Search results for: Sungok Kwon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 141

Search results for: Sungok Kwon

81 Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software.

Keywords: TiCl₄, titanium, hydrogen, plasma, reduction, thermodynamic calculation

Procedia PDF Downloads 325
80 Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating

Authors: DuckHwan Bae, YongSung Kwon, Min Young Shon, SanTaek Oh, GuNi Kim

Abstract:

The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size.

Keywords: induction heating, thermoplastic polyurethane, nickel, composite, hysteresis loss, eddy current loss, curie temperature

Procedia PDF Downloads 360
79 An Experimental Study on the Measurement of Fuel to Air Ratio Using Flame Chemiluminescence

Authors: Sewon Kim, Chang Yeop Lee, Minjun Kwon

Abstract:

This study is aiming at establishing the relationship between the optical signal of flame and an equivalent ratio of flame. In this experiment, flame optical signal in a furnace is measured using photodiode. The combustion system which is composed of metal fiber burner and vertical furnace and flame chemiluminescence is measured at various experimental conditions. In this study, the flame chemiluminescence of laminar premixed flame is measured by using commercially available photodiode. It is experimentally investigated the relationship between equivalent ratio and photodiode signal. In addition, The strategy of combustion control method is proposed by using the optical signal and fuel pressure. The results showed that certain relationship between optical data of photodiode and equivalence ratio exists and this leads to the successful application of this system for instantaneous measurement of equivalence ration of the combustion system.

Keywords: flame chemiluminescence, photo diode, equivalence ratio, combustion control

Procedia PDF Downloads 396
78 Evaluation of Fire Resistance of High Strength Reinforced Concrete Columns with Spiral Wire Rope

Authors: Ki-Seok Kwon, Heung-Youl Kim

Abstract:

This research evaluated fire resistances of high-strengthened reinforced concrete (RC) column, spiral wire rope which applied with 60, and 100MPa. The fire resistance test of RC column with loading condition was conducted following the ISO 834 (3 hours). This experiment set mixing of fiber (PP fiber, Steel fiber) and types of horizontal reinforcement as a variable of reinforcement method. The fire resistance test measured the main steel bar’s max and mean temperatures also the shrinkage and shrinking ratio of columns(500 X 500 X 3,000mm) with loadings. As a result, the specimen of 60MPa attained three hours fire resistance with only spiral wire rope. Also, the specimen of 100MPa must be reinforced with fibers and spiral wire rope to attain three hours fire resistance.

Keywords: reinforced concrete column, high strength concrete, wire rope, fire resistance test

Procedia PDF Downloads 325
77 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity

Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon

Abstract:

Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.

Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry

Procedia PDF Downloads 330
76 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Keywords: invar alloy, aluminum, phase equilibrium, thermal expansion coefficient, microstructure, tensile properties

Procedia PDF Downloads 370
75 Experiment and Analytical Study on Fire Resistance Performance of Slot Type Concrete-Filled Tube

Authors: Bum Yean Cho, Heung-Youl Kim, Ki-Seok Kwon, Kang-Su Kim

Abstract:

In this study, a full-scale test and analysis (numerical analysis) of fire resistance performance of bare CFT column on which slot was used instead of existing welding method to connect the steel pipe on the concrete-filled tube were conducted. Welded CFT column is known to be vulnerable to high or low temperature because of low brittleness of welding part. As a result of a fire resistance performance test of slot CFT column after removing the welding part and fixing it by a slot which was folded into the tube, slot type CFT column indicated the improved fire resistance performance than welded CFT column by 28% or more. And as a result of conducting finite element analysis of slot type column using ABAQUS, analysis result proved the reliability of the test result in predicting the fire behavior and fire resistance hour.

Keywords: CFT (concrete-filled tube) column, fire resistance performance, slot, weld

Procedia PDF Downloads 181
74 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate

Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee

Abstract:

Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.

Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound

Procedia PDF Downloads 399
73 Carbide Structure and Fracture Toughness of High Speed Tool Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

M2 steels, the typical Co-free high speed steel (HSS) possessing hardness level of 63~65 HRc, are most widely used for cutting tools. On the other hand, Co-containing HSS’s, such as M35 and M42, show a higher hardness level of 65~67 HRc and used for high quality cutting tools. In the fabrication of HSS’s, it is very important to control cleanliness and eutectic carbide structure of the ingot and it is required to increase productivity at the same time. Production of HSS ingots includes a variety of processes such as casting, electro-slag remelting (ESR), forging, blooming, and wire rod rolling processes. In the present study, electro-slag rapid remelting (ESRR) process, an advanced ESR process combined by continuous casting, was successfully employed to fabricate HSS billets of M2, M35, and M42 steels. Distribution and structure of eutectic carbides of the billets were analysed and cleanliness, hardness, and composition profile of the billets were also evaluated.

Keywords: high speed tool steel, eutectic carbide, microstructure, hardness, fracture toughness

Procedia PDF Downloads 444
72 Prerequisites for the Acquisition of Mammalian Pathogenicity by Influenza A Virus with a Prototypic Avian PB2 Gene

Authors: Chung-Young Lee, Se-Hee Ahn, Ilhwan Kim, Du-Min Go, Dae-Yong Kim, Jun-Gu Choi, Youn-Jeong Lee, Jae-Hong Kim, Hyuk-Joon Kwon

Abstract:

The polymerase of avian influenza A virus (AIV) is a heterotrimer composed of PB2, PB1 and PA. PB2 plays a role in overcoming the host barrier; however, the genetic prerequisites for avian PB2 to acquire mammalian pathogenic mutations have not been well elucidated. Here, we demonstrated that key amino acid mutations (I66M, I109V and I133V, collectively referred to as MVV) of prototypic avian PB2 increase the replication efficiency of recombinant PR8 virus carrying the mutated PB2 in both avian and mammalian hosts. The MVV mutations caused no weight loss in mice, but they did allow replication in infected lungs, and the viruses acquired fatal mammalian pathogenic mutations such as Q591R/K, E627K, or D701N in the infected lungs. The MVV mutations are located at the interfaces of the trimer and are predicted to increase the strength of this structure. Thus, gaining MVV mutations might be the first step for AIV to acquire mammalian pathogenicity. These results provide new insights into the evolution of AIV in birds and mammals.

Keywords: avian influenza A virus, prototypic PB2, polymerase activity, mammalian pathogenicity, first-step mutations

Procedia PDF Downloads 344
71 Low NOx Combustion of Pulverized Petroleum Cokes

Authors: Sewon Kim, Minjun Kwon, Changyeop Lee

Abstract:

This study is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air are optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87.

Keywords: petroleum cokes, low NOx, combustion, equivalence ratio

Procedia PDF Downloads 622
70 Next Generation Membrane for Water Desalination: Facile Fabrication of Patterned Graphene Membrane

Authors: Jae-Kyung Choi, Soon-Yong Kwon, Hyung Duk Yun, Hyun-Sang Chung, Seongho Seo, Kukjin Bae

Abstract:

Recently, there were several attempts to utilize a graphene layer as a water desalination membrane. In order to use a graphene layer as a water desalination membrane, fabrication of crack-free suspension of graphene on a porous membrane, having hydrophobic surface, and generation of a uniform holes on a graphene are very important. In here, we showed a simple chemical vapor deposition (CVD) method to create a patterned graphene membrane on a patterned platinum film. After CVD growth process of patterned graphene layer/patterned Pt on SiO2 substrates, the patterned graphene layer can be successfully transferred onto arbitrary substrates via thermal-assisted transfer method. In this result, the transferred patterned graphene membrane has so hydrophobic surface which will certainly impact on the naturally and speed pass way for fresh water. In addition to this, we observed that overlapping of patterned graphene membranes reported previously by our group may generate different size of holes.

Keywords: chemical vapor deposition (CVD), hydrophobic surface, membrane desalination, porous graphene

Procedia PDF Downloads 470
69 Microstructure and Mechanical Properties of Mg-Zn Alloys

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.

Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hardness

Procedia PDF Downloads 276
68 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering

Authors: Dong Nyoung Heo, Il Keun Kwon

Abstract:

Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.

Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing

Procedia PDF Downloads 112
67 Improvement of Heat Dissipation Ability of Polyimide Composite Film

Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han

Abstract:

Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.

Keywords: polyimide, heat dissipation, electric device, filler

Procedia PDF Downloads 678
66 The Flexural Improvement of RC Beams Using an Inserted Plate between Concrete and FRP Bonding Surface

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

The primary objective of this research is to improve the flexural capacity of FRP strengthened RC Beam structures with Aluminum and Titanium laminates. FRP rupture of flexural strengthened RC beams using FRP plates generally occurs at the interface between FRP plate and the beam. Therefore, in order to prevent brittle rupture and improve the ductility of the system, this research was performed by using Aluminum and Titanium materials between the two different structural systems. The research also aims to provide various strengthening/retrofitting methods for RC beam structures and to conduct a preliminary analysis of the demands on the structural systems. This was achieved by estimation using the experimental data from this research to identify a flexural capacity for the systems. Ultimately, the preliminary analysis of current study showed that the flexural capacity and system demand ductility was significantly improved by the systems inserted with Aluminum and Titanium anchor plates. Further verification of the experimental research is currently on its way to develop a new or reliable design guideline to retrofit/strengthen the concrete-FRP structural system can be evaluated.

Keywords: reinforced concrete, FRP laminate, flexural capacity, ductility

Procedia PDF Downloads 290
65 Corrosion Properties of Friction Welded Dissimilar Aluminum Alloys; Duralumin and AA6063

Authors: Sori Won, Bosung Seo, Kwangsuk Park, Seok Hong Min, Tae Kwon Ha

Abstract:

With the increased needs for lightweight materials in automobile industry, the usage of aluminum alloys becomes prevailed as components and car bodies due to their comparative specific strength. These parts composed of different aluminum alloys should be connected each other, where welding technologies are commonly applied. Among various welding methods, friction welding method as a solid state welding gets to be popular in joining aluminum alloys as it does not produce a defect such as blowhole that is often formed during typical welding processes. Once two metals are joined, corrosion would become an issue due to different electrochemical potentials. In this study, we investigated variations of corrosion properties when Duralumin and AA6063 were joined by friction welding. From the polarization test, it was found that the potential of the welded was placed between those of two original metals, which could be explained by a concept of mixed potential. Pitting is a common form as a result of the corrosion of aluminum alloys when they are exposed to 3.5 wt% NaCl solution. However, when two different aluminum alloys (Duralumin and AA6063) were joined, pitting corrosion occurred severely and uniformly in Duralumin while there were a few pits around precipitates in AA6063, indicating that AA6063 was cathodically protected.

Keywords: corrosion properties, friction welding, dissimilar Al alloys, polarization test

Procedia PDF Downloads 422
64 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 194
63 Finite Element Analysis of Ball-Joint Boots under Environmental and Endurance Tests

Authors: Young-Doo Kwon, Seong-Hwa Jun, Dong-Jin Lee, Hyung-Seok Lee

Abstract:

Ball joints support and guide certain automotive parts that move relative to the frame of the vehicle. Such ball joints are covered and protected from dust, mud, and other interfering materials by ball-joint boots made of rubber—a flexible and near-incompressible material. The boots may experience twisting and bending deformations because of the motion of the joint arm. Thus, environmental and endurance tests of ball-joint boots apply both bending and twisting deformations. In this study, environmental and endurance testing was simulated via the finite element method performed by using a commercial software package. The ranges of principal stress and principal strain values that are known to directly affect the fatigue lives of the parts were sought. By defining these ranges, the number of iterative tests and modifications of the materials and dimensions of the boot can be decreased. Therefore, instead of performing actual part tests, manufacturers can perform standard fatigue tests in trials of different materials by applying only the defined range of stress or strain values.

Keywords: boot, endurance tests, rubber, FEA

Procedia PDF Downloads 263
62 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys

Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho

Abstract:

Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.

Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery

Procedia PDF Downloads 532
61 Correlation between Resistance to Non-Specific Inhibitor and Mammalian Pathogenicity of an Egg Adapted H9N2 Virus

Authors: Chung-Young Lee, Se-Hee Ahn, Jun-Gu Choi, Youn-Jeong Lee, Hyuk-Joon Kwon, Jae-Hong Kim

Abstract:

A/chicken/Korea/01310/2001 (H9N2) (01310) was passaged through embryonated chicken eggs (ECEs) by 20 times (01310-E20), and it has been used for an inactivated oil emulsion vaccine in Korea. After sequential passages, 01310-E20 showed higher pathogenicity in ECEs and acquired multiple mutations including a potential N-glycosylation at position 133 (H3 numbering) in HA and 18aa-deletion in NA stalk. To evaluate the effect of these mutations on the mammalian pathogenicity and resistance to non-specific inhibitors, we generated four PR8-derived recombinant viruses with different combinations of HA and NA from 01310-E2 and 01310-E20 (rH2N2, rH2N20, rH20N2, and rH20N20). According to our results, recombinant viruses containing 01310 E20 HA showed higher growth property in MDCK cells and higher virulence on mice than those containing 01310 E2 HA regardless of NA. The hemagglutination activity of rH20N20 was less inhibited by egg white and mouse lung extract than that of other recombinant viruses. Thus, the increased pathogenicity of 01310-E20 may be related to both higher replication efficiency and resistance to non-specific inhibitors in mice.

Keywords: avian influenza virus, egg adaptation, H9N2, N-glycosylation, stalk deletion of neuraminidase

Procedia PDF Downloads 285
60 Fabrication of Modified Chitosan-Gold Nanoshell with Mercaptopropionic Acid(MPA) for γ-Aminobutyric Acid Detection as a Surface-Enhanced Raman Scattering Substrate

Authors: Bi Wa, Su-Yeon Kwon, Ik-Joong Kang

Abstract:

Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. In this case, the Mercaptopropionic Acid (MPA) is used to modified chitosan –gold nanoshell, which enhances the absorption between GABA and Chitosan-gold nanoshell. The sulfur end of the MPA is linked to gold which is the surface of the chitosan nanoparticles via the very strong S–Au bond, while a functional group (carboxyl group) attached to GABA. The controlling of particles’ size and the surface morphology are also the important factors during the whole experiment. The particle around 100nm is using to link to MPA, and the range of GABA from 1mM to 30mM was detected by the Raman Scattering to obtain the calibrate curve. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.

Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced raman scattering

Procedia PDF Downloads 242
59 Numerical Studies on the Performance of the Finned-Tube Heat Exchanger

Authors: S. P. Praveen Kumar, Bong-Su Sin, Kwon-Hee Lee

Abstract:

Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc. Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper, numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables, maximizing the temperature difference and minimizing the pressure drop was suggested by applying DOE. In this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using Analysis of Variance (ANOVA) to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition.

Keywords: heat exchanger, fluid analysis, heat transfer, design of experiment, analysis of variance

Procedia PDF Downloads 445
58 Chemical Stability of Ceramic Crucibles to Molten Titanium

Authors: Jong-Min Park, Hyung-Ki Park, Seok Hong Min, Tae Kwon Ha

Abstract:

Titanium is widely used due to its high specific strength, good biocompatibility, and excellent corrosion resistance. In order to produce titanium powders, it is necessary to melt titanium, and generally it is conducted by an induction heating method using Al₂O₃ ceramic crucible. However, since titanium reacts chemically with Al₂O₃, it is difficult to melt titanium by the induction heating method using Al₂O₃ crucible. To avoid this problem, we studied the chemical stability of the various crucibles such as Al₂O₃, MgO, ZrO₂, and Y₂O₃ crucibles to molten titanium. After titanium lumps (Grade 2, O(oxygen)<0.25wt%) were placed in each crucible, they were heated to 1800℃ with a heating rate of 5 ℃/min, held at 1800℃ for 30 min, and finally cooled to room temperature with a cooling rate of 5 ℃/min. All heat treatments were carried out in high purity Ar atmosphere. To evaluate the chemical stability, thermodynamic data such as Ellingham diagram were utilized, and also Vickers hardness test, microstructure analysis, and EPMA quantitative analysis were performed. As a result, Al₂O₃, MgO and ZrO₂ crucibles chemically reacted with molten titanium, but Y₂O₃ crucible rarely reacted with it.

Keywords: titanium, induction melting, crucible, chemical stability

Procedia PDF Downloads 300
57 Limit State Evaluation of Bridge According to Peak Ground Acceleration

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Jongyoon Moon, Donghoon Shin, Kiyoung Kim

Abstract:

In the past, the criteria and procedures for the design of concrete structures were mainly based on the stresses allowed for structural components. However, although the frequency of earthquakes has increased and the risk has increased recently, it has been difficult to determine the safety factor for earthquakes in the safety assessment of structures based on allowable stresses. Recently, limit state design method has been introduced for reinforced concrete structures, and limit state-based approach has been recognized as a more effective technique for seismic design. Therefore, in this study, the limit state of the bridge, which is a structure requiring higher stability against earthquakes, was evaluated. The finite element program LS-DYNA and twenty ground motion were used for time history analysis. The fracture caused by tensile and compression of the pier were set to the limit state. In the concrete tensile fracture, the limit state arrival rate was 100% at peak ground acceleration 0.4g. In the concrete compression fracture, the limit state arrival rate was 100% at peak ground acceleration 0.2g.

Keywords: allowable stress, limit state, safety factor, peak ground acceleration

Procedia PDF Downloads 212
56 CFD Simulation for Air-Borne Infection Analysis in AII-Room

Authors: Young Kwon Yang, In Sung Kang, Jung Ha Hwang, Jin Chul Park

Abstract:

The present study is a foundational study for performance improvements on isolation wards to prevent proliferation of secondary infection of infectious diseases such as SARS, H1N1, and MERS inside hospitals. Accordingly, the present study conducted an analysis of the effect of sealing mechanisms and filling of openings on ensuring air tightness performance in isolation wards as well as simulation on air currents in improved isolation wards. The study method is as follows. First, previous studies on aerial infection type and mechanism were reviewed, and the review results were utilized as basic data of analysis on simulation of air current. Second, national and international legislations and regulations in relation to isolation wards as well as case studies on developed nations were investigated in order to identify the problems in isolation wards in Korea and improvement plans. Third, construction and facility plans were compared and analyzed between general and isolation wards focusing on large general hospitals in Korea, thereby conducting comparison and analysis on the performance and effects of air-tightness of general and isolation wards through CFD simulations. The study results showed that isolation wards had better air-tightness performance than that of general wards.

Keywords: AII Room, air-borne infection, CFD, computational fluid dynamics

Procedia PDF Downloads 285
55 Blocking of Random Chat Apps at Home Routers for Juvenile Protection in South Korea

Authors: Min Jin Kwon, Seung Won Kim, Eui Yeon Kim, Haeyoung Lee

Abstract:

Numerous anonymous chat apps that help people to connect with random strangers have been released in South Korea. However, they become a serious problem for young people since young people often use them for channels of prostitution or sexual violence. Although ISPs in South Korea are responsible for making inappropriate content inaccessible on their networks, they do not block traffic of random chat apps since 1) the use of random chat apps is entirely legal. 2) it is reported that they use HTTP proxy blocking so that non-HTTP traffic cannot be blocked. In this paper, we propose a service model that can block random chat apps at home routers. A service provider manages a blacklist that contains blocked apps’ information. Home routers that subscribe the service filter the traffic of the apps out using deep packet inspection. We have implemented a prototype of the proposed model, including a centralized server providing the blacklist, a Raspberry Pi-based home router that can filter traffic of the apps out, and an Android app used by the router’s administrator to locally customize the blacklist.

Keywords: deep packet inspection, internet filtering, juvenile protection, technical blocking

Procedia PDF Downloads 348
54 A Study on Relationships between Authenticity of Transactions, Quality of Relationships, and Transaction Performances

Authors: Chan Kwon Park, Chae-Bogk Kim, Sung-Min Park

Abstract:

This study is a research on the authenticity of transactions between corporations and quality of their relationships and transaction performances. As the factors of authenticity of transactions, honesty, transparency, customer orientation and consistency were selected; as the factors of quality of relationships, trust and commitment were selected, and as the factors of transactions performances, intention of repeat transactions and switching intention were selected, and on these relationships a hypothesis was established, and verification was conducted. First, the factors of the authenticity of transactions positively influenced the factors of quality of relationships. Thus, a higher level of authenticity of transactions can lead to higher level of trust and commitment. Second, the factors of quality of relationships made a positive influence on the intention of repeat transactions, while a negative influence in the switching intention. Third, it showed that trust and commitment as the factors of quality of relationships functioned partly as the parameter between the authenticity of transactions and transaction performances. Finally, it proved that the factors of the authenticity of transactions improved trust and commitment in transactions between corporations and further improved the intention of repeat transactions while they decreased the switching intention.

Keywords: authenticity of transactions, trust, commitment, intention of repeat transactions, switching intention

Procedia PDF Downloads 369
53 Identification of the Interior Noise Sources of Rail Vehicles

Authors: Hyo-In Koh, Anders Nordborg, Alex Sievi, Chun-Kwon Park

Abstract:

The noise source for the interior room of the high speed train is constituted by the rolling contact between the wheel and the rail, aerodynamic noise and structure-borne sound generated through the vibrations of bogie, connection points to the carbody. Air-borne sound is radiated through the panels and structures into the interior room of the trains. The high-speed lines are constructed with slab track systems and many tunnels. The interior noise level and the frequency characteristics vary according to types of the track structure and the infrastructure. In this paper the main sound sources and the transfer paths are studied to find out the contribution characteristics of the sources to the interior noise of a high-speed rail vehicle. For the identification of the acoustic power of each parts of the rolling noise sources a calculation model of wheel/rail noise is developed and used. For the analysis of the transmission of the sources to the interior noise noise and vibration are measured during the operation of the vehicle. According to operation speeds, the mainly contributed sources and the paths could be analyzed. Results of the calculations on the source generation and the results of the measurement with a high-speed train are shown and discussed.

Keywords: rail vehicle, high-speed, interior noise, noise source

Procedia PDF Downloads 399
52 Analysis of Silicon Controlled Rectifier-Based Electrostatic Discharge Protection Circuits with Electrical Characteristics for the 5V Power Clamp

Authors: Jun-Geol Park, Kyoung-Il Do, Min-Ju Kwon, Kyung-Hyun Park, Yong-Seo Koo

Abstract:

This paper analyzed the SCR (Silicon Controlled Rectifier)-based ESD (Electrostatic Discharge) protection circuits with the turn-on time characteristics. The structures are the LVTSCR (Low Voltage Triggered SCR), the ZTSCR (Zener Triggered SCR) and the PTSCR (P-Substrate Triggered SCR). The three structures are for the 5V power clamp. In general, the structures with the low trigger voltage structure can have the fast turn-on characteristics than other structures. All the ESD protection circuits have the low trigger voltage by using the N+ bridge region of LVTSCR, by using the zener diode structure of ZTSCR, by increasing the trigger current of PTSCR. The simulation for the comparison with the turn-on time was conducted by the Synopsys TCAD simulator. As the simulation results, the LVTSCR has the turn-on time of 2.8 ns, ZTSCR of 2.1 ns and the PTSCR of 2.4 ns. The HBM simulation results, however, show that the PTSCR is the more robust structure of 430K in HBM 8kV standard than 450K of LVTSCR and 495K of ZTSCR. Therefore the PTSCR is the most effective ESD protection circuit for the 5V power clamp.

Keywords: ESD, SCR, turn-on time, trigger voltage, power clamp

Procedia PDF Downloads 344