Search results for: energy anomaly detection
2937 Heat Transfer Coefficients of Layers of Greenhouse Thermal Screens
Authors: Vitaly Haslavsky, Helena Vitoshkin
Abstract:
The total energy saving effect of different types of greenhouse thermal/shade screens was determined by measuring and calculating the overall heat transfer coefficients (U-values) for single and several layers of screens. The measurements were carried out using the hot box method, and the calculations were performed according to the ISO Standard 15099. The goal was to examine different types of materials with a wide range of thermal radiation properties used for thermal screens in combination with a dehumidification system in order to improve greenhouse insulation. The experimental results were in good agreement with the calculated heat transfer coefficients. It was shown that a high amount of infra-red (IR) radiation can be blocked by the greenhouse covering material in combination with moveable thermal screens. The aluminum foil screen could be replaced by transparent screens, depending on shading requirements. The results indicated that using a single layer, the U-value was reduced by approximately 70% compared to covering material alone, while the contributions of additional screen layers containing aluminum foil strips could reduce the U-value by approximately 90%. It was shown that three screen layers are sufficient for effective insulation.Keywords: greenhouse insulation, heat loss, thermal screens, U-value
Procedia PDF Downloads 1202936 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment
Authors: Rouzbeh Jafari, Joe Nava
Abstract:
This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy
Procedia PDF Downloads 1152935 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator
Authors: Dib Djalel, Mordjaoui Mourad
Abstract:
The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power
Procedia PDF Downloads 4852934 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory
Procedia PDF Downloads 2852933 Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA
Authors: Manh-Dung Ho, Van-Giap Pham, Van-Doanh Ho, Quang-Thien Tran, Tuan-Anh Tran
Abstract:
The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides.Keywords: neutron activation analysis, k0-based method, k0 factor, Q0 factor, effective resonance energy
Procedia PDF Downloads 1302932 Solar-Electric Pump-out Boat Technology: Impacts on the Marine Environment, Public Health, and Climate Change
Authors: Joy Chiu, Colin Hemez, Emma Ryan, Jia Sun, Robert Dubrow, Michael Pascucilla
Abstract:
The popularity of recreational boating is on the rise in the United States, which raises numerous national-level challenges in the management of air and water pollution, aquatic habitat destruction, and waterway access. The need to control sewage discharge from recreational vessels underlies all of these challenges. The release of raw human waste into aquatic environments can lead to eutrophication and algal blooms; can increase human exposure to pathogenic viruses, bacteria, and parasites; can financially impact commercial shellfish harvest/fisheries and marine bathing areas; and can negatively affect access to recreational and/or commercial waterways to the detriment of local economies. Because of the damage that unregulated sewage discharge can do to environments and human health/marine life, recreational vessels in the United States are required by law to 'pump-out' sewage from their holding tanks into sewage treatment systems in all designated 'no discharge areas'. Many pump-out boats, which transfer waste out of recreational vessels, are operated and maintained using funds allocated through the Federal Clean Vessel Act (CVA). The East Shore District Health Department of Branford, Connecticut is protecting this estuary by pioneering the design and construction of the first-in-the-nation zero-emissions, the solar-electric pump-out boat of its size to replace one of its older traditional gasoline-powered models through a Connecticut Department of Energy and Environmental Protection CVA Grant. This study, conducted in collaboration with the East Shore District Health Department, the Connecticut Department of Energy and Environmental Protection, States Organization for Boating Access and Connecticut’s CVA program coordinators, had two aims: (1) To perform a national assessment of pump-out boat programs, supplemented by a limited international assessment, to establish best pump-out boat practices (regardless of how the boat is powered); and (2) to estimate the cost, greenhouse gas emissions, and environmental and public health impacts of solar-electric versus traditional gasoline-powered pump-out boats. A national survey was conducted of all CVA-funded pump-out program managers and selected pump-out boat operators to gauge best practices; costs associated with gasoline-powered pump-out boat operation and management; and the regional, cultural, and policy-related issues that might arise from the adoption of solar-electric pump-out boat technology. We also conducted life-cycle analyses of gasoline-powered and solar-electric pump-out boats to compare their greenhouse gas emissions; production of air, soil and water pollution; and impacts on human health. This work comprises the most comprehensive study into pump-out boating practices in the United States to date, in which information obtained at local, state, national, and international levels is synthesized. This study aims to enable CVA programs to make informed recommendations for sustainable pump-out boating practices and identifies the challenges and opportunities that remain for the wide adoption of solar-electric pump-out boat technology.Keywords: pump-out boat, marine water, solar-electric, zero emissions
Procedia PDF Downloads 1332931 A Numerical Investigation of Flow Maldistribution in Inlet Header Configuration of Plate Fin Heat Exchanger
Authors: Appasaheb Raul
Abstract:
Numerical analysis of a plate fin heat exchanger accounting for the effect of fluid flow maldistribution on the inlet header configuration of the heat exchanger is investigated. It is found that the flow maldistribution is very significant in normal to the flow direction. Various inlet configuration has been studied for various Reynolds Number. By the study, a modified header configuration is proposed and simulated. The two-dimensional parameters are used to evaluate the flow non-uniformity in the header, global flow maldistribution parameter (Sg), and Velocity Ratio (θ). A series of velocity vectors and streamline graphs at different cross-section are achieved and studied qualitatively with experimental results in the literature. The numerical result indicates that the flow maldistribution is serious in the conventional header while in the improved configuration less maldistribution occurs. The flow maldistribution parameter (Sg) and velocity ratio (θ) is reduced in improved configuration. The vortex decreases compared to that of the conventional configuration so the energy and pressure loss is reduced. The improved header can effectively enhance the efficiency of plate fin heat exchanger and uniformity of flow distribution.Keywords: global flow maldistribution parameter, Sg, velocity ratio, plate fin heat exchanger, fluent 14.5
Procedia PDF Downloads 5292930 Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility
Authors: Xiaodong Xu, Dan Zhao, Xiujuan Chang, Chunming Li, Huiyun Zhou, Xin Li, Qiang Shi, Shifang Luan, Jinghua Yin
Abstract:
Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.Keywords: functionalization, polypropylene, chiral monomer, hemocompatibility
Procedia PDF Downloads 3862929 The Relationship between Body Image, Eating Behavior and Nutritional Status for Female Athletes
Authors: Selen Muftuoglu, Dilara Kefeli
Abstract:
The present study was conducted by using the cross-sectional study design and to determine the relationship between body image, eating behavior and nutritional status in 80 female athletes who were basketball, volleyball, flag football, indoor soccer, and ice hockey players. This study demonstrated that 70.0% of the female athletes had skipped meal. Also, female athletes had a normal body mass index (BMI), but 65.0% of them indicated that want to be thinner. On the other hand, we analyzed that their daily nutrients intake, so we observed that 43.4% of the energy was from the fatty acids, especially saturated fatty acids, and they had lower fiber, calcium and iron intake. Also, we found that BMI, waist circumference, waist to hip ratio were negatively correlated with Multidimensional Body-Self Relations Questionnaire and The Dutch Eating Behavior Questionnaire score and they were lower in who had meal skipped or not received diet therapy. As a conclusion, nutrition education is frequently neglected in sports programs. There is a paucity of nutrition education interventions among different sports.Keywords: body image, eating behavior, eating disorders, female athletes, nutritional status
Procedia PDF Downloads 1672928 Simultaneous Saccharification and Co-Fermentation of Paddy Straw and Fruit Wastes into Ethanol Production
Authors: Kamla Malik
Abstract:
For ethanol production from paddy straw firstly pretreatment was done by using sodium hydroxide solution (2.0%) at 15 psi for 1 hr. The maximum lignin removal was achieved with 0.5 mm mesh size of paddy straw. It contained 72.4 % cellulose, 15.9% hemicelluloses and 2.0 % lignin after pretreatment. Paddy straw hydrolysate (PSH) with fruits wastes (5%), such as sweet lime, apple, sapota, grapes, kinnow, banana, papaya, mango, and watermelon were subjected to simultaneous saccharification and co-fermentation (SSCF) for 72 hrs by co-culture of Saccharomyces cerevisiae HAU-1 and Candida sp. with 0.3 % urea as a cheap nitrogen source. Fermentation was carried out at 35°C and determined ethanol yield at 24 hours interval. The maximum production of ethanol was produced within 72 hrs of fermentation in PSH + sapota peels (3.9% v/v) followed by PSH + kinnow peels (3.6%) and PSH+ papaya peels extract (3.1 %). In case of PSH+ banana peels and mango peel extract the ethanol produced were 2.8 % and 2.2 % (v/v). The results of this study suggest that wastes from fruits that contain fermentable sugar should not be discarded into our environment, but should be supplemented in paddy straw which converted to useful products like bio-ethanol that can serve as an alternative energy source.Keywords: ethanol, fermentation, fruit wastes, paddy straw
Procedia PDF Downloads 3912927 Performance Analysis of MIMO-OFDM Using Convolution Codes with QAM Modulation
Authors: I Gede Puja Astawa, Yoedy Moegiharto, Ahmad Zainudin, Imam Dui Agus Salim, Nur Annisa Anggraeni
Abstract:
Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct the errors that occur during data transmission. One can use the convolution code. This paper presents performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate 1/2. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs. Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 sub-carrier which transmits Rayleigh multipath channel in OFDM system. To achieve a BER of 10-3 is required 30 dB SNR in SISO-OFDM scheme. For 2x2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4x4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4x4 MIMO-OFDM system without coding, power saving 7 dB of 2x2 MIMO-OFDM system without coding and significant power savings from SISO-OFDM system.Keywords: convolution code, OFDM, MIMO, QAM, BER
Procedia PDF Downloads 3942926 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite
Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo
Abstract:
Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties
Procedia PDF Downloads 1082925 Inadequacy of Macronutrient and Micronutrient Intake in Children Aged 12-23 Months Old: An Urban Study in Central Jakarta, Indonesia
Authors: Dewi Fatmaningrum, Ade Wiradnyani
Abstract:
Background: Optimal feeding, include optimal micronutrient intake, becomes one of the ways to overcome the long-term consequences of undernutrition. Macronutrient and micronutrient intake were important for rapid growth and development of the children. Objectives: To assess macro and micronutrient intake of children aged 12-23 months old and nutrients inadequacy from intake of children aged 12-23 months old. Methods: This survey was a cross-sectional study, simple random sampling was performed to select respondents. Total sample of this study was 83 children aged 12-23 months old in Paseban Village, Senen Sub-district, Central Jakarta. The data was collected via interview and hemoglobin measurement of children. Results: The highest prevalence of inadequacy was iron intake (52.4%) compared to other micronutrients, 11.98% children had inadequate energy intake. There were 62.6% anemic children in the study area in which divided into anemic (37.3%) and severe anemic (25.3%). Conclusion: Micronutrient inadequacy occurred more frequently than macronutrient inadequacy in the study area. The higher the percentage of iron inadequacy gets, the higher the percentage of anemia among children is observed.Keywords: micronutrient, macronutrient, children under five, urban setting
Procedia PDF Downloads 3422924 Bearing Capacity of Sheet Hanger Connection to the Trapezoidal Metal Sheet
Authors: Kateřina Jurdová
Abstract:
Hanging to the trapezoidal sheet by decking hanger is a very widespread solution used in civil engineering to lead the distribution of energy, sanitary, air distribution system etc. under the roof or floor structure. The trapezoidal decking hanger is usually a part of the whole installation system for specific distribution medium. The leading companies offer installation systems for each specific distribution e.g. pipe rings, sprinkler systems, installation channels etc. Every specific part is connected to the base connector which is decking hanger. The own connection has three main components: decking hanger, threaded bar with nuts and web of trapezoidal sheet. The aim of this contribution is determinate the failure mechanism of each component in connection. Load bearing capacity of most components in connection could be calculated by formulas in European codes. This contribution is focused on problematic of bearing resistance of threaded bar in web of trapezoidal sheet. This issue is studied by experimental research and numerical modelling. This contribution presented the initial results of experiment which is compared with numerical model of specimen.Keywords: decking hanger, concentrated load, connection, load bearing capacity, trapezoidal metal sheet
Procedia PDF Downloads 3962923 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting
Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira
Abstract:
The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.Keywords: water splitting, bubble, electrolysis, hydrogen production
Procedia PDF Downloads 1032922 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint
Authors: Melike Yaylacı, Tuğba Bilgin
Abstract:
Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters
Procedia PDF Downloads 1022921 A Study on Cleaning Mirror Technology with Reduced Water Consumption in a Solar Thermal Power Plant
Authors: Bayarjargal Enkhtaivan, Gao Wei, Zhang Yanping, He Guo Qiang
Abstract:
In our study, traditional cleaning mirror technology with reduced consumption of water in solar thermal power plants is investigated. In developed countries, a significant increase of growth and innovation in solar thermal power sector is evident since over the last decade. These power plants required higher water consumption, however, there are some complications to construct and operate such power plants under severe drought-inflicted areas like deserts where high water-deficit can be seen but sufficient solar energy is available. Designing new experimental equipments is the most important advantage of this study. These equipments can estimate various types of measurements at the mean time. In this study, Glasses were placed for 10 and 20 days at certain positions to deposit dusts on glass surface by using a common method. Dust deposited on glass surface was washed by experimental equipment and measured dust deposition on each glass. After that, experimental results were analyzed and concluded.Keywords: concentrated solar power (CSP) plant, high-pressure water, test equipment of clean mirror, cleaning technology of glass and mirror
Procedia PDF Downloads 1782920 Environmental Risk Assessment for Beneficiary Use of Coal Combustion Residues Using Leaching Environmental Assessment Framework
Authors: D. V. S. Praneeth, V. R. Sankar Cheela, Brajesh Dubey
Abstract:
Coal Combustion (CC) residues are the major by-products from thermal power plants. The disposal of ash on to land creates havoc to environment and humans. The leaching of the constituent elements pollutes ground water. Beneficiary use of coal combustion residues in structural components is being investigated as a part of this study. This application reduces stress on the convention materials in the construction industry. The present study involves determination of leaching parameters of the CC residues. Batch and column studies are performed based on Leaching Environmental Assessment Framework (LEAF) protocol. The column studies are conducted to simulate the real time percolation conditions in the field. The structural and environmental studies are performed to determine the usability of CC residues as bricks. The physical, chemical, geo environmental and mechanical properties of the alternate materials are investigated. Scanning electron microscopy (SEM), X-Ray Diffraction analysis (XRD), X-ray fluorescence (XRF) and Energy Dispersive X-ray Spectroscopy tests were conducted to determine the characteristics of CC residue ash and bricks.Keywords: coal combustion residues, LEAF, leaching, SEM
Procedia PDF Downloads 3202919 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Authors: Mohamad Saab, Sidi Souvi
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.Keywords: nuclear accident, ASTEC code, thermochemical database, quantum chemical methods
Procedia PDF Downloads 1942918 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264
Authors: V. Ziegler, F. Schneider, M. Pesch
Abstract:
With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection
Procedia PDF Downloads 1552917 The Role of the Renal Specialist Podiatrist
Authors: Clara Luwe, Oliver Harness, Helena Meally, Kim Martin, Alexandra Harrington
Abstract:
Background: The role of ‘Renal Specialist Podiatrist’ originated in 2022 due to prevailing evidence of patients with diabetes and end-stage renal disease (ESRD) on haemodialysis (HD) and active ulcerations that were at higher risk of rapid deterioration, foot-related hospital admissions, and lower limb amputations. This role started in April 2022 with the aim of screening all patients on haemodialysis and instigating preventative measures to reduce serious foot related complications. Methods: A comprehensive neurovascular foot assessment was completed to establish baseline vascular status and identify those with peripheral arterial disease (PAD) for all patients on HD. Individual’s foot risk was stratified, advice and education tailored and issued. Identifying all diabetes patients on HD as high-risk for diabetic foot complications. Major Findings: All patients screened revealed over half of the caseload had diabetes, and more than half had a clinical presentation of PAD. All those presenting with ulcerations had a diagnosis of diabetes. Of the presenting ulcerations, the majority of these ulcers predated the renal specialist post and were classified as severe >3 SINBAD Score. Since April’22, complications have been identified quicker, reducing the severity (SINBAD<3 or below), and have improved healing times, in line with the national average. During the eight months of the role being in place, we have seen a reduction in minor amputations and no major amputations. Conclusion: By screening all patients on haemodialysis and focusing on education, early recognition of complications, appropriate treatment, and timely onward referral, we can reduce the risk of foot Diabetic foot ulcerations and lower limb amputations. Having regular podiatry input to stratify and facilitate high-risk, active wound patients across different services has helped to keep these patients stable, prevent amputations, and reduce foot-related hospital admissions and mortality from foot-related disease. By improving the accessibility to a specialist podiatrist, patients felt able to raise concerns sooner. This has helped to implement treatment at the earliest possible opportunity, enabling the identification and healing of ulcers at an earlier and less complex stage (SINBAD <3), thus, preventing potential limb-threatening complications.Keywords: renal, podiatry, haemodialysis, prevention, early detection
Procedia PDF Downloads 872916 The Magnitude and Associated Factors of Immune Hemolytic Anemia among Human Immuno Deficiency Virus Infected Adults Attending University of Gondar Comprehensive Specialized Hospital North West Ethiopia 2021 GC, Cross Sectional Study Design
Authors: Samul Sahile Kebede
Abstract:
Back ground: -Immune hemolytic anemia commonly affects human immune deficiency, infected individuals. Among anemic HIV patients in Africa, the burden of IHA due to autoantibody was ranged from 2.34 to 3.06 due to the drug was 43.4%. IHA due to autoimmune is potentially a fatal complication of HIV, which accompanies the greatest percent from acquired hemolytic anemia. Objective: -The main aim of this study was to determine the magnitude and associated factors of immune hemolytic anemia among human immuno deficiency virus infected adults at the university of Gondar comprehensive specialized hospital north west Ethiopia from March to April 2021. Methods: - An institution-based cross-sectional study was conducted on 358 human immunodeficiency virus-infected adults selected by systematic random sampling at the University of Gondar comprehensive specialized hospital from March to April 2021. Data for socio-demography, dietary and clinical data were collected by structured pretested questionnaire. Five ml of venous blood was drawn from each participant and analyzed by Unicel DHX 800 hematology analyzer, blood film examination, and antihuman globulin test were performed to the diagnosis of immune hemolytic anemia. Data was entered into Epidata version 4.6 and analyzed by STATA version 14. Descriptive statistics were computed and firth penalized logistic regression was used to identify predictors. P value less than 0.005 interpreted as significant. Result; - The overall prevalence of immune hemolytic anemia was 2.8 % (10 of 358 participants). Of these, 5 were males, and 7 were in the 31 to 50 year age group. Among individuals with immune hemolytic anemia, 40 % mild and 60 % moderate anemia. The factors that showed association were family history of anemia (AOR 8.30 at 95% CI 1.56, 44.12), not eating meat (AOR 7.39 at 95% CI 1.25, 45.0), and high viral load 6.94 at 95% CI (1.13, 42.6). Conclusion and recommendation; Immune hemolytic anemia is less frequent condition in human immunodeficiency virus infected adults, and moderate anemia was common in this population. The prevalence was increased with a high viral load, a family history of anemia, and not eating meat. In these patients, early detection and treatment of immune hemolytic anemia is necessary.Keywords: anemia, hemolytic, immune, auto immune, HIV/AIDS
Procedia PDF Downloads 1122915 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1992914 Kinetic Analysis of Wood Pellets by Isothermal Calorimetry for Evaluating its Self-heating Potential
Authors: Can Yao, Chang Dong Sheng
Abstract:
The heat released by wood pellets during storage will cause self-heating and even self-ignition. In this work, the heat release rates of pine, fir wood and mahogany pellets at 30–70℃ were measured by TAM air isothermal calorimeter, and the kinetic analysis was performed by iso-conversion ratio and non-steady-state methods to evaluate its self-heating potential. The results show that the reaction temperature can significantly affect the heat release rate. The higher the temperature, the greater the heat release rate. The heat release rates of different kinds of wood pellets are obviously different, and the order of the heat release rates for the three pellets at 70℃ is pine > fir wood > mahogany. The kinetic analysis of the iso-conversion ratio method indicates that the distribution of activation energy for pine, fir wood and mahogany pellets under the release of 0.1–1.0 J/g specific heat are 58–102 kJ/mol, 59–108 kJ/mol and 59–112 kJ/mol, respectively. Their activation energies obtained from the non-steady-state kinetic analysis are 13.43 kJ/mol, 19.19 kJ/mol and 21.09 kJ/mol, respectively. Both kinetic analyses show that the magnitude of self-heating risk for the three pellet fuels is pine pellets > fir wood pellets > mahogany pellets.Keywords: isothermal calorimeter, kinetics, self-heating, wood pellets
Procedia PDF Downloads 1792913 Gender Considerations and Entrepreneurship Development in Nigeria
Authors: Tirimisiyu Olaide Gbadamosi
Abstract:
Individuals go into business for the sake of obtaining regular income, becoming self-employed. Although, there different kinds of business enterprises that female and male can go into, often times, some businesses are regarded more suitable for a particular sex and not the other. This means that there is some gender discrimination in the choice of business one goes into and by extension in entrepreneurship development. Apparently, gender attitudes and behaviors will have positive or negative effects on entrepreneurship development in a society or economy. This research work therefore intends to take a critical look at gender discrimination as they affect entrepreneurship development with particular reference to northern Nigeria in general, using Exceptional Production Services Limited Kaduna, Kaduna North Local Government area as a case study, and also to suggest the possible solution to unidentified problems and give recommendation where necessary. Statement of research problem: Entrepreneurship has generally been recognised as a good medium or strategy for economic development of an individual, a community and a nation. It is also a known a known fact that some gender discrimination are often used in the choice of business or even the decision to go into business. For example, some businesses are regarded as more suitable to men than women. The question here is, is this the right approach to economic development through entrepreneurship? Of what effect is this approach to entrepreneurship development? These and the other questions are what this research intends to find answers to and if possible make recommendations. Significance of the study: The findings of this study will provide a guide for anyone for the establishment of a business in Nigeria. The study will help any prospective entrepreneur to make the right decision of which business to go into and how to contend with gender related issues that might influence its success in business. Furthermore, it is hoped that the study will assist the government and her agencies in the process in developing entrepreneurship development programs. Conclusion: There has been growing recognition that various types of discrimination do not always affect women and men in the same way. Moreover, gender discrimination may be intensified and facilitated by all other forms of discrimination. It has been increasingly recognized that without gender analysis of all forms of discrimination in business, including multiple forms of discrimination, and, in particular, in this context, related intolerance, violations of the human rights of women might escape detection and remedies to address racism may also fail to meet the needs of women and girls. It is also important that efforts to address gender discrimination incorporate approaches to the elimination of all forms of discrimination. Recommendation: Campaigning and raising awareness among young men and women, parents, teachers and employers about gender stereotypical attitudes towards academic performances and the likely consequences of overall educational choices for employment and entrepreneurship opportunities, career progression and earnings.Keywords: entrepreneurship, economic development, small medium enterprises, gender discrimination
Procedia PDF Downloads 3882912 Experimental Investigation of Nanofluid Heat Transfer in a Plate Type Heat Exchanger
Authors: Eyuphan Manay
Abstract:
In this study, it was aimed to determine the convective heat transfer characteristics of water-based silicon dioxide nanofluids (SiO₂) with particle volume fractions of 0.2 and 0.4% vol. Nanofluids were tested in a plate type heat exchanger with six plates. Plate type heat exchanger was manufactured from stainless steel. Water was driven in the hot flow side, and nanofluids were driven in the cold flow side. The thermal energy of the hot water was taken by nanofluids. Effect of the inlet temperature of the hot water was investigated on heat transfer performance of the nanofluids while the inlet temperature of the nanofluids was fixed. In addition, the effects of the particle volume fraction and the cold flow rate on the performance of the system were tested. Results showed that increasing inlet temperature of the hot flow caused heat transfer to enhance. The suspended solid particles into the carrier fluid also remarkably enhanced heat transfer, and, an increase in the particle volume fraction resulted in an increase in heat transfer.Keywords: heat transfer enhancement, SiO₂-water, nanofluid, plate heat exchanger
Procedia PDF Downloads 2082911 An EEG-Based Scale for Comatose Patients' Vigilance State
Authors: Bechir Hbibi, Lamine Mili
Abstract:
Understanding the condition of comatose patients can be difficult, but it is crucial to their optimal treatment. Consequently, numerous scoring systems have been developed around the world to categorize patient states based on physiological assessments. Although validated and widely adopted by medical communities, these scores still present numerous limitations and obstacles. Even with the addition of additional tests and extensions, these scoring systems have not been able to overcome certain limitations, and it appears unlikely that they will be able to do so in the future. On the other hand, physiological tests are not the only way to extract ideas about comatose patients. EEG signal analysis has helped extensively to understand the human brain and human consciousness and has been used by researchers in the classification of different levels of disease. The use of EEG in the ICU has become an urgent matter in several cases and has been recommended by medical organizations. In this field, the EEG is used to investigate epilepsy, dementia, brain injuries, and many other neurological disorders. It has recently also been used to detect pain activity in some regions of the brain, for the detection of stress levels, and to evaluate sleep quality. In our recent findings, our aim was to use multifractal analysis, a very successful method of handling multifractal signals and feature extraction, to establish a state of awareness scale for comatose patients based on their electrical brain activity. The results show that this score could be instantaneous and could overcome many limitations with which the physiological scales stock. On the contrary, multifractal analysis stands out as a highly effective tool for characterizing non-stationary and self-similar signals. It demonstrates strong performance in extracting the properties of fractal and multifractal data, including signals and images. As such, we leverage this method, along with other features derived from EEG signal recordings from comatose patients, to develop a scale. This scale aims to accurately depict the vigilance state of patients in intensive care units and to address many of the limitations inherent in physiological scales such as the Glasgow Coma Scale (GCS) and the FOUR score. The results of applying version V0 of this approach to 30 patients with known GCS showed that the EEG-based score similarly describes the states of vigilance but distinguishes between the states of 8 sedated patients where the GCS could not be applied. Therefore, our approach could show promising results with patients with disabilities, injected with painkillers, and other categories where physiological scores could not be applied.Keywords: coma, vigilance state, EEG, multifractal analysis, feature extraction
Procedia PDF Downloads 812910 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes
Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee
Abstract:
Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing
Procedia PDF Downloads 2562909 About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach
Authors: Brandtner-Hafner Martin
Abstract:
Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this.Keywords: interface bonding safety, adhesively bonded concrete joints, GF-principle, fracture analysis
Procedia PDF Downloads 3102908 The Analysis of Thermal Conductivity in Porcine Meat Due to Electricity by Finite Element Method
Authors: Orose Rugchati, Sarawut Wattanawongpitak
Abstract:
This research studied the analysis of the thermal conductivity and heat transfer in porcine meat due to the electric current flowing between the electrode plates in parallel. Hot-boned pork sample was prepared in 2*1*1 cubic centimeter. The finite element method with ANSYS workbench program was applied to simulate this heat transfer problem. In the thermal simulation, the input thermoelectric energy was calculated from measured current that flowing through the pork and the input voltage from the dc voltage source. The comparison of heat transfer in pork according to two voltage sources: DC voltage 30 volts and dc pulsed voltage 60 volts (pulse width 50 milliseconds and 50 % duty cycle) were demonstrated. From the result, it shown that the thermal conductivity trends to be steady at temperature 40C and 60C around 1.39 W/mC and 2.65 W/mC for dc voltage source 30 volts and dc pulsed voltage 60 volts, respectively. For temperature increased to 50C at 5 minutes, the appearance color of porcine meat at the exposer point has become to fade. This technique could be used for predicting of thermal conductivity caused by some meat’s characteristics.Keywords: thermal conductivity, porcine meat, electricity, finite element method
Procedia PDF Downloads 145