Search results for: PDF to story feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2148

Search results for: PDF to story feature

2088 Study on Adding Story and Seismic Strengthening of Old Masonry Buildings

Authors: Youlu Huang, Huanjun Jiang

Abstract:

A large number of old masonry buildings built in the last century still remain in the city. It generates the problems of unsafety, obsolescence, and non-habitability. In recent years, many old buildings have been reconstructed through renovating façade, strengthening, and adding floors. However, most projects only provide a solution for a single problem. It is difficult to comprehensively solve problems of poor safety and lack of building functions. Therefore, a comprehensive functional renovation program of adding reinforced concrete frame story at the bottom via integrally lifting the building and then strengthening the building was put forward. Based on field measurement and YJK calculation software, the seismic performance of an actual three-story masonry structure in Shanghai was identified. The results show that the material strength of masonry is low, and the bearing capacity of some masonry walls could not meet the code requirements. The elastoplastic time history analysis of the structure was carried out by using SAP2000 software. The results show that under the 7 degrees rare earthquake, the seismic performance of the structure reaches 'serious damage' performance level. Based on the code requirements of the stiffness ration of the bottom frame (lateral stiffness ration of the transition masonry story and frame story), the bottom frame story was designed. The integral lifting process of the masonry building was introduced based on many engineering examples. The reinforced methods for the bottom frame structure strengthened by the steel-reinforced mesh mortar surface layer (SRMM) and base isolators, respectively, were proposed. The time history analysis of the two kinds of structures, under the frequent earthquake, the fortification earthquake, and the rare earthquake, was conducted by SAP2000 software. For the bottom frame structure, the results show that the seismic response of the masonry floor is significantly reduced after reinforced by the two methods compared to the masonry structure. The previous earthquake disaster indicated that the bottom frame is vulnerable to serious damage under a strong earthquake. The analysis results showed that under the rare earthquake, the inter-story displacement angle of the bottom frame floor meets the 1/100 limit value of the seismic code. The inter-story drift of the masonry floor for the base isolated structure under different levels of earthquakes is similar to that of structure with SRMM, while the base-isolated program is better to protect the bottom frame. Both reinforced methods could significantly improve the seismic performance of the bottom frame structure.

Keywords: old buildings, adding story, seismic strengthening, seismic performance

Procedia PDF Downloads 123
2087 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy

Authors: Huang Bai-Cheng

Abstract:

When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.

Keywords: feature extraction, real-time, ORB, FPGA implementation

Procedia PDF Downloads 122
2086 Child-Friendly Digital Storytelling to Promote Young Learners' Critical Thinking in English Learning

Authors: Setyarini Sri, Nursalim Agus

Abstract:

Integrating critical thinking and digital based learning is one of demands in teaching English in 21st century. Child-friendly digital storytelling (CFDS) is an innovative learning model to promote young learners’ critical thinking. Therefore, this study aims to (1) investigate how child-friendly digital storytelling is implemented to promote young learners’ critical thinking in speaking English; (2) find out the benefits gained by the students in their learning based on CFDS. Classroom Action Research (CAR) took place in two cycles in which each of the cycle covered four phases namely: Planning, Acting, Observing, and Evaluating. Three classes of seventh graders were selected as the subjects of this study. Data were collected through observation, interview with some selected students as respondents, and document analysis in the form individual recorded storytelling. Sentences, phrases, words found in the transcribed data were identified and categorized based on Bloom taxonomy. The findings from the first cycle showed that the students seemed to speak critically that can be seen from the way they understood the story and related the story to their real life. Meanwhile, the result investigated from the second cycle likely indicated their higher level of critical thinking since the students spoke in English critically through comparing, questioning, analyzing, and evaluating the story by giving arguments, opinions, and comments. Such higher levels of critical thinking were also found in the students’ final project of individual recorded digital story. It is elaborated from the students’ statements in the interview who claimed CFDS offered opportunity to the students to promote their critical thinking because they comprehended the story deeply as they experienced in their real life. This learning model created good learning atmosphere and engaged the students directly so that they looked confident to retell the story in various perspectives. In term of the benefits of child-friendly digital storytelling, the students found it beneficial for some enjoyable classroom activities through watching beautiful and colorful pictures, listening to clear and good sounds, appealing moving motion and emotionally they were involved in that story. In the interview, the students also stated that child-friendly digital storytelling eased them to understand the meaning of the story as they were motivated and enthusiastic to speak in English critically.

Keywords: critical thinking, child-friendly digital storytelling, English speaking, promoting, young learners

Procedia PDF Downloads 282
2085 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction

Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong

Abstract:

The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.

Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm

Procedia PDF Downloads 151
2084 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes

Procedia PDF Downloads 416
2083 The Power of Story in Demonstrating the Story of Power

Authors: Marianne Vardalos

Abstract:

Many students are returning to school after years of rich, lived experiences as parents, employees, volunteers, and in various other roles outside the university. While in the workforce or at home raising a family, they have gained authentic, personal observations of the power dynamics referred to as racism, classism, sexism, heteronormativity, and ableism. Encouraging your students to apply their own realities to course material that interrogates power structures and privilege not only facilitates student learning and understanding but also reveals that you, as a teacher, respect the experiences of your students as valuable and valid teaching tools. Though there is general recognition of the pedagogical value of having students share their experiences, facilitating such discussion can be a harrowing challenge for faculty. Additionally, for some students, the classroom can be very strange and too intimidating to share personal stories of injustice or inequality. In larger classroom settings, an attempt to integrate story-telling can turn into a cacophony of emotional testimonials. Not wanting to lose control of the class and feeling unqualified to respond to students' emotional confessions from their past, educators are often tempted to minimize the personal comments of students and avoid altogether an impromptu free-for-all. Knowing how and when to draw on the personal experience of your students involves a systematic plan for eliciting the most useful information at the right time. The trick is to design methods that induce student self-reflection in a way that is relevant to the course material and to then effectively incorporate these methods into lesson plans.

Keywords: pedagogy, story-telling, power and inequality, hierarchies of power

Procedia PDF Downloads 93
2082 The Narrative Coherence of Autistic Children’s Accounts of an Experienced Event over Time

Authors: Fuming Yang, Telma Sousa Almeida, Xinyu Li, Yunxi Deng, Heying Zhang, Michael E. Lamb

Abstract:

Twenty-seven children aged 6-15 years with autism spectrum disorder (ASD) and 32 typically developing children were questioned about their participation in a set of activities after a two-week delay and again after a two-month delay, using a best-practice interview protocol. This paper assessed the narrative coherence of children’s reports based on key story grammar elements and temporal features included in their accounts of the event. Results indicated that, over time, both children with ASD and typically developing (TD) children decreased their narrative coherence. Children with ASD were no different from TD peers with regards to story length and syntactic complexity. However, they showed significantly less coherence than TD children. They were less likely to use the gist of the story to organize their narrative coherence. Interviewer prompts influenced children’s narrative coherence. The findings indicated that children with ASD could provide meaningful and reliable testimony about an event they personally experienced, but the narrative coherence of their reports deteriorates over time and is affected by interviewer prompts.

Keywords: autism spectrum disorders, delay, eyewitness testimony, narrative coherence

Procedia PDF Downloads 289
2081 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors

Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri

Abstract:

Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.

Keywords: citrus greening, pattern recognition, feature extraction, classification

Procedia PDF Downloads 185
2080 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps

Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur

Abstract:

The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.

Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion

Procedia PDF Downloads 117
2079 The Influence of Shear Wall Position on Seismic Performance in Buildings

Authors: Akram Khelaifia, Nesreddine Djafar Henni

Abstract:

Reinforced concrete shear walls are essential components in protecting buildings from seismic forces by providing both strength and stiffness. This study focuses on optimizing the placement of shear walls in a high seismic zone. Through nonlinear analyses conducted on an eight-story building, various scenarios of shear wall positions are investigated to evaluate their impact on seismic performance. Employing a performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria related to inter-story drift ratio and damage levels. The findings emphasize the importance of concentrating shear walls in the central area of the building during the design phase. This strategic placement proves more effective compared to peripheral distributions, resulting in reduced inter-story drift and mitigated potential damage during seismic events. Additionally, the research explores the use of shear walls that completely infill the frame, forming compound shapes like Box configurations. It is discovered that incorporating such complete shear walls significantly enhances the structure's reliability concerning inter-story drift. Conversely, the absence of complete shear walls within the frame leads to reduced stiffness and the potential deterioration of short beams.

Keywords: performance level, pushover analysis, shear wall, plastic hinge, nonlinear analyses

Procedia PDF Downloads 54
2078 [Keynote Talk]: sEMG Interface Design for Locomotion Identification

Authors: Rohit Gupta, Ravinder Agarwal

Abstract:

Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.

Keywords: classifiers, feature selection, locomotion, sEMG

Procedia PDF Downloads 293
2077 In Life: Space as Doppelganger in “The House of Usher”

Authors: Tuğçe Arslan

Abstract:

In the dark and gloomy times of the Middle Ages, high, majestic, and frightening structures were revealed in the architectural field. Thus, gothic architecture began to find a place for itself in different areas and spread its influence. Gothic has found its place in almost every literary genre and manages to show itself as the dominant genre in the works it enters. It has exploited many concepts, such as a chest full of bad feelings, and creates a gloomy, scary, frightening, and pessimistic mood in the story with these concepts. One of the essential concepts it uses while creating these feelings is the concept of “Doppelganger.” With this concept, the authors make sense of the uncanny; at this point, they allow the spaces to act like characters, just like the uncanny feeling Edgar Allan Poe creates in his story “The Fall of the House of the Usher.” In this story by Edgar Allan Poe, attention should be paid to the symbolic link between the two, as “House of Usher” refers to the family and the building. And indeed, it is possible to see this minor rift as representative of a breakdown in family unity, specifically between Madeline and Roderick. Because although the home is not alive, it has some supernatural features that make it look like a living, breathing being. Therefore, the remainder of this paper will argue that apart from the apparent twins, the house should also qualify as a Doppelganger in the story. This study will first explore the physical and mental disorders of the twins and their journey to complement each other; next, in an attempt to demonstrate how the house as a non-living needs to be considered as a Doppelganger of the twins, a close reading on the house depictions will be scrutinized.

Keywords: Edgar Allan Poe, doppelganger, uncanny, gothic, space, home

Procedia PDF Downloads 124
2076 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 235
2075 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 29
2074 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 109
2073 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 140
2072 Strategic Shear Wall Arrangement in Buildings under Seismic Loads

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.

Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level

Procedia PDF Downloads 50
2071 The Influence of Noise on Aerial Image Semantic Segmentation

Authors: Pengchao Wei, Xiangzhong Fang

Abstract:

Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.

Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise

Procedia PDF Downloads 220
2070 Optimal Design of Friction Dampers for Seismic Retrofit of a Moment Frame

Authors: Hyungoo Kang, Jinkoo Kim

Abstract:

This study investigated the determination of the optimal location and friction force of friction dampers to effectively reduce the seismic response of a reinforced concrete structure designed without considering seismic load. To this end, the genetic algorithm process was applied and the results were compared with those obtained by simplified methods such as distribution of dampers based on the story shear or the inter-story drift ratio. The seismic performance of the model structure with optimally positioned friction dampers was evaluated by nonlinear static and dynamic analyses. The analysis results showed that compared with the system without friction dampers, the maximum roof displacement and the inter-story drift ratio were reduced by about 30% and 40%, respectively. After installation of the dampers about 70% of the earthquake input energy was dissipated by the dampers and the energy dissipated in the structural elements was reduced by about 50%. In comparison with the simplified methods of installation, the genetic algorithm provided more efficient solutions for seismic retrofit of the model structure.

Keywords: friction dampers, genetic algorithm, optimal design, RC buildings

Procedia PDF Downloads 245
2069 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 120
2068 Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes

Authors: Mohammadreza Salek Faramarzi, Touraj Taghikhany

Abstract:

In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.

Keywords: IDA, near-fault, probabilistic performance assessment, seismic fragility, strongback system, uncertainty

Procedia PDF Downloads 116
2067 Evaluation of the Impact of Infill Wall Layout in Plan and/or Elevation on the Seismic Behavior of 3D Reinforced Concrete Structures

Authors: Salah Guettala, Nesreddine Djafarhenni, Akram Khelaifia, Rachid Chebili

Abstract:

This study assesses the impact of infill walls' layout in both plan and elevation on the seismic behavior of a 3D reinforced concrete structure situated in a high seismic zone. A pushover analysis is conducted to evaluate the structure's seismic performance with various infill wall layouts, considering capacity curves, absorbed energy, inter-story drift, and performance levels. Additionally, torsional effects on the structure are examined through linear dynamic analysis. Fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings indicate that the presence of infill walls enhances lateral stiffness and alters structural behavior. Moreover, the study highlights the importance of considering the effects of infill wall layout, as non-uniform layouts can degrade building performance post-earthquake, increasing inter-story drift and risk of damage or collapse. To mitigate such risks, buildings should adopt a uniform infill wall layout. Furthermore, asymmetrical placement of masonry infill walls introduces additional torsional forces, particularly when there's a lack of such walls on the first story, potentially leading to irregular stiffness and soft-story phenomena.

Keywords: RC structures, infll walls’ layout, pushover analysis, macro-model, fiber plastic hinge, torsion

Procedia PDF Downloads 63
2066 Story of Alex: Sociology of Gender

Authors: Karen V. Lee

Abstract:

The significance of this study involves autoethnographic research about a music teacher learning about the socialization of gender issues in teaching. Mentorship involving intervention helps with the consequences influencing a transgendered music teacher. Basic storytelling methodology involves the qualitative method of research as a theoretical framework where the author provides a storied reflection about political issues surrounding teachers and the sociology of gender. Sub-themes involve counseling, adult education to ensure students and teachers receive social, emotional, physical, spiritual, and educational resources that evoke visceral, emotional responses from the audience. Major findings share how stories are helpful resources for others who struggle with the socialization of gender. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist having his sex reassignment surgery during his undergraduate education degree. In conclusion, the research is a reflexive storied framework that embraces a positive outlook about a transgendered teacher during his masectomy. The sensory experience seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of the sociology of gender and society provides transformative aspects that contributes to social change. Overall, the surgery surrounding the story about transgendered issues are not uncommon in society. Thus, continued education supports the moral mission to help teachers overcome and understand issues of gender that can socially impacts their professional lives as teachers.

Keywords: sociology of gender, transgender, music teachers, story, autoethnography as research, ideology

Procedia PDF Downloads 304
2065 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 298
2064 One Nature under God, and Divisible: Augustine’s “Duality of Man” Applied to the Creation Stories of Genesis

Authors: Elizabeth Latham

Abstract:

The notion that women were created as innately inferior to men has yet to be expelled completely from the theological system of humankind. This question and the biblical exegesis it requires are of paramount importance to feminist philosophy—after all, the study can bear little fruit if we cannot even agree on equality within the theological roots of humanity. Augustine’s “Duality of Man” gives new context to the two creation stories in Genesis, texts especially relevant given the billions of people worldwide that ascribe to them as philosophical realities. Each creation story describes the origin of human beings and is matched with one of Augustine’s two orders of mankind. The first story describes the absolute origin of the human soul and is paired with Augustine’s notion of the “spiritual order” of a human being: divine and eternal, fulfilling the biblical idea that human beings were created in the image and likeness of God. The second creation story, in contrast, depicts those aspects of humanity that distinguish and separate us from God: doubt, fear, and sin. It also introduces gender as a concept for the first time in the Bible. This story is better matched with Augustine’s idea of the “natural order” of humanity, that by which he believes women, in fact, are inferior. In the synthesis of the two sources, one can see that the natural order and any inferiority that it implies are incidental and not intended in our creation. Gender inequality is introduced with and belongs in the category of human imperfection and to cite the Bible as encouraging it constitutes a gross misunderstanding of scripture. This is easy to see when we divide human nature into “spiritual” and “natural” and look carefully at where scripture falls.

Keywords: augustine, bible, duality of man, feminism, genesis

Procedia PDF Downloads 135
2063 The Problem of Suffering: Job, The Servant and Prophet of God

Authors: Barbara Pemberton

Abstract:

Now that people of all faiths are experiencing suffering due to many global issues, shared narratives may provide common ground in which true understanding of each other may take root. This paper will consider the all too common problem of suffering and address how adherents of the three great monotheistic religions seek understanding and the appropriate believer’s response from the same story found within their respective sacred texts. Most scholars from each of these three traditions—Judaism, Christianity, and Islam— consider the writings of the Tanakh/Old Testament to at least contain divine revelation. While they may not agree on the extent of the revelation or the method of its delivery, they do share stories as well as a common desire to glean God’s message for God’s people from the pages of the text. One such shared story is that of Job, the servant of Yahweh--called Ayyub, the prophet of Allah, in the Qur’an. Job is described as a pious, righteous man who loses everything—family, possessions, and health—when his faith is tested. Three friends come to console him. Through it, all Job remains faithful to his God who rewards him by restoring all that was lost. All three hermeneutic communities consider Job to be an archetype of human response to suffering, regarding Job’s response to his situation as exemplary. The story of Job addresses more than the distribution of the evil problem. At stake in the story is Job’s very relationship to his God. Some exegetes believe that Job was adapted into the Jewish milieu by a gifted redactor who used the original ancient tale as the “frame” for the biblical account (chapters 1, 2, and 4:7-17) and then enlarged the story with the complex center section of poetic dialogues creating a complex work with numerous possible interpretations. Within the poetic center, Job goes so far as to question God, a response to which Jews relate, finding strength in dialogue—even in wrestling with God. Muslims only embrace the Job of the biblical narrative frame, as further identified through the Qur’an and the prophetic traditions, considering the center section an errant human addition not representative of a true prophet of Islam. The Qur’anic injunction against questioning God also renders the center theologically suspect. Christians also draw various responses from the story of Job. While many believers may agree with the Islamic perspective of God’s ultimate sovereignty, others would join their Jewish neighbors in questioning God, not anticipating answers but rather an awareness of his presence—peace and hope becoming a reality experienced through the indwelling presence of God’s Holy Spirit. Related questions are as endless as the possible responses. This paper will consider a few of the many Jewish, Christian, and Islamic insights from the ancient story, in hopes adherents within each tradition will use it to better understand the other faiths’ approach to suffering.

Keywords: suffering, Job, Qur'an, tanakh

Procedia PDF Downloads 187
2062 Creating a Quasi-Folklore as a Tool for Knowledge Sharing in a Family-Based Business

Authors: Chico A. E. Hindarto

Abstract:

Knowledge management practices are more contextual when they combine with the corporate culture. Each entity has a specific cultural climate that enables knowledge sharing in both functional and individual levels. The interactions between people within organization can be influenced by the culture and how the knowledge is transmitted. On the other hand, these interactions have impacts in culture modification as well. Storytelling is one of the methods in delivering the knowledge throughout the organization. This paper aims to explore the possibility in using a quasi-folklore in the family-based business. Folklore is defined as informal tradition culture that spreading through a word-of-mouth, without knowing the source of the story. In this paper, the quasi-folklore term is used to differentiate it with the original term of folklore. The story is created by somebody in the organization, not like the folklore with unknown source. However, the source is not disclosed, in order to avoid the predicted interest from the story origin. The setting of family-based business is deliberately chosen, since the kinship is considerably strong in this type of entity. Through a thorough literature review that relates to knowledge management, storytelling, and folklore, this paper determines how folklore can be an option for knowledge sharing within the organization.

Keywords: folklore, family business, organizational culture, knowledge management, storytelling

Procedia PDF Downloads 288
2061 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement

Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao

Abstract:

Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.

Keywords: feature analysis, machine vision, PCA, surface roughness, SVM

Procedia PDF Downloads 213
2060 A Method for the Extraction of the Character's Tendency from Korean Novels

Authors: Min-Ha Hong, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The character in the story-based content, such as novels and movies, is one of the core elements to understand the story. In particular, the character’s tendency is an important factor to analyze the story-based content, because it has a significant influence on the storyline. If readers have the knowledge of the tendency of characters before reading a novel, it will be helpful to understand the structure of conflict, episode and relationship between characters in the novel. It may therefore help readers to select novel that the reader wants to read. In this paper, we propose a method of extracting the tendency of the characters from a novel written in Korean. In advance, we build the dictionary with pairs of the emotional words in Korean and English since the emotion words in the novel’s sentences express character’s feelings. We rate the degree of polarity (positive or negative) of words in our emotional words dictionary based on SenticNet. Then we extract characters and emotion words from sentences in a novel. Since the polarity of a word grows strong or weak due to sentence features such as quotations and modifiers, our proposed method consider them to calculate the polarity of characters. The information of the extracted character’s polarity can be used in the book search service or book recommendation service.

Keywords: character tendency, data mining, emotion word, Korean novel

Procedia PDF Downloads 335
2059 A Critical Discourse Study of Gender Identity Issues in Daniyal Mueenuddin’s Short Story “Saleema”

Authors: Zafar Ali

Abstract:

The aim of this research is to highlight problems that are faced by women at the hands of men. Males in Pakistani society have power and use this power for the exploitation of women. Further, the purpose of the study is to make societies like Pakistan and especially the young generation, aware and enable them to resist such issues, and the role of discourse in this regard is to minimize its political and social repercussions. The study finds out different discursive techniques and manipulative language used in the short story to construct gender identity. The study also investigates socio-economic roles in the construction of gender identity. This study has been completed with the help of Critical Discourse Analysis (CDA) principles. CDA principles have been applied to the text of the selected short story Saleema from Daniyal Mueenuddin’s collection In Other Rooms, Other Wonders. Related passages, structures, expressions, and text are analyzed from the point of view of CDA, especially Norman Fairclough’s CDA approach. It was found from the analysis that women have no identity of their own in patriarchal societies like Pakistan. Further, it was found women are mistreated, and they have a very limited and defined role in Pakistan. They cannot go beyond the limit defined to them by men.

Keywords: gender issues, resourceful groups, CDA, exploitation

Procedia PDF Downloads 132