keywords: design for supply chain, design evaluation, functional design, Kansei design, fuzzy analytic network process, technique for order preference by similarity to ideal solution

Procedia PDF Downloads 318
13824 Performance Evaluation of Flexible Manufacturing System: A Simulation Study

Authors: Mohammed Ali

Abstract:

In this paper, evaluation of flexible manufacturing system is made under different manufacturing strategies. The objective of this paper is to test the impact of pallets and routing flexibility on system performance operating at different sequencing rules, dispatching rules and at unbalanced load condition. A computer simulation model is developed to evaluate the effects of aforementioned manufacturing strategies on the make-span performance of flexible manufacturing system. The impact of number of pallets is shown with the different levels of routing flexibility. In this paper, the same manufacturing system is modeled under different combination of sequencing and dispatching rules. A series of simulation experiments are conducted and results analyzed. The result of the simulation shows that there is impact of pallets and routing flexibility on the performance of the system.

Keywords: flexibility, flexible manufacturing system, pallets, make-span, simulation

Procedia PDF Downloads 417
13823 Design of an Electric Arc Furnace for the Production of Metallurgical Grade Silicon

Authors: M. Barbouche, M. Hajji, H. Ezzaouia

Abstract:

This project is a step to manufacture solar grade silicon. It consists in designing an electrical arc furnace in order to produce metallurgical silicon Mg-Si with mutually carbon and high purity of silica. It concerns, first, the development of a functional analysis, a mechanical design and thermodynamic study. Our study covers also, the design of the temperature control system and the design of the electric diagrams. The furnace works correctly. A Labview interface was developed to control all parameters and to supervise the operation of furnace. Characterization tests with X-ray technique and Raman spectroscopy allow us to confirm the metallurgical silicon production.

Keywords: arc furnace, electrical design, silicon manufacturing, regulation, x-ray characterization

Procedia PDF Downloads 492
13822 Performance Enhancement of Autopart Manufacturing Industry Using Lean Manufacturing Strategies: A Case Study

Authors: Raman Kumar, Jasgurpreet Singh Chohan, Chander Shekhar Verma

Abstract:

Today, the manufacturing industries respond rapidly to new demands and compete in this continuously changing environment, thus seeking out new methods allowing them to remain competitive and flexible simultaneously. The aim of the manufacturing organizations is to reduce manufacturing costs and wastes through system simplification, organizational potential, and proper infrastructural planning by using modern techniques like lean manufacturing. In India, large number of medium and large scale manufacturing industries has successfully implemented lean manufacturing techniques. Keeping in view the above-mentioned facts, different tools will be involved in the successful implementation of the lean approach. The present work is focused on the auto part manufacturing industry to improve the performance of the recliner assembly line. There is a number of lean manufacturing tools available, but the experience and complete knowledge of manufacturing processes are required to select an appropriate tool for a specific process. Fishbone diagrams (scrap, inventory, and waiting) have been drawn to identify the root cause of different. Effect of cycle time reduction on scrap and inventory is analyzed thoroughly in the case company. Results have shown that there is a decrease in inventory cost by 7 percent after the successful implementation of the lean tool.

Keywords: lean tool, fish-bone diagram, cycle time reduction, case study

Procedia PDF Downloads 127
13821 An Analysis of the Relationship between Manufacturing Growth and Economic Growth in South Africa: A Cointegration Approach

Authors: Johannes T. Tsoku, Teboho J. Mosikari, Diteboho Xaba, Thatoyaone Modise

Abstract:

This paper examines the relationship between manufacturing growth and economic growth in South Africa using quarterly data ranging from 2001 to 2014. The paper employed the Johansen cointegration to test the Kaldor’s hypothesis. The Johansen cointegration results revealed that there is a long run relationship between GDP, manufacturing, service and employment. The Granger causality results revealed that there is a unidirectional causality running from manufacturing growth to GDP growth. The overall findings of the study confirm that Kaldor’s first law of growth is applicable in South African economy. Therefore, investment strategies and policies should be alignment towards promoting growth in the manufacturing sector in order to boost the economic growth of South Africa.

Keywords: cointegration, economic growth, Kaldor’s law, manufacturing growth

Procedia PDF Downloads 387
13820 An Evaluative Approach for Successful Implementation of Lean and Green Manufacturing in Indian SMEs

Authors: Satya S. N. Narayana, P. Parthiban, T. Niranjan, N. Kannan

Abstract:

Enterprises adopt methodologies to increase their business performance and to stay competent in the volatile global market. Lean manufacturing is one such manufacturing paradigm which focuses on reduction of cost by elimination of wastes or non-value added activities. With increased awareness about social responsibility and the necessary to meet the terms of the environmental policy, green manufacturing is becoming increasingly important for industries. Large plants have more resources, have started implementing lean and green practices and they are getting good results. Small and medium scale enterprises (SMEs) are facing problems in implementing lean and green concept. This paper aims to identify the key issues for implementation of lean and green concept in Indian SMEs. The key factors identified based on literature review and expert opinions are grouped into different levels by Modified Interpretive Structural Modeling (MISM) to explore the importance among the factors to implement lean and green manufacturing. Finally, Fuzzy Analytic Network Process (FANP) method has been used to determine the extent to which the main principles of lean and green manufacturing have been carried out in the six Indian medium scale manufacturing industries.

Keywords: lean manufacturing, green manufacturing, MISM, FANP

Procedia PDF Downloads 540
13819 Development Trends of the Manufacturing Industry in Georgia

Authors: Nino Grigolaia

Abstract:

Introduction. The paper discusses the role of the manufacturing industry in the Georgian economy, analyzes the current trends in the development of the manufacturing industry, reveals its impact on the Georgian economy, and justifies the essential importance of industrial transformation for the future development of the Georgian economy. Objectives. The main objective of research is to study development trends of the manufacturing industry of Georgia and estimate the industrial policy in Georgia. Methodology. The paper uses methods of induction, deduction, analysis, synthesis, analogy, correlation, and statistical observation. A qualitative study was conducted based on a survey of industry experts and entrepreneurs in order to identify the factors hindering and contributing to the manufacturing industry. Conclusions. The research reveals that the development of the manufacturing industry and the formation of industrial policy are of special importance for the further growth and development of the Georgian economy. Based on the research, the factors promoting and hindering the development of the manufacturing industry are identified. The need to increase foreign direct investment in the industrial sector are highlighted. Recommendations for the development of the country's manufacturing industry are developed, taking into account the competitive advantages and international experience of Georgia.

Keywords: manufacturing, industrial policy, contributing factor, hindering factor

Procedia PDF Downloads 144
13818 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 233
13817 Predicting Foreign Direct Investment of IC Design Firms from Taiwan to East and South China Using Lotka-Volterra Model

Authors: Bi-Huei Tsai

Abstract:

This work explores the inter-region investment behaviors of integrated circuit (IC) design industry from Taiwan to China using the amount of foreign direct investment (FDI). According to the mutual dependence among different IC design industrial locations, Lotka-Volterra model is utilized to explore the FDI interactions between South and East China. Effects of inter-regional collaborations on FDI flows into China are considered. Evolutions of FDIs into South China for IC design industry significantly inspire the subsequent FDIs into East China, while FDIs into East China for Taiwan’s IC design industry significantly hinder the subsequent FDIs into South China. The supply chain along IC industry includes IC design, manufacturing, packing and testing enterprises. I C manufacturing, packaging and testing industries depend on IC design industry to gain advanced business benefits. The FDI amount from Taiwan’s IC design industry into East China is the greatest among the four regions: North, East, Mid-West and South China. The FDI amount from Taiwan’s IC design industry into South China is the second largest. If IC design houses buy more equipment and bring more capitals in South China, those in East China will have pressure to undertake more FDIs into East China to maintain the leading position advantages of the supply chain in East China. On the other hand, as the FDIs in East China rise, the FDIs in South China will successively decline since capitals have concentrated in East China. Prediction of Lotka-Volterra model in FDI trends is accurate because the industrial interactions between the two regions are included. Finally, this work confirms that the FDI flows cannot reach a stable equilibrium point, so the FDI inflows into East and South China will expand in the future.

Keywords: Lotka-Volterra model, foreign direct investment, competitive, Equilibrium analysis

Procedia PDF Downloads 363