Search results for: anomaly match detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4013

Search results for: anomaly match detection

3953 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 177
3952 An Advanced Match-Up Scheduling Under Single Machine Breakdown

Authors: J. Ikome, M. Ndeley

Abstract:

When a machine breakdown forces a Modified Flow Shop (MFS) out of the prescribed state, the proposed strategy reschedules part of the initial schedule to match up with the preschedule at some point. The objective is to create a new schedule that is consistent with the other production planning decisions like material flow, tooling and purchasing by utilizing the time critical decision making concept. We propose a new rescheduling strategy and a match-up point determination procedure through a feedback mechanism to increase both the schedule quality and stability. The proposed approach is compared with alternative reactive scheduling methods under different experimental settings.

Keywords: advanced critical task methods modified flow shop (MFS), Manufacturing, experiment, determination

Procedia PDF Downloads 405
3951 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 552
3950 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification

Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou

Abstract:

The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.

Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms

Procedia PDF Downloads 249
3949 An Active Subsurface Geological Structure Pattern of Mud Volcano Phenomenon as an Environmental Impact of Petroleum Withdrawal in Sidoarjo, East Java, Indonesia

Authors: M. M. S. Prahastomi, M. Muhajir Saputra, Axel Derian

Abstract:

Lapindo mud (LUSI ) phenomenon which occurred in Sidoarjo 2006 is a national scale of the geological phenomenon. This mudflow forms a mud volcano that spreads by time is in the need of serious treatment. Some further research has been conducted either by the application method of geodesy, geophysics, and subsurface geology, but still remains a mystery to this phenomenon. Sidoarjo Physiographic regions are included in the Kendeng zone flanked by Rembang zones in northern and Solo zones in southern. In this region revealed Kabuh formation, Jombang formation, and alluvium. In general, in the northern part of the area is composed of sedimentary rocks Sidoarjo klastika, epiklastic, pyroclastics, and older alluvium of the Early Pleistocene to Resen. The study was conducted with the literature study of the stratigraphy and regional geology as well as secondary data from observations coupled gravity method (Anomaly Bouger). The aim of the study is to reveal the subsurface geology structure pattern and the changes in mass flow. Gravity anomaly data were obtained from the calculation of the value of gravity and altitude, then processed into gravity anomaly contours which reflect changes in density of each group observed gravity. The gravity data could indicate a bottom surface which deformation occur the stronger or more intense to the south. Deformation in the form of gravity impairment was associated with a decrease in future density which is indicated by the presence of gas, water and gas bursts. Sectional analysis of changes in the measured value of gravity at different times indicates a change in the value of gravity caused by the presence of subsurface subsidence. While the gravity anomaly section describes the fault zone causes the zone to be unstable.

Keywords: mud volcano, Lumpur Sidoarjo, Bouger anomaly, Indonesia

Procedia PDF Downloads 468
3948 Machine Learning Based Smart Beehive Monitoring System Without Internet

Authors: Esra Ece Var

Abstract:

Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.

Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture

Procedia PDF Downloads 239
3947 Analysis of Magnetic Anomaly Data for Identification Structure in Subsurface of Geothermal Manifestation at Candi Umbul Area, Magelang, Central Java Province, Indonesia

Authors: N. A. Kharisa, I. Wulandari, R. Narendratama, M. I. Faisal, K. Kirana, R. Zipora, I. Arfiansah, I. Suyanto

Abstract:

Acquisition of geophysical survey with magnetic method has been done in manifestation of geothermalat Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. This objective research is interpretation to interpret structural geology that control geothermal system in CandiUmbul area. The research has been finished with area size 1,5 km x 2 km and measurement space of 150 m. And each point of line space survey is 150 m using PPM Geometrics model G-856. Data processing was started with IGRF and diurnal variation correction to get total magnetic field anomaly. Then, advance processing was done until reduction to pole, upward continuation, and residual anomaly. That results become next interpretation in qualitative step. It is known that the biggest object position causes low anomaly located in central of area survey that comes from hot spring manifestation and demagnetization zone that indicates the existence of heat source activity. Then, modeling the anomaly map was used for quantitative interpretation step. The result of modeling is rock layers and geological structure model that can inform about the geothermal system. And further information from quantitative interpretations can be interpreted about lithology susceptibility. And lithology susceptibilities are andesiteas heat source has susceptibility value of (k= 0.00014 emu), basaltic as alteration rock (k= 0.0016 emu), volcanic breccia as reservoir rock (k= 0.0026 emu), andesite porfirtic as cap rock (k= 0.004 emu), lava andesite (k= 0.003 emu), and alluvium (k= 0.0007 emu). The hot spring manifestation is controlled by the normal fault which becomes a weak zone, easily passed by hot water which comes from the geothermal reservoir.

Keywords: geological structure, geothermal system, magnetic, susceptibility

Procedia PDF Downloads 384
3946 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images

Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai

Abstract:

In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.

Keywords: Harris corner, infrared image, feature detection, registration, matching

Procedia PDF Downloads 304
3945 First Approximation to Congenital Anomalies in Kemp's Ridley Sea Turtle (Lepidochelys kempii) in Veracruz, Mexico

Authors: Judith Correa-Gomez, Cristina Garcia-De la Pena, Veronica Avila-Rodriguez, David R. Aguillon-Gutierrez

Abstract:

Kemp's ridley (Lepidochelys kempii) is the smallest species of sea turtle. It nests on the beaches of the Gulf of Mexico during summer. To date, there is no information about congenital anomalies in this species, which could be an important factor to be considered as a survival threat. The aim of this study was to determine congenital anomalies in dead embryos and hatchlings of Kemp's ridley sea turtle during 2020 nesting season. Fieldwork was conducted at the 'Campamento Tortugero Barra Norte', on the shores of Tuxpan, Veracruz, Mexico. A total of 95 nests were evaluated, from which 223 dead embryos and hatchlings were collected. Anomalies were detected by detailed physical examinations. Photographs of each anomaly were taken. From the 223 dead turtles, 213 (95%) showed a congenital anomaly. A total of 53 types of congenital anomalies were found: 22 types on the head region, 21 on the carapace region, 6 on the flipper region, and 4 regarding the entire body. The most prevalent anomaly in the head region was the presence of prefrontal supernumerary scales (42%, 93 occurrences). On the carapace region, the most common anomaly was the presence of supernumerary gular scales (59%, 131 occurrences). The two most common anomalies on the flipper region were amelia in fore flippers and rear bifurcation of flippers (0.9%, 2 occurrences each). The most common anomaly involving the entire body was hypomelanism (35%, 79 occurrences). These results agree with the recent studies on congenital malformations on sea turtles, being the head and the carapace regions the ones with the highest number of congenital anomalies. It is unknown whether the reported anomalies can be related to the death of these individuals. However, it is necessary to develop embryological studies in this species. To our best knowledge, this is the first worldwide report on Kemp’s ridley sea turtle anomalies.

Keywords: Amelia, hypomelanism, morphology, supernumerary scales

Procedia PDF Downloads 160
3944 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
3943 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, channel condition, BER

Procedia PDF Downloads 370
3942 The Influence of Training and Competition on Cortisol Levels and Sleep in Elite Female Athletes

Authors: Shannon O’Donnell, Matthew Driller, Gregory Jacobson, Steve Bird

Abstract:

Stress hormone levels in a competition vs. training setting are yet to be evaluated in elite female athletes. The effect that these levels of stress have on subsequent sleep quality and quantity is also yet to be investigated. The aim of the current study was to evaluate different psychophysiological stress markers in competition and training environments and the subsequent effect on sleep indices in an elite female athlete population. The study involved 10 elite female netball athletes (mean ± SD; age = 23 ± 6 yrs) providing multiple salivary hormone measures and having their sleep monitored on two occasions; a match day, and a training day. The training and match were performed at the same time of day and were matched for intensity and duration. Saliva samples were collected immediately pre (5:00 pm) and post session (7:15 pm), and at 10:00 pm and were analysed for cortisol concentrations. Sleep monitoring was performed using wrist actigraphy to assess total sleep time (TST), sleep efficiency (SE%) and sleep latency (SL). Cortisol levels were significantly higher (p < 0.01) immediately post the match vs post training (mean ± SD; 0.925 ± 0.341 μg/dL and 0.239 ± 0.284 μg/dL, respectively) and at 10:00pm (0.143 ± 0.085 μg/dL and 0.072 ± 0.064 μg/dL, respectively, p < 0.01). The difference between trials was associated with a very large effect (ES: 2.23) immediately post (7:15 pm) and a large effect (ES: 1.02) at 10:00 pm. There was a significant reduction in TST (mean ± SD; -117.9 ± 111.9 minutes, p < 0.01, ES: -1.89) and SE% (-7.7 ± 8.5%, p < 0.02, ES: -0.79) on the night following the netball match compared to the training session. Although not significant (p > 0.05), there was an increase in SL following the netball match v the training session (67.0 ± 51.9 minutes and 38.5 ± 29.3 minutes, respectively), which was associated with a moderate effect (ES: 0.80). The current study reports that cortisol levels are significantly higher and subsequent sleep quantity and quality is significantly reduced in elite female athletes following a match compared to a training session.

Keywords: cortisol, netball, performance, recovery

Procedia PDF Downloads 256
3941 Reduced Complexity of ML Detection Combined with DFE

Authors: Jae-Hyun Ro, Yong-Jun Kim, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection.

Keywords: detection, DFE, MIMO-OFDM, ML

Procedia PDF Downloads 610
3940 The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data

Authors: M. Yilmaz, I. Yilmaz, M. Uysal

Abstract:

The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.

Keywords: free-air gravity anomaly, Bouguer gravity anomaly, global model, land gravity

Procedia PDF Downloads 169
3939 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 73
3938 Investigation of Geothermal Gradient of the Niger Delta from Recent Studies

Authors: Adedapo Jepson Olumide, Kurowska Ewa, K. Schoeneich, Ikpokonte A. Enoch

Abstract:

In this paper, subsurface temperature measured from continuous temperature logs were used to determine the geothermal gradient of NigerDelta sedimentary basin. The measured temperatures were corrected to the true subsurface temperatures by applying the American Association of Petroleum Resources (AAPG) correction factor, borehole temperature correction factor with La Max’s correction factor and Zeta Utilities borehole correction factor. Geothermal gradient in this basin ranges from 1.20C to 7.560C/100m. Six geothermal anomalies centres were observed at depth in the southern parts of the Abakaliki anticlinorium around Onitsha, Ihiala, Umuaha area and named A1 to A6 while two more centre appeared at depth of 3500m and 4000m named A7 and A8 respectively. Anomaly A1 describes the southern end of the Abakaliki anticlinorium and extends southwards, anomaly A2 to A5 were found associated with a NW-SE structural alignment of the Calabar hinge line with structures describing the edge of the Niger Delta basin with the basement block of the Oban massif. Anomaly A6 locates in the south-eastern part of the basin offshore while A7 and A8 are located in the south western part of the basin offshore. At the average exploratory depth of 3500m, the geothermal gradient values for these anomalies A1, A2, A3, A4, A5, A6, A7, and A8 are 6.50C/100m, 1.750C/100m, 7.50C/100m, 1.250C/100m, 6.50C/100m, 5.50C/100m, 60C/100m, and 2.250C/100m respectively. Anomaly A8 area may yield higher thermal value at greater depth than 3500m. These results show that anomalies areas of A1, A3, A5, A6 and A7 are potentially prospective and explorable for geothermal energy using abandoned oil wells in the study area. Anomalies A1, A3.A5, A6 occur at areas where drilled boreholes were not exploitable for oil and gas but for the remaining areas where wells are so exploitable there appears no geothermal anomaly. Geothermal energy is environmentally friendly, clean and reversible.

Keywords: temperature logs, geothermal gradient anomalies, alternative energy, Niger delta basin

Procedia PDF Downloads 278
3937 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 167
3936 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia

Authors: Ikawati Wulandari

Abstract:

Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakage

Keywords: PPM, Geothermal, Fault, Grabag

Procedia PDF Downloads 464
3935 Cigarette Smoke Detection Based on YOLOV3

Authors: Wei Li, Tuo Yang

Abstract:

In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.

Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction

Procedia PDF Downloads 87
3934 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection

Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman

Abstract:

The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.

Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture

Procedia PDF Downloads 583
3933 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: contrast analysis, early fire detection, video smoke detection, video surveillance

Procedia PDF Downloads 447
3932 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction

Authors: Mohammad Ghahramani, Fahimeh Saei Manesh

Abstract:

Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.

Keywords: soccer, analytics, machine learning, database

Procedia PDF Downloads 238
3931 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 84
3930 Intrusion Detection Techniques in NaaS in the Cloud: A Review

Authors: Rashid Mahmood

Abstract:

The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields.

Keywords: IDS, cloud, naas, detection

Procedia PDF Downloads 320
3929 Multichannel Object Detection with Event Camera

Authors: Rafael Iliasov, Alessandro Golkar

Abstract:

Object detection based on event vision has been a dynamically growing field in computer vision for the last 16 years. In this work, we create multiple channels from a single event camera and propose an event fusion method (EFM) to enhance object detection in event-based vision systems. Each channel uses a different accumulation buffer to collect events from the event camera. We implement YOLOv7 for object detection, followed by a fusion algorithm. Our multichannel approach outperforms single-channel-based object detection by 0.7% in mean Average Precision (mAP) for detection overlapping ground truth with IOU = 0.5.

Keywords: event camera, object detection with multimodal inputs, multichannel fusion, computer vision

Procedia PDF Downloads 27
3928 Securing Web Servers by the Intrusion Detection System (IDS)

Authors: Yousef Farhaoui

Abstract:

An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS).

Keywords: intrusion detection, architectures, characteristic, tools, security, web server

Procedia PDF Downloads 418
3927 Video Processing of a Football Game: Detecting Features of a Football Match for Automated Calculation of Statistics

Authors: Rishabh Beri, Sahil Shah

Abstract:

We have applied a range of filters and processing in order to extract out the various features of the football game, like the field lines of a football field. Another important aspect was the detection of the players in the field and tagging them according to their teams distinguished by their jersey colours. This extracted information combined about the players and field helped us to create a virtual field that consists of the playing field and the players mapped to their locations in it.

Keywords: Detect, Football, Players, Virtual

Procedia PDF Downloads 331
3926 A Study on Abnormal Behavior Detection in BYOD Environment

Authors: Dongwan Kang, Joohyung Oh, Chaetae Im

Abstract:

Advancement of communication technologies and smart devices in the recent times is leading to changes into the integrated wired and wireless communication environments. Since early days, businesses had started introducing environments for mobile device application to their operations in order to improve productivity (efficiency) and the closed corporate environment gradually shifted to an open structure. Recently, individual user's interest in working environment using mobile devices has increased and a new corporate working environment under the concept of BYOD is drawing attention. BYOD (bring your own device) is a concept where individuals bring in and use their own devices in business activities. Through BYOD, businesses can anticipate improved productivity (efficiency) and also a reduction in the cost of purchasing devices. However, as a result of security threats caused by frequent loss and theft of personal devices and corporate data leaks due to low security, companies are reluctant about adopting BYOD system. In addition, without considerations to diverse devices and connection environments, there are limitations in detecting abnormal behaviors such as information leaks which use the existing network-based security equipment. This study suggests a method to detect abnormal behaviors according to individual behavioral patterns, rather than the existing signature-based malicious behavior detection and discusses applications of this method in BYOD environment.

Keywords: BYOD, security, anomaly behavior detection, security equipment, communication technologies

Procedia PDF Downloads 324
3925 Suggestion for Malware Detection Agent Considering Network Environment

Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung

Abstract:

Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.

Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment

Procedia PDF Downloads 433
3924 Improved Skin Detection Using Colour Space and Texture

Authors: Medjram Sofiane, Babahenini Mohamed Chaouki, Mohamed Benali Yamina

Abstract:

Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model.

Keywords: skin detection, YCbCr, GLCM, texture, human skin

Procedia PDF Downloads 459