Search results for: catalyst performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13421

Search results for: catalyst performance

13361 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 124
13360 Effect of Catalyst on Castor Oil Based Polyurethane with Different Hard/Soft Segment Ratio

Authors: Swarnalata Sahoo, Smita Mohanty, S. K. Nayak

Abstract:

Environmentally friendly Polyurethane(PU) synthesis from Castor oil(CO) has been studied extensively. Probably due to high proportion of fatty hydroxy acids and unsaturated bond, CO showed better performance than other oil, can be easily utilized as commercial applications. In this work, cured PU polymers having different –NCO/OH ratio with and without catalyst were synthesized by using partially biobased Isocyanate with castor oil (CO). Curing time has been studied by observing at the time of reaction, which can be confirmed by AT-FTIR. DSC has been studied to monitor the reaction between CO & Isocyanates using non Isothermal process. Curing kinetics have also been studied to investigate the catalytic effect of the NCO / OH ratio of Polyurethane. Adhesion properties were evaluated from Lapshear test. Tg of the PU polymer was evaluated by DSC which can be compared by DMA. Surface Properties were studied by contact angle measurement. Improvement of the interfacial adhesion between the nonpolar surface of Aluminum substrate and the polar adhesive has been studied by modifying surface.

Keywords: polyurethane, partially bio-based isocyanate, castor oil, catalyst

Procedia PDF Downloads 450
13359 Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst

Authors: S. F. H. Tasfy, N. A. M. Zabidi, M. S. Shaharun

Abstract:

Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO2 to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO2 to methanol in microactivity fixed-bed reactor at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H2 and CO2 and accelerate the CO2 conversion, resulting in higher methanol production under mild reaction conditions.

Keywords: hydrogenation of carbon dioxide, methanol synthesis, Cu/ZnO-based catalyst, mesoporous silica (SBA-15), metal ratio

Procedia PDF Downloads 250
13358 Photocatalytic Conversion of Water/Methanol Mixture into Hydrogen Using Cerium/Iron Oxides Based Structures

Authors: Wael A. Aboutaleb, Ahmed M. A. El Naggar, Heba M. Gobara

Abstract:

This research work reports the photocatalytic production of hydrogen from water-methanol mixture using three different 15% ceria/iron oxide catalysts. The catalysts were prepared by physical mixing, precipitation, and ultrasonication methods and labeled as catalysts A-C. The structural and texture properties of the obtained catalysts were confirmed by X-ray diffraction (XRD), BET-surface area analysis and transmission electron microscopy (TEM). The photocatalytic activity of the three catalysts towards hydrogen generation was then tested. Promising hydrogen productivity was obtained by the three catalysts however different gases compositions were obtained by each type of catalyst. Specifically, catalyst A had produced hydrogen mixed with CO₂ while the composite structure (catalyst B) had generated only pure H₂. In the case of catalyst C, syngas made of H₂ and CO was revealed, as a novel product, for the first time, in such process.

Keywords: hydrogen production, water splitting, photocatalysts, clean energy

Procedia PDF Downloads 240
13357 Synergistic Effect of Zr-Modified Cu-ZnO-Al₂O₃ and Bio-Templated HZSM-5 Catalysts in CO₂ Hydrogenation to Methanol and DME

Authors: Abrar Hussain, Kuen-Song Lin, Sayed Maeen Badshah, Jamshid Hussain

Abstract:

The conversion of CO₂ into versatile, useful compounds such as fuels and other chemicals remains a challenging frontier in research, demanding the innovation of increasingly effective catalysts. In the present work, a catalyst-incorporating zirconium (Zr) modification within CuO–ZnO–Al₂O₃ (CZA) was synthesized via a co-precipitation method to convert CO₂ into methanol. Furthermore, bio-HZSM-5 was used to promote methanol dehydration to produce dimethyl ether (DME). We prepared the porous hierarchy bio-HZSM-5 with remarkable pore connectivity by utilizing an economical loofah sponge and rice husks as biotemplates. The synthesized catalysts were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), X–ray diffraction (XRD), N₂ adsorption (BET), temperature-programmed desorption (NH₃-TPD) and thermogravimetric analysis (TGA). The Zr addition improved the performance of the CZZA catalyst as a structural promoter, leading to increased DME selectivity and total carbon conversion by enhancing active sites, surface area, and the synergistic interfaces between CuO and ZnO. The presence of silicon in the biomass, notably from the loofah sponge (0.016 wt %) and rice husks (8.3 wt %), also performed a pivotal role in the preparation of bio-HZSM-5. Furthermore, contrasted to the CZZA/com-ZSM-5 catalyst, the integration of CZZA with bio-HZSM-5-L bifunctional catalyst achieved the highest DME yield (12.1 %), DME selectivity (58.6%), CO₂ conversion (22.5%) at 280 °C and 30 bar. The payback time for 5 and 10-tons per day (5 and10-TPD) DME formation using the catalytic process of CO₂ from petrochemical refinery plant waste gas emissions was 2.98 and 2.44 years, respectively.

Keywords: Cost assessment, Dimethyl ether, low-cost bio-HZSM-5, CZZA catalyst, CO₂ hydrogenation

Procedia PDF Downloads 10
13356 Effect of Catalyst Preparation Method on Dry Reforming of Methane with Supported and Promoted Catalysts

Authors: Sanjay P. Gandhi, Sanjay S. Patel

Abstract:

Dry (CO2) reforming of methane (DRM) is both scientific and industrial importance. In recent decades, CO2 utilization has become increasingly important in view of the escalating global warming phenomenon. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer–Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800–1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The catalysts used are often composed of transition Methods like Nickel, supported on metallic and non-metallic oxides such as alumina and silica. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. CO2 reforming methane over promoted catalyst was studied. The influence of ZrO2, CeO2 and the behavior of Ni-Al2O3 Catalyst, prepare by wet-impregnation and Co-precipitated method was studied. XRD, BET Analysis for different promoted and unprompted Catalyst was studied.

Keywords: CO2 reforming of methane, Ni catalyst, promoted and unprompted catalyst, effect of catalyst preparation

Procedia PDF Downloads 471
13355 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 123
13354 Atomic Layer Deposition of MoO₃ on Mesoporous γ-Al₂O₃ Prepared by Sol-Gel Method as Efficient Catalyst for Oxidative Desulfurization of Refractory Dibenzothiophene Compound

Authors: S. Said, Asmaa A. Abdulrahman

Abstract:

MoOₓ/Al₂O₃ based catalyst has long been widely used as an active catalyst in oxidative desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 & 9wt.% MoO₃ grafted on mesoporous γ-Al₂O₃ has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO₃/Al₂O₃ sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal-support interaction was evaluated using different characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N₂-physisorption, transmission electron microscopy (TEM), H₂- temperature-programmed reduction and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 wt.%MoO₃/Al₂O₃ (ALD) catalyst in the ODS reaction of model fuel oil shows enhanced catalytic performance with ~90%, which has been attributed to the more Mo⁶⁺ surface concentrations relative to Al³⁺ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo first-order rate reaction.

Keywords: mesoporous Al₂O₃, xMoO₃/Al₂O₃, atomic layer deposition, wetness impregnation, ODS, DBT

Procedia PDF Downloads 103
13353 A Ti₃C₂O₂ Supported Single Atom, Trifunctional Catalyst for Electrochemical Reactions

Authors: Zhanzhao Fu, Chongyi Ling, Jinlan Wang

Abstract:

Water splitting and rechargeable air-based batteries are emerging as new renewable energy storage and conversion technologies. However, the discovery of suitable catalysts with high activity and low cost remains a great challenge. In this work, we report a single-atom trifunctional catalyst, namely Ti₃C₂O₂ supported single Pd atom (Pd1@Ti₃C₂O₂), for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). This catalyst is selected from 12 candidates and possesses low overpotentials of 0.22 V, 0.31 V and 0.34 V for the HER, OER and ORR, respectively, making it an excellent electrocatalyst for both overall water splitting and rechargeable air-based batteries. The superior OER and ORR performance originates from the optimal d band center of the supported Pd atom. Moreover, the excellent activity can be maintained even if the single Pd atoms aggregate into small clusters. This work offers new opportunities for advancing the renewable energy storage and conversion technologies and paves a new way for the development of multifunctional electrocatalysts.

Keywords: DFT, SACs, OER, ORR, HER

Procedia PDF Downloads 76
13352 The Study and the Use of the Bifunctional Catalyst Pt/Re for Obtaining High Octane Number of the Gasoline

Authors: Menouar Hanafi

Abstract:

The original function of the process of platforming is to develop heavy naphtha (HSRN), coming from the atmospheric unit of distillation with a weak octane number (NO=44), to obtain a mixture of fuels â number octane raised by catalytically supporting specific groups of chemical reactions. The installation is divided into two sections: Section hydrobon. Section platforming. The rafinat coming from the bottom of column 12C2 to feed the section platforming, is divided into two parts whose flows are controlled and mixed with gas rich in hydrogen. Bottom of the column, we obtain stabilized reformat which is aspired by there pump to ensure the heating of the column whereas a part is sent towards storage after being cooled by the air cooler and the condenser. In catalytic catalyst of reforming, there is voluntarily associated a hydrogenating function-dehydrogenating, brought by platinum deposited, with an acid function brought by the alumina support (Al 2 0 3). The mechanism of action of this bifunctional catalyst depends on the severity of the operation, of the quality of the load and the type of catalyst. The catalyst used in the catalytic process of reforming is a very elaborate bifunctional catalyst whose performances are constantly improved thanks to the experimental research supported on an increasingly large comprehension of the phenomena. The American company Universel 0i1 petroleum (UOP) marketed several series of bimetallic catalysts such as R16, R20, R30, and R62 consisted Platinum/Rhenium on an acid support consisted the alumina added with a halogenous compound (chlorine).

Keywords: platforming, amelioration, octane number, catalyst

Procedia PDF Downloads 386
13351 Investigation of the Thermal Flow inside the Catalytic Combustor for Lean CH4-Air Mixture on a Platinum Catalyst with H2 Addition

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

In order to elaborate the main idea of investigating the flow physics inside the catalytic combustor, the characteristics of the catalytic surface reactions are analyzed by employing the CHEMKIN methodology with detailed gas and surface chemistries. The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promotes desired chemical reactions. A single channel from the honeycomb monolith catalytic combustor is preferred to analyze the gas and surface reactions in the catalyst bed considering the fact that every channel in the honeycomb monolith behaves in similar fashion. The simplified approach with single catalyst channel using plug flow reactor can be used to predict the flow behavior inside the catalytic combustor. The hydrogen addition to the combustion reactants offers a way to light-off catalytic combustion of methane on platinum catalyst and aids to reduce the surface ignition temperature. Indeed, the hydrogen adsorption is higher on the uncovered Pt(s) surface sites because the sticking coefficient of hydrogen is larger than that of methane. The location of flame position in the catalyst bed is validated by igniting the methane fuel with the presence of hydrogen for corresponding multistep surface reactions.

Keywords: catalytic combustor, hydrogen adsorption, plug flow reactor, surface ignition temperature

Procedia PDF Downloads 348
13350 Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst

Authors: Muhammad Ayoub, Abrar Inayat, Bhajan Lal, Sintayehu Mekuria Hailegiorgis

Abstract:

Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst.

Keywords: palm oil, transestrefication, clay, biodiesel, mesoporous clay, K-10

Procedia PDF Downloads 394
13349 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell

Authors: Abidullah, Basharat Hussain, Jong Seok Kim

Abstract:

Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.

Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs

Procedia PDF Downloads 125
13348 Catalytic Pyrolysis of Barley Straw for the Production of Fuels and Chemicals

Authors: Funda Ates

Abstract:

Primary energy sources, such as petroleum, coal and natural gas are principle responsible of world’s energy consumption. However, the rapid worldwide increase in the depletion of these energy sources is remarkable. In addition to this, they have damaging environmentally effect. Renewable energy sources are capable of providing a considerable fraction of World energy demand in this century. Biomass is one of the most abundant and utilized sources of renewable energy in the world. It can be converted into commercial fuels, suitable to substitute for fossil fuels. A high number of biomass types can be converted through thermochemical processes into solid, liquid or gaseous fuels. Pyrolysis is the thermal decomposition of biomass in the absence of air or oxygen. In this study, barley straw has been investigated as an alternative feedstock to obtain fuels and chemicals via pyrolysis in fixed-bed reactor. The influence of pyrolysis temperature in the range 450–750 °C as well as the catalyst effects on the products was investigated and the obtained results were compared. The results indicated that a maximum oil yield of 20.4% was obtained at a moderate temperature of 550 °C. Oil yield decreased by using catalyst. Pyrolysis oils were examined by using instrumental analysis and GC/MS. Analyses revealed that the pyrolysis oils were chemically very heterogeneous at all temperatures. It was determined that the most abundant compounds composing the bio-oil were phenolics. Catalyst decreased the reaction temperature. Most of the components obtained using a catalyst at moderate temperatures was close to those obtained at high temperatures without using a catalyst. Moreover, the use of a catalyst also decreased the amount of oxygenated compounds produced.

Keywords: Barley straw, pyrolysis, catalyst, phenolics

Procedia PDF Downloads 225
13347 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production

Authors: N. Laosiripojana, P. Tepamatr

Abstract:

The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.

Keywords: bismuth, platinum, water gas shift, ceria

Procedia PDF Downloads 348
13346 Biodiesel Production Using Eggshells as a Catalyst

Authors: Ieva Gaide, Violeta Makareviciene

Abstract:

Increasing environmental pollution is caused by various factors, including the usage of vehicles. Legislation is focused on the increased usage of renewable energy sources for fuel production. Electric car usage is also important; however, it is relatively new and expensive transport. It is necessary to increase the amount of renewable energy in the production of diesel fuel, whereas many agricultural machineries are powered by diesel, as are water vehicles. For this reason, research on biodiesel production is relevant. The majority of studies globally are related to the improvement of conventional biofuel production technologies by applying the transesterification process of oil using alcohol and catalyst. Some of the more recent methods to produce biodiesel are based on heterogeneous catalysis, which has the advantage of easy separation of catalyst from the final product. It is known that a large amount of eggshells is treated as waste; therefore, it is eliminated in landfills without any or with minimal pre-treatment. CaO, which is known as a good catalyst for biodiesel synthesis, is a key component of eggshells. In the present work, we evaluated the catalytic efficiency of eggshells and determined the optimal transesterification conditions to obtain biodiesel that meets the standards. Content CaO in eggshells was investigated. Response surface methodology was used to determine the optimal reaction conditions. Three independent variables were investigated: the molar ratio of alcohol to oil, the amount of the catalyst, and the duration of the reaction. It was obtained that the optimum transesterification conditions when the methanol and eggshells as a heterogeneous catalyst are used and the process temperature is 64°C are the following: the alcohol-to-oil molar ratio 10.93:1, the reaction duration 9.48 h, and the catalyst amount 6.80 wt%. Under these conditions, 97.79 wt% of the ester yield was obtained.

Keywords: heterogeneous catalysis, eggshells, biodiesel, oil

Procedia PDF Downloads 120
13345 Role of NaOH in the Synthesis of Waste-derived Solid Hydroxy Sodalite Catalyst for the Transesterification of Waste Animal Fat to Biodiesel

Authors: Thomas Chinedu Aniokete, Gordian Onyebuchukwu Mbah, Michael Daramola

Abstract:

A sustainable NaOH integrated hydrothermal protocol was developed for the synthesis of waste-derived hydroxy sodalite catalysts for transesterification of waste animal fat (WAF) with a high per cent free fatty acid (FFA) to biodiesel. In this work, hydroxy sodalite catalyst was synthesized from two complex waste materials namely coal fly ash (CFA) and waste industrial brine (WIB). Measured amounts of South African CFA and WIB obtained from a coal mine field were mixed with NaOH solution at different concentrations contained in secured glass vessels equipped with magnetic stirrers and formed consistent slurries after aging condition at 47 oC for 48 h. The slurries were then subjected to hydrothermal treatments at 140 oC for 48 h, washed thoroughly and separated by the action of a centrifuge on the mixture. The resulting catalysts were calcined in a muffle furnace for 2 h at 200 oC and subsequently characterized for different effects using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and Bennett Emmet Teller (BET) adsorption-desorption techniques. The produced animal fat methyl ester (AFME) was analyzed using the gas chromatography-mass spectrometry (GC-MS) method. Results of the investigation indicate profoundly an enhanced catalyst purity, textural property and desired morphology due to the action of NaOH. Similarly, the performance evaluation with respect to catalyst activity reveals a high catalytic conversion efficiency of 98 % of the high FFA WAF to biodiesel under the following reaction conditions; a methanol-to-WAF ratio of 15:1, amount of SOD catalyst of 3 wt % with a stirring speed of 300-500 rpm, a reaction temperature of 60 oC and a reaction time of 8 h. There was a recovered 96 % stable catalyst after reactions and potentially recyclable, thus contributing to the economic savings to the process that had been a major bottleneck to the production of biodiesel. This NaOH route for synthesizing waste-derived hydroxy sodalite (SOD) catalyst is a sustainable and eco-friendly technology that speaks directly to the global quest for renewable-fossil fuel controversy enforcing sustainable development goal 7.

Keywords: coal fly ash, waste industrial brine, waste-derived hydroxy sodalite catalyst, sodium hydroxide, biodiesel, transesterification, biomass conversion

Procedia PDF Downloads 34
13344 Esterification Reaction of Stearic Acid with Methanol Over Surface Functionalised PAN Fibrous Solid Acid Catalyst

Authors: Rawaz A. Ahmed, Katherine Huddersman

Abstract:

High-lipid Fats, Oils and Grease (FOGs) from wastewater are underutilized despite their potential for conversion into valuable fuels; this work describes a surface-functionalized fibrous Polyacrylonitrile (PAN) mesh as a novel heterogeneous acid catalyst for the conversion of free fatty acids (FFAs), via a catalytic esterification process into biodiesel. The esterification of stearic acid (SA) with methanol was studied over an acidified PAN solid acid catalyst. Disappearance of the carboxylic acid (C=O) peak of the stearic acid at 1696 cm-1 in the FT-IR spectrum with the associated appearance of the ester (C=O) peak at 1739 cm-1 confirmed the production of the methyl stearate. This was further supported by 1H NMR spectra with the appearance of the ester (-CH₂OCOR) at 3.60-3.70 ppm. Quantitate analysis by GC-FID showed the catalyst has excellent activity with >95 % yield of methyl stearate (MS) at 90 ◦C after 3 h and a molar ratio of methanol to SA of 35:1. To date, to our best knowledge, there is no research in the literature on the esterification reaction for biodiesel production using a modified PAN mesh as a catalyst. It is noteworthy that this acidified PAN mesh catalyst showed comparable activity to conventional Brönsted acids, namely H₂SO₄ and p-TSA, as well as exhibiting higher activity than various other heterogeneous catalysts such as zeolites, ion-exchange resins and acid clay.

Keywords: fats oil and greases (FOGs), free fatty acid, esterification reaction, methyl ester, PAN

Procedia PDF Downloads 241
13343 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)

Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman

Abstract:

The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).

Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst

Procedia PDF Downloads 368
13342 Ferric Sulphate Catalyzed Esterification of High Free Fatty Acids Content Used Coconut Oil for Biodiesel Synthesis

Authors: G. N. Maheshika, J. A. R. H. Wijerathna, S. H. P. Gunawardena

Abstract:

Feedstock with high free fatty acids (FFAs) content can be successfully employed for biodiesel synthesis once the high FFA content is reduced to the desired levels. In the present study, the applicability of ferric sulphate as the solid acid catalyst for esterification of FFA in used coconut oil was evaluated at varying catalyst concentration and methanol:oil molar ratios. 1.25, 2.5, 3.75 and 5.0% w/w Fe2(SO4)3 on oil basis was used at methanol:oil ratios of 3:1, 4.5:1, and 6:1 and at the reaction temperature of 60 0C. The FFA reduction increased with the increase in catalyst and methanol:oil molar ratios while the time requirement to reach the esterification equilibrium reduced. Satisfactory results for esterification could be obtained within a small reaction period in the presence of only a small amount of Fe2(SO4)3 catalyst concentration and at low reaction temperature, which then can be subjected for trans-esterification process. At the end of the considering reaction period the solid Fe2(SO4)3 catalyst could be separated from the reaction system. The economics of the Fe2(SO4)3 catalyzed esterification of high FFA content used coconut oil for biodiesel is at favorable conditions.

Keywords: biodiesel, esterification, ferric sulphate, Free fatty acids, used coconut oil

Procedia PDF Downloads 548
13341 ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell

Authors: S. Limpattayanate, M. Hunsom

Abstract:

A comparison of activity and stability of the as-formed Pt/C, Pt-Co, and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single proton exchange membrane (PEM) fuel cell, the oxygen reduction reaction (ORR) activity of the Pt-M/C electro catalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C>Pt-Co/C>Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electro chemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt-Pd/C was the most stable than the other three electrocatalysts.

Keywords: ORR activity, stability, Pt-based electrocatalysts, PEM fuel cell

Procedia PDF Downloads 445
13340 The Preparation of 2H-Indazolo [2, 1-b] Phthalazinetriones by One-Pot 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica

Authors: Aigin Bashti

Abstract:

Preparation of multicomponent reactions (MCRs) via a simple one-pot strategy is considered a novel procedure which has attracted a lot of interest from organic and medicinal chemists. Due to the great importance of phthalazide triones, it was decided to introduce a novel and cost-effective green procedure for the preparation of these derivatives. In this methodology, an efficient 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica functionalized catalyst (BP-SBA-15) was utilized. The catalyst was characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FT-IR) analysis. In conclusion, it should be mentioned that this methodology has some advantages, including short reaction time, high yield of the products, recyclable catalyst, green procedure, and facile work-up procedure. The catalyst was successfully utilized for the one-pot preparation of various phthalazinetrione derivatives.

Keywords: dimedone, green procedure, multicomponent reactions, phthalhydrazide

Procedia PDF Downloads 99
13339 Biodiesel Production from Canola Oil Using Trans-Esterification Process with Koh as a Catalyst

Authors: M. Nafis Alfarizi, Dinda A. Utami, Arif Hidayat

Abstract:

Biodiesel is one solution to overcome the use of petroleum fuels. Many alternative feedstocks that can be used among which canola oil. The purpose of this study was to determine the ability of canola oil and KOH for the trans-esterification reaction in biodiesel production. Canola oil has a very high purity that can be used as an alternative feedstock for biodiesel production and expected it will be produced biodiesel with excellent quality. In this case of study, we used trans-esterification process wherein the triglyceride is reacted with an alcohol with KOH as a catalyst, and it will produce biodiesel and glycerol as byproduct and we choose trans-esterification process because canola oil has a 0,445% FFA content. The variables studied in this research include the comparison of canola oil and methanol, temperature, time, and the percent of catalyst used. In this study the method of analysis we use GCMS and FTIR to know what the characteristic in canola oil. Development of canola oil seems to be the perfect solution to produce high-quality biodiesel. The reaction conditions resulted in 97.87% -w methyl ester (biodiesel) product by using a 0.5% wt KOH catalyst with canola and methanol ratio 1:8 at 60°C.

Keywords: biodiesel, canola oil, KOH, trans-esterification

Procedia PDF Downloads 263
13338 Research on Urban Design Method of Ancient City Guided by Catalyst Theory

Authors: Wang Zhiwei, Wang Weiwu

Abstract:

The process of urbanization in China has entered a critical period of transformation from urban expansion and construction to delicate urban design, thus forming a new direction in the field of urban design. So far, catalyst theory has become a prominent guiding strategy in urban planning and design. In this paper, under the background of urban renewal, catalyst theory is taken as the guiding ideology to explore the method of urban design in shouxian county. Firstly, this study briefly introduces and analyzes the catalyst theory. Through field investigation, it is found that the city has a large number of idle Spaces, such as abandoned factories and schools. In the design, the idle Spaces in the county town are utilized and interlinked in space, and functional interaction is carried out from the pattern of the county town. On the one hand, the results showed that the catalyst theory can enhance the vitality of the linear street space with a small amount of monomer construction. On the other hand, the city can also increase the cultural and economic sites of the city without damaging the historical relics and the sense of alterations of the ancient city, to improve the quality of life and quality of life of citizens. The city micro-transformation represented by catalyst theory can help ancient cities like shouxian to realize the activation of the old city and realize the gradual development.

Keywords: catalytic theory, urban design, China's ancient city, Renaissance

Procedia PDF Downloads 124
13337 CO₂ Conversion by Low-Temperature Fischer-Tropsch

Authors: Pauline Bredy, Yves Schuurman, David Farrusseng

Abstract:

To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.

Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process

Procedia PDF Downloads 57
13336 Supported Gold Nanocatalysts for CO Oxidation in Mainstream Cigarette Smoke

Authors: Krasimir Ivanov, Dimitar Dimitrov, Tatyana Tabakova, Stefka Kirkova, Anna Stoilova, Violina Angelova

Abstract:

It has been suggested that nicotine, CO and tar in mainstream smoke are the most important substances and have been judged as the most harmful compounds, responsible for the health hazards of smoking. As nicotine is extremely important for smoking qualities of cigarettes and the tar yield in the tobacco smoke is significantly reduced due to the use of filters with various content and design, the main efforts of cigarettes researchers and manufacturers are related to the search of opportunities for CO content reduction. Highly active ceria supported gold catalyst was prepared by the deposition-precipitation method, and the possibilities for CO oxidation in the synthetic gaseous mixture were evaluated using continuous flow equipment with fixed bed glass reactor at atmospheric pressure. The efficiently of the catalyst in CO oxidation in the real cigarette smoke was examined by a single port, puf-by-puff smoking machine. Quality assessment of smoking using cigarette holder containing catalyst was carried out. It was established that the catalytic activity toward CO oxidation in cigarette smoke rapidly decreases from 70% for the first cigarette to nearly zero for the twentieth cigarette. The present study shows that there are two critical factors which do not permit the successful use of catalysts to reduce the CO content in the mainstream cigarette smoke: (i) significant influence of the processes of adsorption and oxidation on the main characteristics of tobacco products and (ii) rapid deactivation of the catalyst due to the covering of the catalyst’s grains with condensate.

Keywords: cigarette smoke, CO oxidation, gold catalyst, mainstream

Procedia PDF Downloads 219
13335 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation

Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang

Abstract:

Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.

Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method

Procedia PDF Downloads 211
13334 Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction

Authors: Mojgan Zendehdel, Safura Molla Mohammad Zamani

Abstract:

In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times.

Keywords: zeolite, magnetic, nanocompsite, esterification

Procedia PDF Downloads 461
13333 Biodiesel Production From Waste Cooking Oil Using g-C3N4 Photocatalyst

Authors: A. Elgendi, H. Farag, M. E. Ossman, M. Abd-Elfatah

Abstract:

This paper explores the using of waste cooking oil (WCO) as an attractive option to reduce the raw material cost for the biodiesel production. This can be achieved through two steps; esterification using g-C3N4photocatalyst and then alkali transesterification. Several parameters have been studied to determine the yield of the biodiesel produced such as: Reaction time (2-6 hrs), catalyst concentration (0.3-1.5 wt.%), number of UV lamps (1or 3 lamps) and methanol: oil ratio (6:1-12:1). From the obtained results, the highest percentage yield was obtained using methanol: Oil molar ratio of 12:1, catalyst dosage 0.3%, time of 4 hrs and using 1 lamp. From the results it was clear that the produced biodiesel from waste cooking oil can be used as fuel.

Keywords: biodiesel, heterogeneous catalyst, photocatalytic esterification, waste cooking oil

Procedia PDF Downloads 528
13332 Numerical Analysis of Catalytic Combustion in a Tabular Reactor with Methane and Air Mixtures over Platinum Catalyst

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promote desired chemical reactions. The objective of this work is to design and simulate a catalytic combustor by using CHEMKIN with detailed gas and surface chemistries. The simplified approach with single catalyst channel using plug flow reactor (PFR) can be used to predict reasonably well with the effect of various operating parameters such as the inlet temperature, velocity and fuel/air ratios. The numerical results are validated by comparing the surface chemistries in single channel catalytic combustor. The catalytic combustor operates at much lower temperature than the conventional combustor since lean-fuel mixture is used where the complete methane conversion is achieved. The coupling between gas and surface reactions in the catalyst bed is studied by investigating the commencement of flame ignition with respect to the surface site species.

Keywords: catalytic combustion, honeycomb monolith, plug flow reactor, surface reactions

Procedia PDF Downloads 226