Search results for: controlled release rate
10940 Solid Lipid Nanoparticles of Levamisole Hydrochloride
Authors: Surendra Agrawal, Pravina Gurjar, Supriya Bhide, Ram Gaud
Abstract:
Levamisole hydrochloride is a prominent anticancer drug in the treatment of colon cancer but resulted in toxic effects due poor bioavailability and poor cellular uptake by tumor cells. Levamisole is an unstable drug. Incorporation of this molecule in solid lipids may minimize their exposure to the aqueous environment and partly immobilize the drug molecules within the lipid matrix-both of which may protect the encapsulated drugs against degradation. The objectives of the study were to enhance bioavailability by sustaining drug release and to reduce the toxicities associated with the therapy. Solubility of the drug was determined in different lipids to select the components of Solid Lipid Nanoparticles (SLN). Pseudoternary phase diagrams were created using aqueous titration method. Formulations were subjected to particle size and stability evaluation to select the final test formulations which were characterized for average particle size, zeta potential, and in-vitro drug release and percentage transmittance to optimize the final formulation. SLN of Levamisole hydrochloride was prepared by Nanoprecipitation method. Glyceryl behenate (Compritol 888 ATO) was used as core comprising of Tween 80 as surfactant and Lecithin as co-surfactant in (1:1) ratio. Entrapment efficiency (EE) was found to be 45.89%. Particle size was found in the range of 100-600 nm. Zeta potential of the formulation was -17.0 mV revealing the stability of the product. In-vitro release study showed that 66 % drug released in 24 hours in pH 7.2 which represent that formulation can give controlled action at the intestinal environment. In pH 5.0 it showed 64% release indicating that it can even release drug in acidic environment of tumor cells. In conclusion, results revealed SLN to be a promising approach to sustain the drug release so as to increase bioavailability and cellular uptake of the drug with reduction in toxic effects as dose has been reduced with controlled delivery.Keywords: SLN, nanoparticulate delivery of levamisole, pharmacy, pharmaceutical sciences
Procedia PDF Downloads 43310939 Bioactive Substances-Loaded Water-in-Oil/Oil-in-Water Emulsions for Dietary Supplementation in the Elderly
Authors: Agnieszka Markowska-Radomska, Ewa Dluska
Abstract:
Maintaining a bioactive substances dense diet is important for the elderly, especially to prevent diseases and to support healthy ageing. Adequate bioactive substances intake can reduce the risk of developing chronic diseases (e.g. cardiovascular, osteoporosis, neurodegenerative syndromes, diseases of the oral cavity, gastrointestinal (GI) disorders, diabetes, and cancer). This can be achieved by introducing a comprehensive supplementation of components necessary for the proper functioning of the ageing body. The paper proposes the multiple emulsions of the W1/O/W2 (water-in-oil-in-water) type as carriers for effective co-encapsulation and co-delivery of bioactive substances in supplementation of the elderly. Multiple emulsions are complex structured systems ("drops in drops"). The functional structure of the W1/O/W2 emulsion enables (i) incorporation of one or more bioactive components (lipophilic and hydrophilic); (ii) enhancement of stability and bioavailability of encapsulated substances; (iii) prevention of interactions between substances, as well as with the external environment, delivery to a specific location; and (iv) release in a controlled manner. The multiple emulsions were prepared by a one-step method in the Couette-Taylor flow (CTF) contactor in a continuous manner. In general, a two-step emulsification process is used to obtain multiple emulsions. The paper contains a proposal of emulsion functionalization by introducing pH-responsive biopolymer—carboxymethylcellulose sodium salt (CMC-Na) to the external phase, which made it possible to achieve a release of components controlled by the pH of the gastrointestinal environment. The membrane phase of emulsions was soybean oil. The W1/O/W2 emulsions were evaluated for their characteristics (drops size/drop size distribution, volume packing fraction), encapsulation efficiency and stability during storage (to 30 days) at 4ºC and 25ºC. Also, the in vitro multi-substance co-release process were investigated in a simulated gastrointestinal environment (different pH and composition of release medium). Three groups of stable multiple emulsions were obtained: emulsions I with co-encapsulated vitamins B12, B6 and resveratrol; emulsions II with vitamin A and β-carotene; and emulsions III with vitamins C, E and D3. The substances were encapsulated in the appropriate emulsion phases depending on the solubility. For all emulsions, high encapsulation efficience (over 95%) and high volume packing fraction of internal droplets (0.54-0.76) were reached. In addition, due to the presence of a polymer (CMC-Na) with adhesive properties, high encapsulation stability during emulsions storage were achieved. The co-release study of encapsulated bioactive substances confirmed the possibility to modify the release profiles. It was found that the releasing process can be controlled through the composition, structure, physicochemical parameters of emulsions and pH of the release medium. The results showed that the obtained multiple emulsions might be used as potential liquid complex carriers for controlled/modified/site-specific co-delivery of bioactive substances in dietary supplementation in the elderly.Keywords: bioactive substance co-release, co-encapsulation, elderly supplementation, multiple emulsion
Procedia PDF Downloads 20110938 Preparation of Magnetothermally Responsive Polymer Multilayer Films for Controlled Release Applications from Surfaces
Authors: Eda Cagli, Irem Erel Goktepe
Abstract:
Externally triggered and effective release of therapeutics from polymer nanoplatforms is one of the key issues in cancer treatment. In this study, we aim to prepare polymer multilayer films which are stable at physiological conditions (little or no drug release) but release drug molecules at acidic pH and via application of AC magnetic field. First, novel stimuli responsive diblock copolymers composed of pH- and temperature-responsive blocks were synthesized. Then, block copolymer micelles with pH-responsive core and temperature responsive coronae will be obtained via pH-induced self-assembly of these block copolymers in aqueous environment. A model anticancer drug, e.g. Doxorubicin will be loaded in the micellar cores. Second, superparamagnetic nanoparticles will be synthesized. Magnetic nanoparticles and drug loaded block copolymer micelles will be used as building blocks to construct the multilayers. To mimic the acidic nature of the tumor tissues, Doxorubicin release from the micellar cores will be induced at acidic conditions. Moreover, Doxorubicin release from the multilayers will be facilitated via magnetothermal trigger. Application of AC magnetic field will induce the heating of magnetic nanoparticles resulting in an increase in the temperature of the polymer platform. This increase in temperature is expected to trigger conformational changes on the temperature-responsive micelle coronae and facilitate the release of Doxorubicin from the surface. Such polymer platform may find use in biomedical applications.Keywords: layer-by-layer films, magnetothermal trigger, smart polymers, stimuli responsive
Procedia PDF Downloads 36510937 A Dislocation-Based Explanation to Quasi-Elastic Release in Shock Loaded Aluminum
Authors: Song L. Yao, Ji D. Yu, Xiao Y. Pei
Abstract:
An explanation is introduced to study the quasi-elastic release phenomenon in shock compressed aluminum. A dislocation-based model, taking into account of dislocation substructures and evolutions, is applied to simulate the elastic-plastic response of both single crystal and polycrystalline aluminum. Simulated results indicate that dislocation immobilization during dynamic deformation results in a smooth increase of yield stress, which leads to the quasi-elastic release. While the generation of dislocations caused by plastic release wave results in the appearance of transition point between the quasi-elastic release and the plastic release in the profile. The quantities of calculated shear strength and dislocation density are in accordance with experimental result, which demonstrates the accuracy of our simulations.Keywords: dislocation density, quasi-elastic release, wave profile, shock wave
Procedia PDF Downloads 28410936 Prediction of Fire Growth of the Office by Real-Scale Fire Experiment
Authors: Kweon Oh-Sang, Kim Heung-Youl
Abstract:
Estimating the engineering properties of fires is important to be prepared for the complex and various fire risks of large-scale structures such as super-tall buildings, large stadiums, and multi-purpose structures. In this study, a mock-up of a compartment which was 2.4(L) x 3.6 (W) x 2.4 (H) meter in dimensions was fabricated at the 10MW LSC (Large Scale Calorimeter) and combustible office supplies were placed in the compartment for a real-scale fire test. Maximum heat release rate was 4.1 MW and total energy release obtained through the application of t2 fire growth rate was 6705.9 MJ.Keywords: fire growth, fire experiment, t2 curve, large scale calorimeter
Procedia PDF Downloads 33910935 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems
Authors: Raouf Alizadeh, Kadijeh Hemmati
Abstract:
The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior
Procedia PDF Downloads 32110934 Antibacterial Nanofibrous Film Encapsulated with 4-terpineol/β-cyclodextrin Inclusion Complexes: Relative Humidity-Triggered Release and Shrimp Preservation Application
Authors: Chuanxiang Cheng, Tiantian Min, Jin Yue
Abstract:
Antimicrobial active packaging enables extensive biological effects to improve food safety. However, the efficacy of antimicrobial packaging hinges on factors including the diffusion rate of the active agent toward the food surface, the initial content in the antimicrobial agent, and the targeted food shelf life. Among the possibilities of antimicrobial packaging design, an interesting approach involves the incorporation of volatile antimicrobial agents into the packaging material. In this case, the necessity for direct contact between the active packaging material and the food surface is mitigated, as the antimicrobial agent exerts its action through the packaging headspace atmosphere towards the food surface. However, it still remains difficult to achieve controlled and precise release of bioactive compounds to the specific target location with required quantity in food packaging applications. Remarkably, the development of stimuli-responsive materials for electrospinning has introduced the possibility of achieving controlled release of active agents under specific conditions, thereby yielding enduring biological effects. Relative humidity (RH) for the storage of food categories such as meat and aquatic products typically exceeds 90%. Consequently, high RH can be used as an abiotic trigger for the release of active agents to prevent microbial growth. Hence, a novel RH - responsive polyvinyl alcohol/chitosan (PVA/CS) composite nanofibrous film incorporated with 4-terpineol/β-cyclodextrin inclusion complexes (4-TA@β-CD ICs) was engineered by electrospinning that can be deposited as a functional packaging materials. The characterization results showed the thermal stability of the films was enhanced after the incorporation due to the hydrogen bonds between ICs and polymers. Remarkably, the 4 wt% 4-TA@β-CD ICs/PVA/CS film exhibited enhanced crystallinity, moderate hydrophilic (Water contact angle of 81.53°), light barrier property (Transparency of 1.96%) and water resistance (Water vapor permeability of 3.17 g mm/m2 h kPa). Moreover, this film also showed optimized mechanical performance with a Young’s modulus of 11.33 MPa, a tensile strength of 19.99 MPa and an elongation at break of 4.44 %. Notably, the antioxidant and antibacterial properties of this packaging material were significantly improved. The film demonstrated the half-inhibitory concentrations (IC50) values of 87.74% and 85.11% for scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic) (ABTS) free radicals, respectively, in addition to an inhibition efficiency of 65% against Shewanella putrefaciens, the characteristic bacteria in aquatic products. Most importantly, the film achieved controlled release of 4-TA under high 98% RH by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. Consequently, low relative humidity is suitable for the preservation of nanofibrous film, while high humidity conditions typical in fresh food packaging environments effectively stimulated the release of active compounds in the film. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. This attractive design could pave the way for the development of new food packaging materials.Keywords: controlled release, electrospinning, nanofibrous film, relative humidity–responsive, shrimp preservation
Procedia PDF Downloads 7210933 The Optimization of Topical Antineoplastic Therapy Using Controlled Release Systems Based on Amino-functionalized Mesoporous Silica
Authors: Lacramioara Ochiuz, Aurelia Vasile, Iulian Stoleriu, Cristina Ghiciuc, Maria Ignat
Abstract:
Topical administration of chemotherapeutic agents (eg. carmustine, bexarotene, mechlorethamine etc.) in local treatment of cutaneous T-cell lymphoma (CTCL) is accompanied by multiple side effects, such as contact hypersensitivity, pruritus, skin atrophy or even secondary malignancies. A known method of reducing the side effects of anticancer agent is the development of modified drug release systems using drug incapsulation in biocompatible nanoporous inorganic matrices, such as mesoporous MCM-41 silica. Mesoporous MCM-41 silica is characterized by large specific surface, high pore volume, uniform porosity, and stable dispersion in aqueous medium, excellent biocompatibility, in vivo biodegradability and capacity to be functionalized with different organic groups. Therefore, MCM-41 is an attractive candidate for a wide range of biomedical applications, such as controlled drug release, bone regeneration, protein immobilization, enzymes, etc. The main advantage of this material lies in its ability to host a large amount of the active substance in uniform pore system with adjustable size in a mesoscopic range. Silanol groups allow surface controlled functionalization leading to control of drug loading and release. This study shows (I) the amino-grafting optimization of mesoporous MCM-41 silica matrix by means of co-condensation during synthesis and post-synthesis using APTES (3-aminopropyltriethoxysilane); (ii) loading the therapeutic agent (carmustine) obtaining a modified drug release systems; (iii) determining the profile of in vitro carmustine release from these systems; (iv) assessment of carmustine release kinetics by fitting on four mathematical models. Obtained powders have been described in terms of structure, texture, morphology thermogravimetric analysis. The concentration of the therapeutic agent in the dissolution medium has been determined by HPLC method. In vitro dissolution tests have been done using cell Enhancer in a 12 hours interval. Analysis of carmustine release kinetics from mesoporous systems was made by fitting to zero-order model, first-order model Higuchi model and Korsmeyer-Peppas model, respectively. Results showed that both types of highly ordered mesoporous silica (amino grafted by co-condensation process or post-synthesis) are thermally stable in aqueous medium. In what regards the degree of loading and efficiency of loading with the therapeutic agent, there has been noticed an increase of around 10% in case of co-condensation method application. This result shows that direct co-condensation leads to even distribution of amino groups on the pore walls while in case of post-synthesis grafting many amino groups are concentrated near the pore opening and/or on external surface. In vitro dissolution tests showed an extended carmustine release (more than 86% m/m) both from systems based on silica functionalized directly by co-condensation and after synthesis. Assessment of carmustine release kinetics revealed a release through diffusion from all studied systems as a result of fitting to Higuchi model. The results of this study proved that amino-functionalized mesoporous silica may be used as a matrix for optimizing the anti-cancer topical therapy by loading carmustine and developing prolonged-release systems.Keywords: carmustine, silica, controlled, release
Procedia PDF Downloads 26510932 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity
Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate
Abstract:
An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.Keywords: Curcumin, chitosan, nanoparticles, anticancer activity
Procedia PDF Downloads 17910931 Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery
Authors: Afsaneh Ghorbanzadeh, Afshin Farahbakhsh, Zakieh Bayat
Abstract:
The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.Keywords: drug carrier, drug release, doxorubicin, iron oxide NPs
Procedia PDF Downloads 42010930 Preparation, Characterization, and in-Vitro Drug Release Study of Methotrexate-Loaded Hydroxyapatite-Sodium Alginate Nanocomposites
Authors: Friday G. Okibe, Edit B. Agbaji, Victor O. Ajibola, Christain C. Onoyima
Abstract:
Controlled drug delivery systems reduce dose-dependent toxicity associated with potent drugs, including anticancer drugs. In this research, hydroxyapatite (HA) and hydroxyapatite-sodium alginate nanocomposites (HASA) were successfully prepared and characterized using Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The FTIR result showed absorption peaks characteristics of pure hydroxyapatite (HA), and also confirmed the chemical interaction between hydroxyapatite and sodium alginate in the formation of the composite. Image analysis from SEM revealed nano-sized hydroxyapatite and hydroxyapatite-sodium alginate nanocomposites with irregular morphologies. Particle size increased with the formation of the nanocomposites relative to pure hydroxyapatite, with no significant change in particles morphologies. Drug loading and in-vitro drug release study were carried out using synthetic body fluid as the release medium, at pH 7.4 and 37 °C and under perfect sink conditions. The result shows that drug loading is highest for pure hydroxyapatite and decreased with increasing quantity of sodium alginate. However, the release study revealed that HASA-5%wt and HASA-20%wt presented better release profile than pure hydroxyapatite, while HASA-33%wt and HASA-50%wt have poor release profiles. This shows that Methotrexate-loaded hydroxyapatite-sodium alginate if prepared under optimal conditions is a potential carrier for effective delivery of Methotrexate.Keywords: drug-delivery, hydroxyapatite, methotrexate, nanocomposites, sodium alginate
Procedia PDF Downloads 27810929 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines
Authors: N. Rajendra Prasad
Abstract:
Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release
Procedia PDF Downloads 44910928 Fabrication and Characterization of Dissolvable Microneedle Patches Using Different Compositions and Ratios of Hyaluronic Acid and Zinc Oxide Nanoparticles
Authors: Dada Kolawole Segun
Abstract:
Transdermal drug delivery has gained popularity as a non-invasive method for controlled drug release compared to traditional delivery routes. Dissolvable transdermal patches have emerged as a promising platform for delivering a variety of drugs due to their ease of use. The objective of this research was to create and characterize dissolvable transdermal patches using various compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. A micromolding technique was utilized to fabricate the patches, which were subsequently characterized using scanning electron microscopy, atomic force microscopy, and tensile strength testing. In vitro drug release studies were conducted to evaluate the drug release kinetics of the patches. The study found that the mechanical strength and dissolution properties of the patches were influenced by the hyaluronic acid and zinc oxide nanoparticle ratios used in the fabrication process. Moreover, the patches demonstrated controlled delivery of model drugs through the skin, highlighting their potential for transdermal drug delivery applications. The results suggest that dissolvable transdermal patches can be tailored to meet specific requirements for drug delivery applications using different compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. This development has the potential to improve treatment outcomes and patient compliance in various therapeutic areas.Keywords: transdermal drug delivery, characterization, skin permeation, biodegradable materials
Procedia PDF Downloads 9210927 Effect of Mechanical Loading on the Delamination of Stratified Composite in Mode I
Authors: H. Achache, Y. Madani, A. Benzerdjeb
Abstract:
The present study is based on the three-dimensional digital analysis by the finite elements method of the mechanical loading effect on the delamination of unidirectional and multidirectional stratified composites. The aim of this work is the determination of the release energy rate G in mode I and the Von Mises equivalent constraint distribution along the damaged area under the influence of several parameters such as the applied load and the delamination size. The results obtained in this study show that the unidirectional composite laminates have better mechanical resistance one the loading line than the multidirectional composite laminates.Keywords: delamination, release energy rate, stratified composite, finite element method, ply
Procedia PDF Downloads 42510926 Experimental Modeling and Simulation of Zero-Surface Temperature of Controlled Water Jet Impingement Cooling System for Hot-Rolled Steel Plates
Authors: Thomas Okechukwu Onah, Onyekachi Marcel Egwuagu
Abstract:
Zero-surface temperature, which controlled the cooling profile, was modeled and used to investigate the effect of process parameters on the hot-rolled steel plates. The parameters include impingement gaps of 40mm to 70mm; pipe diameters of 20mm to 45mm feeding jet nozzle with 30 holes of 8mm diameters each; and flow rates within 2.896x10-⁶m³/s and 3.13x10-⁵m³/s. The developed simulation model of the Zero-Surface Temperature, upon validation, showed 99% prediction accuracy with dimensional homogeneity established. The evaluated Zero-Surface temperature of Controlled Water Jet Impingement Steel plates showed a high cooling rate of 36.31 Celsius degree/sec at an optimal cooling nozzle diameter of 20mm, impingement gap of 70mm and a flow rate of 1.77x10-⁵m³/s resulting in Reynold's number 2758.586, in the turbulent regime was obtained. It was also deduced that as the nozzle diameter was increasing, the impingement gap was reducing. This achieved a faster rate of cooling to an optimum temperature of 300oC irrespective of the starting surface cooling temperature. The results additionally showed that with a tested-plate initial temperature of 550oC, a controlled cooling temperature of about 160oC produced a film and nucleated boiling heat extraction that was particularly beneficial at the end of controlled cooling and influenced the microstructural properties of the test plates.Keywords: temperature, mechanistic-model, plates, impingements, dimensionless-numbers
Procedia PDF Downloads 5010925 Development of an Erodable Matrix Drug Delivery Platform for Controled Delivery of Non Steroidal Anti Inflamatory Drugs Using Melt Granulation Process
Authors: A. Hilsana, Vinay U. Rao, M. Sudhakar
Abstract:
Even though a number of non-steroidal anti-inflammatory drugs (NSAIDS) are available with different chemistries, they share a common solubility characteristic that is they are relatively more soluble in alkaline environment and practically insoluble in acidic environment. This work deals with developing a wax matrix drug delivery platform for controlled delivery of three model NSAIDS, Diclofenac sodium (DNa), Mefenamic acid (MA) and Naproxen (NPX) using the melt granulation technique. The aim of developing the platform was to have a general understanding on how an erodible matrix system modulates drug delivery rate and extent and how it can be optimized to give a delivery system which shall release the drug as per a common target product profile (TPP). Commonly used waxes like Cetostearyl alcohol and stearic acid were used singly an in combination to achieve a TPP of not 15 to 35% in 1 hour and not less than 80% Q in 24 hours. Full factorial design of experiments was followed for optimization of the formulation.Keywords: NSAIDs, controlled delivery, target product profile, melt granulation
Procedia PDF Downloads 33410924 Controlled Release of Curcumin from a Thermoresponsive Polypeptide Hydrogel for Anti-Tumor Therapy
Authors: Chieh-Nan Chen, Ji-Yu Lin, I-Ming Chu
Abstract:
Polypeptide thermosensitive hydrogel is an excellent candidate as a smart device to deliver drugs and cells due to its remarkable biocompatibility, low gelation concentration, and respond to temperature stimuli, it can be easily injected as a polymer solution into the patient’s body where it undergoes gelation due to an elevation in temperature. Poly (ethylene glycol) monomethyl ether-poly (ethyl-l-glutamate) (mPEG-PELG) contains a hydrophobic side chain –C2H5 which is useful in encapsulating and stabilizing hydrophobic drugs. In this study, we plan to focus on the hydrophobic anti-carcinogenic and anti-inflammatory drug curcumin, which due its insolubility in water, requires a proper carrier for delivery into the body. Our main concept is to use mPEG-PELG to stabilize curcumin, inject the curcumin-loaded hydrogel into the tumor site, and allow the enzymatically-sensitive hydrogel to be degraded by bodily fluids and release the drug. The polymers of interest have been successfully synthesized and characterized by 1H-NMR, FT-IR, SEM, and CMC. Curcumin loading content and drug release were assayed using HPLC. Preliminary results show that these materials have potential as a delivery vehicle for poorly soluble drugs.Keywords: curcumin, drug release, hydrogel, polypeptide material
Procedia PDF Downloads 29510923 Modification of Titanium Surfaces with Micro/Nanospheres for Local Antibiotic Release
Authors: Burcu Doymus, Fatma N. Kok, Sakip Onder
Abstract:
Titanium and titanium-based materials are commonly used to replace or regenerate the injured or lost tissues because of accidents or illnesses. Hospital infections and strong bond formation at the implant-tissue interface are directly affecting the success of the implantation as weak bonding with the native tissue and hospital infections lead to revision surgery. The purpose of the presented study is to modify the surface of the titanium substrates with nano/microspheres for local drug delivery and to prevent hospital infections. Firstly, titanium surfaces were silanized with APTES (3-Triethoxysilylpropylamine) following the negatively charged oxide layer formation. Then characterization studies using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were done on the modified surfaces. Secondly, microspheres/nanospheres were prepared with chitosan that is a natural polymer and having valuable properties such as non-toxicity, high biocompatibility, low allergen city and biodegradability for biomedical applications. Antibiotic (ciprofloxacin) loaded micro/nanospheres have been fabricated using emulsion cross-linking method and have been immobilized onto the titanium surfaces with different immobilization techniques such as covalent bond and entrapment. Optimization studies on size and drug loading capacities of micro/nanospheres were conducted before the immobilization process. Light microscopy and SEM were used to visualize and measure the size of the produced micro/nanospheres. Loaded and released drug amounts were determined by using UV- spectrophotometer at 278 nm. Finally, SEM analysis and drug release studies on the micro/nanospheres coated Ti surfaces were done. As a conclusion, it was shown that micro/nanospheres were immobilized onto the surfaces successfully and drug release from these surfaces was in a controlled manner. Moreover, the density of the micro/nanospheres after the drug release studies was higher on the surfaces where the entrapment technique was used for immobilization. Acknowledgement: This work is financially supported by The Scientific and Technological Research Council Of Turkey (Project # 217M220)Keywords: chitosan, controlled drug release, nanosphere, nosocomial infections, titanium
Procedia PDF Downloads 12910922 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections
Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh
Abstract:
Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.Keywords: delay, saturation flow, signalised intersection, vehicle composition
Procedia PDF Downloads 46710921 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time
Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar
Abstract:
The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors
Procedia PDF Downloads 7610920 Controlling the Release of Cyt C and L- Dopa from pNIPAM-AAc Nanogel Based Systems
Authors: Sulalit Bandyopadhyay, Muhammad Awais Ashfaq Alvi, Anuvansh Sharma, Wilhelm R. Glomm
Abstract:
Release of drugs from nanogels and nanogel-based systems can occur under the influence of external stimuli like temperature, pH, magnetic fields and so on. pNIPAm-AAc nanogels respond to the combined action of both temperature and pH, the former being mostly determined by hydrophilic-to-hydrophobic transitions above the volume phase transition temperature (VPTT), while the latter is controlled by the degree of protonation of the carboxylic acid groups. These nanogels based systems are promising candidates in the field of drug delivery. Combining nanogels with magneto-plasmonic nanoparticles (NPs) introduce imaging and targeting modalities along with stimuli-response in one hybrid system, thereby incorporating multifunctionality. Fe@Au core-shell NPs possess optical signature in the visible spectrum owing to localized surface plasmon resonance (LSPR) of the Au shell, and superparamagnetic properties stemming from the Fe core. Although there exist several synthesis methods to control the size and physico-chemical properties of pNIPAm-AAc nanogels, yet, there is no comprehensive study that highlights the dependence of incorporation of one or more layers of NPs to these nanogels. In addition, effective determination of volume phase transition temperature (VPTT) of the nanogels is a challenge which complicates their uses in biological applications. Here, we have modified the swelling-collapse properties of pNIPAm-AAc nanogels, by combining with Fe@Au NPs using different solution based methods. The hydrophilic-hydrophobic transition of the nanogels above the VPTT has been confirmed to be reversible. Further, an analytical method has been developed to deduce the average VPTT which is found to be 37.3°C for the nanogels and 39.3°C for nanogel coated Fe@Au NPs. An opposite swelling –collapse behaviour is observed for the latter where the Fe@Au NPs act as bridge molecules pulling together the gelling units. Thereafter, Cyt C, a model protein drug and L-Dopa, a drug used in the clinical treatment of Parkinson’s disease were loaded separately into the nanogels and nanogel coated Fe@Au NPs, using a modified breathing-in mechanism. This gave high loading and encapsulation efficiencies (L Dopa: ~9% and 70µg/mg of nanogels, Cyt C: ~30% and 10µg/mg of nanogels respectively for both the drugs. The release kinetics of L-Dopa, monitored using UV-vis spectrophotometry was observed to be rather slow (over several hours) with highest release happening under a combination of high temperature (above VPTT) and acidic conditions. However, the release of L-Dopa from nanogel coated Fe@Au NPs was the fastest, accounting for release of almost 87% of the initially loaded drug in ~30 hours. The chemical structure of the drug, drug incorporation method, location of the drug and presence of Fe@Au NPs largely alter the drug release mechanism and the kinetics of these nanogels and Fe@Au NPs coated with nanogels.Keywords: controlled release, nanogels, volume phase transition temperature, l-dopa
Procedia PDF Downloads 33310919 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients
Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska
Abstract:
Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers
Procedia PDF Downloads 17810918 Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Zero Order Release of Vildagliptin
Authors: Hend Ben Tkhayat , Khaled Al Zahabi, Husam Younes
Abstract:
Introduction: Vildagliptin (VG), a dipeptidyl peptidase-4 inhibitor (DPP-4), was proven to be an active agent for the treatment of type 2 diabetes. VG works by enhancing and prolonging the activity of incretins which improves insulin secretion and decreases glucagon release, therefore lowering blood glucose level. It is usually used with various classes, such as insulin sensitizers or metformin. VG is currently only marketed as an immediate-release tablet that is administered twice daily. In this project, we aim to formulate an extended-release with a zero-order profile tableted lipid microparticles of VG that could be administered once daily ensuring the patient’s convenience. Method: The spray-congealing technique was used to prepare VG microparticles. Compritol® was heated at 10 oC above its melting point and VG was dispersed in the molten carrier using a homogenizer (IKA T25- USA) set at 13000 rpm. VG dispersed in the molten Compritol® was added dropwise to the molten Gelucire® 50/13 and PEG® (400, 6000, and 35000) in different ratios under manual stirring. The molten mixture was homogenized and Carbomer® amount was added. The melt was pumped through the two-fluid nozzle of the Buchi® Spray-Congealer (Buchi B-290, Switzerland) using a Pump drive (Master flex, USA) connected to a silicone tubing wrapped with silicone heating tape heated at the same temperature of the pumped mix. The physicochemical properties of the produced VG-loaded microparticles were characterized using Mastersizer, Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC) and X‐Ray Diffractometer (XRD). VG microparticles were then pressed into tablets using a single punch tablet machine (YDP-12, Minhua pharmaceutical Co. China) and in vitro dissolution study was investigated using Agilent Dissolution Tester (Agilent, USA). The dissolution test was carried out at 37±0.5 °C for 24 hours in three different dissolution media and time phases. The quantitative analysis of VG in samples was realized using a validated High-Pressure Liquid Chromatography (HPLC-UV) method. Results: The microparticles were spherical in shape with narrow distribution and smooth surface. DSC and XRD analyses confirmed the crystallinity of VG that was lost after being incorporated into the amorphous polymers. The total yields of the different formulas were between 70% and 80%. The VG content in the microparticles was found to be between 99% and 106%. The in vitro dissolution study showed that VG was released from the tableted particles in a controlled fashion. The adjustment of the hydrophilic/hydrophobic ratio of excipients, their concentration and the molecular weight of the used carriers resulted in tablets with zero-order kinetics. The Gelucire 50/13®, a hydrophilic polymer was characterized by a time-dependent profile with an important burst effect that was decreased by adding Compritol® as a lipophilic carrier to retard the release of VG which is highly soluble in water. PEG® (400,6000 and 35 000) were used for their gelling effect that led to a constant rate delivery and achieving a zero-order profile. Conclusion: Tableted spray-congealed lipid microparticles for extended-release of VG were successfully prepared and a zero-order profile was achieved.Keywords: vildagliptin, spray congealing, microparticles, controlled release
Procedia PDF Downloads 12310917 Pain Management in Burn Wounds with Dual Drug Loaded Double Layered Nano-Fiber Based Dressing
Authors: Sharjeel Abid, Tanveer Hussain, Ahsan Nazir, Abdul Zahir, Nabyl Khenoussi
Abstract:
Localized application of drug has various advantages and fewer side effects as compared with other methods. Burn patients suffer from swear pain and the major aspects that are considered for burn victims include pain and infection management. Nano-fibers (NFs) loaded with drug, applied on local wound area, can solve these problems. Therefore, this study dealt with the fabrication of drug loaded NFs for better pain management. Two layers of NFs were fabricated with different drugs. Contact layer was loaded with Gabapentin (a nerve painkiller) and the second layer with acetaminophen. The fabricated dressing was characterized using scanning electron microscope, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction and UV-Vis Spectroscopy. The double layered based NFs dressing was designed to have both initial burst release followed by slow release to cope with pain for two days. The fabricated nanofibers showed diameter < 300 nm. The liquid absorption capacity of the NFs was also checked to deal with the exudate. The fabricated double layered dressing with dual drug loading and release showed promising results that could be used for dealing pain in burn victims. It was observed that by the addition of drug, the size of nanofibers was reduced, on the other hand, the crystallinity %age was increased, and liquid absorption decreased. The combination of fast nerve pain killer release followed by slow release of non-steroidal anti-inflammatory drug could be a good tool to reduce pain in a more secure manner with fewer side effects.Keywords: pain management, burn wounds, nano-fibers, controlled drug release
Procedia PDF Downloads 25310916 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer
Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez
Abstract:
Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer
Procedia PDF Downloads 18410915 Novel IPN Hydrogel Beads as pH Sensitive Drug Delivery System for an Anti-Ulcer Drug
Authors: Vishal Kumar Gupta
Abstract:
Purpose: This study has been undertaken to develop novel pH sensitive interpenetrating network hydrogel beads. Methods: The pH sensitive PAAM-g-Guar gum copolymer was synthesized by free radical polymerization followed by alkaline hydrolysis. Beads of guar gum-grafted-polyacrylamide and sodium Carboxy methyl cellulose (Na CMC) loaded with Pantoprazole sodium were prepared and evaluated for pH sensitivity, swelling properties, drug entrapment efficiency and in vitro drug release characteristics. Seven formulations were prepared for the drug with varying polymer and cross linker concentrations. Results: The grafting and alkaline hydrolysis reactions were confirmed by FT-IR spectroscopy. Differential scanning calorimetry was carried out to know the compatibility of encapsulated drug with the polymers. Scanning electron microscopic study revealed that the IPN beads were spherical. The entrapment efficiency was found to be in the range of 85-92%. Particle size analysis was carried out by optical microscopy. As the pH of the medium was changed from 1.2 to 7.4, a considerable increase in swelling was observed for all beads. Increase in the copolymer concentration showed sustained the drug release up to 12 hrs. Drug release from the beads followed super case II transport mechanism. Conclusion: It was concluded that guar gum-acrylamide beads, cross-linked with aluminum chloride offer an opportunity for controlled drug release of pantoprazole sodium.Keywords: IPN, hydrogels, DSC, SEM
Procedia PDF Downloads 27110914 Numerical Simulation of Production of Microspheres from Polymer Emulsion in Microfluidic Device toward Using in Drug Delivery Systems
Authors: Nizar Jawad Hadi, Sajad Abd Alabbas
Abstract:
Because of their ability to encapsulate and release drugs in a controlled manner, microspheres fabricated from polymer emulsions using microfluidic devices have shown promise for drug delivery applications. In this study, the effects of velocity, density, viscosity, and surface tension, as well as channel diameter, on microsphere generation were investigated using Fluent Ansys software. The software was programmed with the physical properties of the polymer emulsion such as density, viscosity and surface tension. Simulation will then be performed to predict fluid flow and microsphere production and improve the design of drug delivery applications based on changes in these parameters. The effects of capillary and Weber numbers are also studied. The results of the study showed that the size of the microspheres can be controlled by adjusting the speed and diameter of the channel. Narrower microspheres resulted from narrower channel widths and higher flow rates, which could improve drug delivery efficiency, while smaller microspheres resulted from lower interfacial surface tension. The viscosity and density of the polymer emulsion significantly affected the size of the microspheres, ith higher viscosities and densities producing smaller microspheres. The loading and drug release properties of the microspheres created with the microfluidic technique were also predicted. The results showed that the microspheres can efficiently encapsulate drugs and release them in a controlled manner over a period of time. This is due to the high surface area to volume ratio of the microspheres, which allows for efficient drug diffusion. The ability to tune the manufacturing process using factors such as speed, density, viscosity, channel diameter, and surface tension offers a potential opportunity to design drug delivery systems with greater efficiency and fewer side effects.Keywords: polymer emulsion, microspheres, numerical simulation, microfluidic device
Procedia PDF Downloads 6710913 Release Management with Continuous Delivery: A Case Study
Authors: A. Maruf Aytekin
Abstract:
We present our approach on using continuous delivery pattern for release management. One of the key practices of agile and lean teams is the continuous delivery of new features to stakeholders. The main benefits of this approach lie in the ability to release new applications rapidly which has real strategic impact on the competitive advantage of an organization. Organizations that successfully implement Continuous Delivery have the ability to evolve rapidly to support innovation, provide stable and reliable software in more efficient ways, decrease the amount of resources need for maintenance, and lower the software delivery time and costs. One of the objectives of this paper is to elaborate a case study where IT division of Central Securities Depository Institution (MKK) of Turkey apply Continuous Delivery pattern to improve release management process.Keywords: automation, continuous delivery, deployment, release management
Procedia PDF Downloads 25810912 Poly (L-Lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Its Applications in Controlled Release of Drug Molecules
Authors: Indu Verma, Santanu Kumar Pal
Abstract:
Interactions between DNA and adsorbed Poly (L-lysine) (PLL) on liquid crystal (LC) droplets were investigated using polarizing optical microcopy (POM) and epi-fluorescence microscopy. Earlier, we demonstrated that adsorption of PLL to the LC/aqueous interface resulted in homeotropic orientation of the LC and thus exhibited a radial configuration of the LC confined within the droplets. Subsequent adsorption of DNA (single stranded DNA/double stranded DNA) at PLL coated LC droplets was found to trigger a LC reorientation within the droplets leading to pre-radial/bipolar configuration of those droplets. To our surprise, subsequent exposure of complementary ssDNA (c-ssDNA) to ssDNA/ adsorbed PLL modified LC droplets did not cause the LC reorientation. This is likely due to the formation of polyplexes (DNA-PLL complex) as confirmed by fluorescence microscopy and atomic force microscopy. In addition, dsDNA adsorbed PLL droplets have been found to be effectively used to displace (controlled release) propidium iodide (a model drug) encapsulated within dsDNA over time. These observations suggest the potential for a label free droplet based LC detection system that can respond to DNA and may provide a simple method to develop DNA-based drug nano-carriers.Keywords: DNA biosensor, drug delivery, interfaces, liquid crystal droplets
Procedia PDF Downloads 30110911 Sequential Release of Dual Drugs Using Thermo-Sensitive Hydrogel for Tumor Vascular Inhibition and to Enhance the Efficacy of Chemotherapy
Authors: Haile F. Darge, Hsieh C. Tsai
Abstract:
The tumor microenvironment affects the therapeutic outcomes of cancer disease. In a malignant tumor, overexpression of vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks. This results in a hostile tumor environment that hinders anti-cancer drug activities and profoundly fuels tumor progression. In this study, we develop a strategy of sequential sustain release of the anti-angiogenic drug: Bevacizumab(BVZ), and anti-cancer drug: Doxorubicin(DOX) which had a synergistic effect on cancer treatment. Poly (D, L-Lactide)- Poly (ethylene glycol) –Poly (D, L-Lactide) (PDLLA-PEG-PDLLA) thermo-sensitive hydrogel was used as a vehicle for local delivery of drugs in a single platform. The in vitro release profiles of the drugs were investigated and confirmed a relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) for a prolonged period. The cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. The in vivo study on Hela xenograft nude mice verified that hydrogel co-loaded with BVZ and DOX displayed the highest tumor suppression efficacy for up to 36 days with pronounce anti-angiogenic effect of BVZ and with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drugs by the hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.Keywords: anti-angiogenesis, chemotherapy, controlled release, thermo-sensitive hydrogel
Procedia PDF Downloads 135