Search results for: marine environmental awareness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9668

Search results for: marine environmental awareness

938 Trial Version of a Systematic Material Selection Tool in Building Element Design

Authors: Mine Koyaz, M. Cem Altun

Abstract:

Selection of the materials satisfying the expected performances is significantly important for any design. Today, with the constantly evolving and developing technologies, the material options are so wide that the necessity of the use of some support tools in the selection process is arising. Therefore, as a sub process of building element design, a systematic material selection tool is developed, that defines four main steps of the material selection; definition, research, comparison and decision. The main purpose of the tool is being an educational instrument that would show a methodic way of material selection in architectural detailing for the use of architecture students. The tool predefines the possible uses of various material databases and other sources of information on material properties. Hence, it is to be used as a guidance for designers, especially with a limited material knowledge and experience. The material selection tool not only embraces technical properties of materials related with building elements’ functional requirements, but also its sensual properties related with the identity of design and its environmental impacts with respect to the sustainability of the design. The method followed in the development of the tool has two main sections; first the examination and application of the existing methods and second the development of trial versions and their applications. Within the scope of the existing methods; design support tools, methodic approaches for the building element design and material selection process, material properties, material databases, methodic approaches for the decision making process are examined. The existing methods are applied by architecture students and newly graduate architects through different design problems. With respect to the results of these applications, strong and weak sides of the existing material selection tools are presented. A main flow chart of the material selection tool has been developed with the objective to apply the strong aspects of the existing methods and develop their weak sides. Through different stages, a different aspect of the material selection process is investigated and the tool took its final form. Systematic material selection tool, within the building element design process, guides the users with a minimum background information, to practically and accurately determine the ideal material that is to be chosen, satisfying the needs of their design. The tool has a flexible structure that answers different needs of different designs and designers. The trial version issued in this paper shows one of the paths that could be followed and illustrates its application over a design problem.

Keywords: architectural education, building element design, material selection tool, systematic approach

Procedia PDF Downloads 352
937 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability

Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks

Abstract:

Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.

Keywords: open-cut, mining, erosion, rainfall simulator

Procedia PDF Downloads 101
936 Spatial Analysis as a Tool to Assess Risk Management in Peru

Authors: Josué Alfredo Tomas Machaca Fajardo, Jhon Elvis Chahua Janampa, Pedro Rau Lavado

Abstract:

A flood vulnerability index was developed for the Piura River watershed in northern Peru using Principal Component Analysis (PCA) to assess flood risk. The official methodology to assess risk from natural hazards in Peru was introduced in 1980 and proved effective for aiding complex decision-making. This method relies in part on decision-makers defining subjective correlations between variables to identify high-risk areas. While risk identification and ensuing response activities benefit from a qualitative understanding of influences, this method does not take advantage of the advent of national and international data collection efforts, which can supplement our understanding of risk. Furthermore, this method does not take advantage of broadly applied statistical methods such as PCA, which highlight central indicators of vulnerability. Nowadays, information processing is much faster and allows for more objective decision-making tools, such as PCA. The approach presented here develops a tool to improve the current flood risk assessment in the Peruvian basin. Hence, the spatial analysis of the census and other datasets provides a better understanding of the current land occupation and a basin-wide distribution of services and human populations, a necessary step toward ultimately reducing flood risk in Peru. PCA allows the simplification of a large number of variables into a few factors regarding social, economic, physical and environmental dimensions of vulnerability. There is a correlation between the location of people and the water availability mainly found in rivers. For this reason, a comprehensive vision of the population location around the river basin is necessary to establish flood prevention policies. The grouping of 5x5 km gridded areas allows the spatial analysis of flood risk rather than assessing political divisions of the territory. The index was applied to the Peruvian region of Piura, where several flood events occurred in recent past years, being one of the most affected regions during the ENSO events in Peru. The analysis evidenced inequalities for the access to basic services, such as water, electricity, internet and sewage, between rural and urban areas.

Keywords: assess risk, flood risk, indicators of vulnerability, principal component analysis

Procedia PDF Downloads 186
935 Energy Storage Modelling for Power System Reliability and Environmental Compliance

Authors: Rajesh Karki, Safal Bhattarai, Saket Adhikari

Abstract:

Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources.

Keywords: flywheel energy storage, compressed air energy storage, power system reliability, renewable energy, system planning, system operation

Procedia PDF Downloads 130
934 Large-Scale Experimental and Numerical Studies on the Temperature Response of Main Cables and Suspenders in Bridge Fires

Authors: Shaokun Ge, Bart Merci, Fubao Zhou, Gao Liu, Ya Ni

Abstract:

This study investigates the thermal response of main cables and suspenders in suspension bridges subjected to vehicle fires, integrating large-scale gasoline pool fire experiments with numerical simulations. Focusing on a suspension bridge in China, the research examines the impact of wind speed, pool size, and lane position on flame dynamics and temperature distribution along the cables. The results indicate that higher wind speeds and larger pool sizes markedly increase the mass burning rate, causing flame deflection and non-uniform temperature distribution along the cables. Under a wind speed of 1.56 m/s, maximum temperatures reached approximately 960 ℃ near the base in emergency lane fires and 909 ℃ at 1.6 m height for slow lane fires, underscoring the heightened thermal risk from emergency lane fires. The study recommends a zoning strategy for cable fire protection, suggesting a 0-12.8 m protection zone with a target temperature of 1000 ℃ and a 12.8-20.8 m zone with a target temperature of 700 ℃, both with a 90-minute fire resistance. This approach, based on precise temperature distribution data from experimental and simulation results, provides a vital reference for the fire protection design of suspension bridge cables. Understanding cable temperature response during vehicle fires is crucial for developing fire protection systems, as it dictates necessary structural protection, fire resistance duration, and maximum temperatures for mitigation. Challenges of controlling environmental wind in large-scale fire tests are also addressed, along with a call for further research on fire behavior mechanisms and structural temperature response in cable-supported bridges under varying wind conditions. Conclusively, the proposed zoning strategy enhances the theoretical understanding of near-field temperature response in bridge fires, contributing significantly to the field by supporting the design of passive fire protection systems for bridge cables, safeguarding their integrity under extreme fire conditions.

Keywords: bridge fire, temperature response, large-scale experiment, numerical simulations, fire protection

Procedia PDF Downloads 10
933 Proposal of a Rectenna Built by Using Paper as a Dielectric Substrate for Electromagnetic Energy Harvesting

Authors: Ursula D. C. Resende, Yan G. Santos, Lucas M. de O. Andrade

Abstract:

The recent and fast development of the internet, wireless, telecommunication technologies and low-power electronic devices has led to an expressive amount of electromagnetic energy available in the environment and the smart applications technology expansion. These applications have been used in the Internet of Things devices, 4G and 5G solutions. The main feature of this technology is the use of the wireless sensor. Although these sensors are low-power loads, their use imposes huge challenges in terms of an efficient and reliable way for power supply in order to avoid the traditional battery. The radio frequency based energy harvesting technology is especially suitable to wireless power sensors by using a rectenna since it can be completely integrated into the distributed hosting sensors structure, reducing its cost, maintenance and environmental impact. The rectenna is an equipment composed of an antenna and a rectifier circuit. The antenna function is to collect as much radio frequency radiation as possible and transfer it to the rectifier, which is a nonlinear circuit, that converts the very low input radio frequency energy into direct current voltage. In this work, a set of rectennas, mounted on a paper substrate, which can be used for the inner coating of buildings and simultaneously harvest electromagnetic energy from the environment, is proposed. Each proposed individual rectenna is composed of a 2.45 GHz patch antenna and a voltage doubler rectifier circuit, built in the same paper substrate. The antenna contains a rectangular radiator element and a microstrip transmission line that was projected and optimized by using the Computer Simulation Software (CST) in order to obtain values of S11 parameter below -10 dB in 2.45 GHz. In order to increase the amount of harvested power, eight individual rectennas, incorporating metamaterial cells, were connected in parallel forming a system, denominated Electromagnetic Wall (EW). In order to evaluate the EW performance, it was positioned at a variable distance from the internet router, and a 27 kΩ resistive load was fed. The results obtained showed that if more than one rectenna is associated in parallel, enough power level can be achieved in order to feed very low consumption sensors. The 0.12 m2 EW proposed in this work was able to harvest 0.6 mW from the environment. It also observed that the use of metamaterial structures provide an expressive growth in the amount of electromagnetic energy harvested, which was increased from 0. 2mW to 0.6 mW.

Keywords: electromagnetic energy harvesting, metamaterial, rectenna, rectifier circuit

Procedia PDF Downloads 167
932 Influence of Long-Term Variability in Atmospheric Parameters on Ocean State over the Head Bay of Bengal

Authors: Anindita Patra, Prasad K. Bhaskaran

Abstract:

The atmosphere-ocean is a dynamically linked system that influences the exchange of energy, mass, and gas at the air-sea interface. The exchange of energy takes place in the form of sensible heat, latent heat, and momentum commonly referred to as fluxes along the atmosphere-ocean boundary. The large scale features such as El Nino and Southern Oscillation (ENSO) is a classic example on the interaction mechanism that occurs along the air-sea interface that deals with the inter-annual variability of the Earth’s Climate System. Most importantly the ocean and atmosphere as a coupled system acts in tandem thereby maintaining the energy balance of the climate system, a manifestation of the coupled air-sea interaction process. The present work is an attempt to understand the long-term variability in atmospheric parameters (from surface to upper levels) and investigate their role in influencing the surface ocean variables. More specifically the influence of atmospheric circulation and its variability influencing the mean Sea Level Pressure (SLP) has been explored. The study reports on a critical examination of both ocean-atmosphere parameters during a monsoon season over the head Bay of Bengal region. A trend analysis has been carried out for several atmospheric parameters such as the air temperature, geo-potential height, and omega (vertical velocity) for different vertical levels in the atmosphere (from surface to the troposphere) covering a period from 1992 to 2012. The Reanalysis 2 dataset from the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) was used in this study. The study signifies that the variability in air temperature and omega corroborates with the variation noticed in geo-potential height. Further, the study advocates that for the lower atmosphere the geo-potential heights depict a typical east-west contrast exhibiting a zonal dipole behavior over the study domain. In addition, the study clearly brings to light that the variations over different levels in the atmosphere plays a pivotal role in supporting the observed dipole pattern as clearly evidenced from the trends in SLP, associated surface wind speed and significant wave height over the study domain.

Keywords: air temperature, geopotential height, head Bay of Bengal, long-term variability, NCEP reanalysis 2, omega, wind-waves

Procedia PDF Downloads 225
931 Lactate Biostimulation for Remediation of Aquifers Affected by Recalcitrant Sources of Chloromethanes

Authors: Diana Puigserver Cuerda, Jofre Herrero Ferran, José M. Carmona Perez

Abstract:

In the transition zone between aquifers and basal aquitards, DNAPL-pools of chlorinated solvents are more recalcitrant than at other depths in the aquifer. Although degradation of carbon tetrachloride (CT) and chloroform (CF) occurs in this zone, this is a slow process, which is why an adequate remediation strategy is necessary. The working hypothesis of this study is that the biostimulation of the transition zone of an aquifer contaminated by CT and CF can be an effective remediation strategy. This hypothesis has been tested in a site on an unconfined aquifer in which the major contaminants were CT and CF of industrial origin and where the hydrochemical background was rich in other compounds that can hinder natural attenuation of chloromethanes. Field studies and five laboratory microcosm experiments were carried out at the level of groundwater and sediments to identify: i) the degradation processes of CT and CF; ii) the structure of microbial communities; and iii) the microorganisms implicated on this degradation. For this, concentration of contaminants and co-contaminants (nitrate and sulfate), Compound Specific Isotope Analysis, molecular techniques (Denaturing Gradient Gel Electrophoresis) and clone library analysis were used. The main results were: i) degradation processes of CT and CF occurred in groundwater and in the lesser conductive sediments; ii) sulfate-reducing conditions in the transition zone were high and similar to those in the source of contamination; iii) two microorganisms (Azospira suillum and a bacterium of the Clostridiales order) were identified in the transition zone at the field and lab experiments that were compatible with the role of carrying out the reductive dechlorination of CT, CF and their degradation products (dichloromethane and chloromethane); iv) these two microorganisms were present at the high starting concentrations of the microcosm experiments (similar to those in the source of DNAPL) and continued being present until the last day of the lactate biostimulation; and v) the lactate biostimulation gave rise to the fastest and highest degradation rates and promoted the elimination of other electron acceptors (e.g. nitrate and sulfate). All these results are evidence that lactate biostimulation can be effective in remediating the source and plume, especially in the transition zone, and highlight the environmental relevance of the treatment of contaminated transition zones in industrial contexts similar to that studied.

Keywords: Azospira suillum, lactate biostimulation of carbon tetrachloride and chloroform, reductive dechlorination, transition zone between aquifer and aquitard

Procedia PDF Downloads 176
930 Use of Activated Carbon from Olive Stone for CO₂ Capture in Porous Mortars

Authors: A. González-Caro, A. M. Merino-Lechuga, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodríguez

Abstract:

Climate change is one of the most significant issues today. Since the 19th century, the rise in temperature has not only been due to natural change, but also to human activities, which have been the main cause of climate change, mainly due to the burning of fossil fuels such as coal, oil and gas. The boom in the construction sector in recent years is also one of the main contributors to CO₂ emissions into the atmosphere; for example, for every tonne of cement produced, 1 tonne of CO₂ is emitted into the atmosphere. Most of the research being carried out in this sector is focused on reducing the large environmental impact generated during the manufacturing process of building materials. In detail, this research focuses on the recovery of waste from olive oil mills. Spain is the world's largest producer of olive oil, and this sector generates a large amount of waste and by-products such as olive pits, “alpechín” or “alpeorujo”. This olive stone by means of a pyrosilisis process gives rise to the production of active carbon. The process causes the carbon to develop many internal spaces. This study is based on the manufacture of porous mortars with Portland cement and natural limestone sand, with an addition of 5% and 10% of activated carbon. Two curing environments were used: i) dry chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration (approximately 0.04%); ii) accelerated carbonation chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration of 5%. In addition to eliminating waste from an industry, the aim of this study is to reduce atmospheric CO₂. For this purpose, first, a physicochemical and mineralogical characterisation of all raw materials was carried out, using techniques such as fluorescence and X-ray diffraction. The particle size and specific surface area of the activated carbon were determined. Subsequently, tests were carried out on the hardened mortar, such as thermogravimetric analysis (to determine the percentage of CO₂ capture), as well as mechanical properties, density, porosity, and water absorption. It was concluded that the activated carbon acts as a sink for CO₂, causing it to be trapped inside the voids. This increases CO₂ capture by 300% with the addition of 10% activated carbon at 7 days of curing. There was an increase in compressive strength of 17.5% with the CO₂ chamber after 7 days of curing using 10% activated carbon compared to the dry chamber.

Keywords: olive stone, activated carbon, porous mortar, CO₂ capture, economy circular

Procedia PDF Downloads 63
929 Ikat: Undaunted Journey of a Traditional Textile Practice, a Sublime Connect of Traditionality with Modernity and Calibration for Eco-Sustainable Options

Authors: Purva Khurana

Abstract:

Traditional textile crafts are universally found to have been significantly impeded by the uprise of innovative technologies, but sustained human endeavor, in sync with dynamic market nuances, holds key to these otherwise getting fast-extinct marvels. The metamorphosis of such art-forms into niche markets pre-supposes sharp concentration on adaptability. The author has concentrated on the ancient handicraft of Ikat in Andhra Pradesh (India), a manifestation of their cultural heritage and esoteric cottage industry, so very intrinsic to the development and support of local economy and identity. Like any other traditional practice, ikat weaving has been subjected to the challenges of modernization. However, owing to its unique character, personalize production and adaptability, both of material and process, ikat weaving has stood the test of time by way of judiciously embellishing innovation with contemporary taste. To survive as a living craft as also to justify its role as a universal language of aesthetic sensibility, it is imperative that ikat tradition should lend itself continuous process of experiments, change and growth. Besides, the instant paper aims to examine the contours of ikat production process from its pure form, to more fashion and market oriented production, with upgraded process, material and tools. Over the time, it has adapted well to new style-paradigms, duly matching up with the latest fashion trends, in tandem with the market-sensitivities. Apart, it is an effort to investigate how this craft could respond constructively to the pressure of contemporary technical developments in order to be at cutting edge, while preserving its integrity. In order to approach these issues, the methodology adopted is, conceptual analysis of the craft practices, its unique strength and how they could be used to advance the craft in relation to the emergence of technical developments. The paper summarizes the result of the study carried out by the author on the peculiar advantages of suitably- calibrated vat dyes over natural dyes, in terms of its recycling ability and eco-friendly properties, thus holding definite edge, both in terms of socio-economic as well as environmental concerns.

Keywords: craft, eco-friendly dyes, ikat, metamorphosis

Procedia PDF Downloads 174
928 Study of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans Dispersion in the Environment of a Municipal Solid Waste Incinerator

Authors: Gómez R. Marta, Martín M. Jesús María

Abstract:

The general aim of this paper identifies the areas of highest concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) around the incinerator through the use of dispersion models. Atmospheric dispersion models are useful tools for estimating and prevent the impact of emissions from a particular source in air quality. These models allow considering different factors that influence in air pollution: source characteristics, the topography of the receiving environment and weather conditions to predict the pollutants concentration. The PCDD/Fs, after its emission into the atmosphere, are deposited on water or land, near or far from emission source depending on the size of the associated particles and climatology. In this way, they are transferred and mobilized through environmental compartments. The modelling of PCDD/Fs was carried out with following tools: Atmospheric Dispersion Model Software (ADMS) and Surfer. ADMS is a dispersion model Gaussian plume, used to model the impact of air quality industrial facilities. And Surfer is a program of surfaces which is used to represent the dispersion of pollutants on a map. For the modelling of emissions, ADMS software requires the following input parameters: characterization of emission sources (source type, height, diameter, the temperature of the release, flow rate, etc.) meteorological and topographical data (coordinate system), mainly. The study area was set at 5 Km around the incinerator and the first population center nearest to focus PCDD/Fs emission is about 2.5 Km, approximately. Data were collected during one year (2013) both PCDD/Fs emissions of the incinerator as meteorology in the study area. The study has been carried out during period's average that legislation establishes, that is to say, the output parameters are taking into account the current legislation. Once all data required by software ADMS, described previously, are entered, and in order to make the representation of the spatial distribution of PCDD/Fs concentration and the areas affecting them, the modelling was proceeded. In general, the dispersion plume is in the direction of the predominant winds (Southwest and Northeast). Total levels of PCDD/Fs usually found in air samples, are from <2 pg/m3 for remote rural areas, from 2-15 pg/m3 in urban areas and from 15-200 pg/m3 for areas near to important sources, as can be an incinerator. The results of dispersion maps show that maximum concentrations are the order of 10-8 ng/m3, well below the values considered for areas close to an incinerator, as in this case.

Keywords: atmospheric dispersion, dioxin, furan, incinerator

Procedia PDF Downloads 217
927 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course

Authors: Lucia Ceccherini Nelli, Alessandra Donato

Abstract:

The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.

Keywords: expert in energy, energy auditing, public buildings, thermal analysis

Procedia PDF Downloads 189
926 Investigating the Indoor Air Quality of the Respiratory Care Wards

Authors: Yu-Wen Lin, Chin-Sheng Tang, Wan-Yi Chen

Abstract:

Various biological specimens, drugs, and chemicals exist in the hospital. The medical staffs and hypersensitive inpatients expose might expose to multiple hazards while they work or stay in the hospital. Therefore, the indoor air quality (IAQ) of the hospital should be paid more attention. Respiratory care wards (RCW) are responsible for caring the patients who cannot spontaneously breathe without the ventilators. The patients in RCW are easy to be infected. Compared to the bacteria concentrations of other hospital units, RCW came with higher values in other studies. This research monitored the IAQ of the RCW and checked the compliances of the indoor air quality standards of Taiwan Indoor Air Quality Act. Meanwhile, the influential factors of IAQ and the impacts of ventilator modules, with humidifier or with filter, were investigated. The IAQ of two five-bed wards and one nurse station of a RCW in a regional hospital were monitored. The monitoring was proceeded for 16 hours or 24 hours during the sampling days with a sampling frequency of 20 minutes per hour. The monitoring was performed for two days in a row and the AIQ of the RCW were measured for eight days in total. The concentrations of carbon dioxide (CO₂), carbon monoxide (CO), particulate matter (PM), nitrogen oxide (NOₓ), total volatile organic compounds (TVOCs), relative humidity (RH) and temperature were measured by direct reading instruments. The bioaerosol samples were taken hourly. The hourly air change rate (ACH) was calculated by measuring the air ventilation volume. Human activities were recorded during the sampling period. The linear mixed model (LMM) was applied to illustrate the impact factors of IAQ. The concentrations of CO, CO₂, PM, bacterial and fungi exceeded the Taiwan IAQ standards. The major factors affecting the concentrations of CO, PM₁ and PM₂.₅ were location and the number of inpatients. The significant factors to alter the CO₂ and TVOC concentrations were location and the numbers of in-and-out staff and inpatients. The number of in-and-out staff and the level of activity affected the PM₁₀ concentrations statistically. The level of activity and the numbers of in-and-out staff and inpatients are the significant factors in changing the bacteria and fungi concentrations. Different models of the patients’ ventilators did not affect the IAQ significantly. The results of LMM can be utilized to predict the pollutant concentrations under various environmental conditions. The results of this study would be a valuable reference for air quality management of RCW.

Keywords: respiratory care ward, indoor air quality, linear mixed model, bioaerosol

Procedia PDF Downloads 107
925 Nitrogen Fixation of Soybean Approaches for Enhancing under Saline and Water Stress Conditions

Authors: Ayman El Sabagh, AbdElhamid Omar, Dekoum Assaha, Khair Mohammad Youldash, Akihiro Ueda, Celaleddin Barutçular, Hirofumi Saneoka

Abstract:

Drought and salinity stress are a worldwide problem, constraining global crop production seriously. Hence, soybean is susceptible to yield loss from water deficit and salinity stress. Therefore, different approaches have been suggested to solve these issues. Osmoprotectants play an important role in protection the plants from various environmental stresses. Moreover, organic fertilization has several beneficial effects on agricultural fields. Presently, efforts to maximize nitrogen fixation in soybean are critical because of widespread increase in soil degradation in Egypt. Therefore, a greenhouse research was conducted at plant nutritional physiology laboratory, Hiroshima University, Japan for assessing the impact of exogenous osmoregulators and compost application in alleviating the adverse effects of salinity and water stress on soybean. Treatments was included (i) water stress treatments (different soil moisture levels consisting of (100%, 75%, and 50% of field water holding capacity), (ii) salinity concentrations (0 and 15 mM) were applied in fully developed trifoliolate leaf node (V1), (iii) compost treatments (0 and 24 t ha-1) and (iv) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each, was applied at two growth stages (V1 and R1). The seeds of soybean cultivar Giza 111, was sown into basin from wood (length10 meter, width 50cm, height 50cm and depth 350cm) containing a soil mixture of granite regosol soil and perlite (2:1 v/v). The nitrogen-fixing activity was estimated by using gas chromatography and all measurements were made in three replicates. The results showed that water deficit and salinity stress reduced biological nitrogen fixation and specific nodule activity than normal irrigation conditions. Exogenous osmoprotectants were improved biological nitrogen fixation and specific nodule activity as well as, applying of compost led to improving many of biological nitrogen fixation and specific nodule activity with superiority than stress conditions. The combined application compost fertilizer and exogenous osmoprotectants were more effective in alleviating the adverse effect of stress to improve biological nitrogen fixation and specific nodule activity of Soybean.

Keywords: a biotic stress, biological nitrogen fixation, compost, osmoprotectants, specific nodule activity, soybean

Procedia PDF Downloads 308
924 Identification of Cocoa-Based Agroforestry Systems in Northern Madagascar: Pillar of Sustainable Management

Authors: Marizia Roberta Rasoanandrasana, Hery Lisy Tiana. Ranarijaona, Herintsitohaina Razakamanarivo, Eric Delaitre, Nandrianina Ramifehiarivo

Abstract:

Madagascar is one of the producer’s countries of world's fine cocoa. Cocoa-based agroforestry systems (CBAS) plays a very important economic role for over 75% of the population in the north of Madagascar, the island's main cocoa-producing area. It is also viewed as a key factor in the deforestation of local protected areas. It is therefore urgent to establish a compromise between cocoa production and forest conservation in this region which is difficult due to a lack of accurate cocoa agro-systems data. In order to fill these gaps and to response to these socio-economic and environmental concerns, this study aims to describe CBAS by providing precise data on their characteristics and to establish a typology. To achieve this, 150 farms were surveyed and observed to characterize CBAS based on 11 agronomic and 6 socio-economic data. Also, 30 representative plots of CBAS among the 150 farms were inventoried for providing accurate ecological data (6 variables) as an additional data for the typology determination. The results showed that Madagascar’s CBAS systems are generally extensive and practiced by smallholders. Four types of cocoa-based agroforestry system were identified, with significant differences between the following variables: yield, planting age, cocoa density, density of associated trees, preceding crop, associated crops, Shannon-Wiener indices and species richness in the upper stratum. Type 1 is characterized by old systems (>45 years) with low crop density (425 cocoa trees/ha), installed after conversion of crops other than coffee (> 50%) and giving low yields (427 kg/ha/year). Type 2 consists of simple agroforestry systems (no associated crop 0%), fairly young (20 years) with low density of associated trees (77 trees/ha) and low species diversity (H'=1.17). Type 3 is characterized by high crop density (778 trees/ha and 175 trees/ha for cocoa and associated trees respectively) and a medium level of species diversity (H'=1.74, 8 species). Type 4 is particularly characterized by orchard regeneration method involving replanting and tree lopping (100%). Analysis of the potential of these four types has identified Type 4 as a promising practice for sustainable agriculture.

Keywords: conservation, practices, productivity, protect areas, smallholder, trade-off, typology

Procedia PDF Downloads 114
923 Modeling the Impact of Aquaculture in Wetland Ecosystems Using an Integrated Ecosystem Approach: Case Study of Setiu Wetlands, Malaysia

Authors: Roseliza Mat Alipiah, David Raffaelli, J. C. R. Smart

Abstract:

This research is a new approach as it integrates information from both environmental and social sciences to inform effective management of the wetlands. A three-stage research framework was developed for modelling the drivers and pressures imposed on the wetlands and their impacts to the ecosystem and the local communities. Firstly, a Bayesian Belief Network (BBN) was used to predict the probability of anthropogenic activities affecting the delivery of different key wetland ecosystem services under different management scenarios. Secondly, Choice Experiments (CEs) were used to quantify the relative preferences which key wetland stakeholder group (aquaculturists) held for delivery of different levels of these key ecosystem services. Thirdly, a Multi-Criteria Decision Analysis (MCDA) was applied to produce an ordinal ranking of the alternative management scenarios accounting for their impacts upon ecosystem service delivery as perceived through the preferences of the aquaculturists. This integrated ecosystem management approach was applied to a wetland ecosystem in Setiu, Terengganu, Malaysia which currently supports a significant level of aquaculture activities. This research has produced clear guidelines to inform policy makers considering alternative wetland management scenarios: Intensive Aquaculture, Conservation or Ecotourism, in addition to the Status Quo. The findings of this research are as follows: The BBN revealed that current aquaculture activity is likely to have significant impacts on water column nutrient enrichment, but trivial impacts on caged fish biomass, especially under the Intensive Aquaculture scenario. Secondly, the best fitting CE models identified several stakeholder sub-groups for aquaculturists, each with distinct sets of preferences for the delivery of key ecosystem services. Thirdly, the MCDA identified Conservation as the most desirable scenario overall based on ordinal ranking in the eyes of most of the stakeholder sub-groups. Ecotourism and Status Quo scenarios were the next most preferred and Intensive Aquaculture was the least desirable scenario. The methodologies developed through this research provide an opportunity for improving planning and decision making processes that aim to deliver sustainable management of wetland ecosystems in Malaysia.

Keywords: Bayesian belief network (BBN), choice experiments (CE), multi-criteria decision analysis (MCDA), aquaculture

Procedia PDF Downloads 294
922 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 143
921 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer

Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez

Abstract:

Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.

Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer

Procedia PDF Downloads 179
920 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies

Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid

Abstract:

Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.

Keywords: climate, renewable energy, R strategies, sustainability

Procedia PDF Downloads 137
919 Sustainable Organization for Sustainable Strategy: An Empirical Evidence

Authors: Lucia Varra, Marzia Timolo

Abstract:

The interest of scholars towards corporate sustainability has strengthened in recent years in parallel with the growing need to undertake paths of cultural and organizational change, as a way for greater competitiveness and stakeholders’ satisfaction. In fact, studies on the business sustainability, while on the one hand have integrated the three dimensions of sustainability that existed for some time in the economic approaches (economic, environmental and social dimensions), on the other hand did not give rise to an organic construct that puts together the aspects of strategic management with corporate social responsibility and even less with the organizational issues. Therefore some important questions remain open: Which organizational structure and which operational mechanisms are coherent or propitious to a sustainability strategy? Existing studies appear to be fragmented, although some aspects have shared importance: knowledge management, human resource, management, leadership, innovation, etc. The construction of a model of sustainable organization that supports the sustainability strategy no longer seems to be postponed, as is its connection with the main practices of measuring corporate social responsibility performance. The paper aims to identify the organizational characteristics of a sustainable corporate. To this end, from a theoretical point of view the work examines the main existing literary contributions and, from a practical point of view, it presents a business case referring to a service organization that for years has undertaken the sustainability strategy. This paper is divided into two parts: the first part concerns a review of the main articles on the strategic management topic and the main organizational issues raised by the literature, such as knowledge management, leadership, innovation, etc.; later, a modeling of the main variables examined by scholars and an integration of these with the international measurement standards of CSR is proposed. In the second part, using the methodology of the case study company, the hypotheses and the structure of the proposed model that aims to integrate the strategic issues with the organizational aspects and measurement of sustainability performance, are applied to an Italian company, which has some organizational and human resource management interventions are in place to align strategic decisions with the structure and operating mechanisms of the structure. The case presented supports the hypotheses of the model.

Keywords: CSR, strategic management, sustainable leadership, sustainable human resource management, sustainable organization

Procedia PDF Downloads 102
918 Advanced Deployable/Retractable Solar Panel System for Satellite Applications

Authors: Zane Brough, Claudio Paoloni

Abstract:

Modern low earth orbit (LEO) satellites that require multi-mission flexibility are highly likely to be repositioned between different operational orbits. While executing this process the satellite may experience high levels of vibration and environmental hazards, exposing the deployed solar panel to dangerous stress levels, fatigue and space debris, hence it is desirable to retract the solar array before satellite repositioning to avoid damage or failure. Furthermore, to accommodate for today's technological world, the power demand of a modern LEO satellite is rapidly increasing, which consequently provides pressure upon the design of the satellites solar array system to conform to the strict volume and mass limitations. A novel concept of deployable/retractable hybrid solar array system, aimed to provide a greater power to volume ratio while dramatically reducing the disadvantages of system mass and cost is proposed. Taking advantage of the new lightweight technology in solar panels, a mechanical system composed of both rigid and flexible solar panels arranged within a petal formation is proposed to yield a stowed to deployment area ratio up to at least 1:7, which improves the power density dramatically. The system consists of five subsystems, the outer ones based on a novel eight-petal configuration that provides a large surface and supports the flexible solar panels. A single cable and spool based hinge mechanism were designed to synchronously deploy/retract the panels in a safe, simple and efficient manner while the mass compared to the previous systems is considerably reduced. The relevant challenge to assure a smooth movement is resolved by a proper minimization of the gearing system and the use of a micro-controller system. A prototype was designed by 3D simulators and successfully constructed and tested. Further design works are in progress to implement an epicyclical gear hinge mechanism, which will further reduce the volume, mass and complexity of the system significantly. The proposed system due to an effective and reliable mechanism provides a large active surface, whilst being very compact. It could be extremely advantageous for use as ground portable solar panel system.

Keywords: mechatronic engineering, satellite, solar panel, deployable/retractable mechanism

Procedia PDF Downloads 378
917 Monitoring Land Cover/Land Use Change in Rupandehi District by Optimising Remotely Sensed Image

Authors: Hritik Bhattarai

Abstract:

Land use and land cover play a crucial role in preserving and managing Earth's natural resources. Various factors, such as economic, demographic, social, cultural, technological, and environmental processes, contribute to changes in land use and land cover (LULC). Rupandehi District is significantly influenced by a combination of driving forces, including its geographical location, rapid population growth, economic opportunities, globalization, tourism activities, and political events. Urbanization and urban growth in the region have been occurring in an unplanned manner, with internal migration and natural population growth being the primary contributors. Internal migration, particularly from neighboring districts in the higher and lower Himalayan regions, has been high, leading to increased population growth and density. This study utilizes geospatial technology, specifically geographic information system (GIS), to analyze and illustrate the land cover and land use changes in the Rupandehi district for the years 2009 and 2019, using freely available Landsat images. The identified land cover categories include built-up area, cropland, Das-Gaja, forest, grassland, other woodland, riverbed, and water. The statistical analysis of the data over the 10-year period (2009-2019) reveals significant percentage changes in LULC. Notably, Das-Gaja shows a minimal change of 99.9%, while water and forest exhibit increases of 34.5% and 98.6%, respectively. Riverbed and built-up areas experience changes of 95.3% and 39.6%, respectively. Cropland and grassland, however, show concerning decreases of 102.6% and 140.0%, respectively. Other woodland also indicates a change of 50.6%. The most noteworthy trends are the substantial increase in water areas and built-up areas, leading to the degradation of agricultural and open spaces. This emphasizes the urgent need for effective urban planning activities to ensure the development of a sustainable city. While Das-Gaja seems unaffected, the decreasing trends in cropland and grassland, accompanied by the increasing built-up areas, are unsatisfactory. It is imperative for relevant authorities to be aware of these trends and implement proactive measures for sustainable urban development.

Keywords: land use and land cover, geospatial, urbanization, geographic information system, sustainable urban development

Procedia PDF Downloads 60
916 Decision-Tree-Based Foot Disorders Classification Using Demographic Variable

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi

Abstract:

Background:-Due to the essential role of the foot in movement, foot disorders (FDs) have significant impacts on activity and quality of life. Many studies confirmed the association between FDs and demographic characteristics. On the other hand, recent advances in data collection and statistical analysis led to an increase in the volume of databases. Analysis of patient’s data through the decision tree can be used to explore the relationship between demographic characteristics and FDs. Significance of the study: This study aimed to investigate the relationship between demographic characteristics with common FDs. The second purpose is to better inform foot intervention, we classify FDs based on demographic variables. Methodologies: We analyzed 2323 subjects with pes-planus (PP), pes-cavus (PC), hallux-valgus (HV) and plantar-fasciitis (PF) who were referred to a foot therapy clinic between 2015 and 2021. Subjects had to fulfill the following inclusion criteria: (1) weight between 14 to 150 kilogram, (2) height between 30 to 220, (3) age between 3 to 100 years old, and (4) BMI between 12 to 35. Medical archives of 2323 subjects were recorded retrospectively and all the subjects examined by an experienced physician. Age and BMI were classified into five and four groups, respectively. 80% of the data were randomly selected as training data and 20% tested. We build a decision tree model to classify FDs using demographic characteristics. Findings: Results demonstrated 981 subjects from 2323 (41.9%) of people who were referred to the clinic with FDs were diagnosed as PP, 657 (28.2%) PC, 628 (27%) HV and 213 (9%) identified with PF. The results revealed that the prevalence of PP decreased in people over 18 years of age and in children over 7 years. In adults, the prevalence depends first on BMI and then on gender. About 10% of adults and 81% of children with low BMI have PP. There is no relationship between gender and PP. PC is more dependent on age and gender. In children under 7 years, the prevalence was twice in girls (10%) than boys (5%) and in adults over 18 years slightly higher in men (62% vs 57%). HV increased with age in women and decreased in men. Aging and obesity have increased the prevalence of PF. We conclude that the accuracy of our approach is sufficient for most research applications in FDs. Conclusion:-The increased prevalence of PP in children is probably due to the formation of the arch of the foot at this age. Increasing BMI by applying high pressure on the foot can increase the prevalence of this disorder in the foot. In PC, the Increasing prevalence of PC from women to men with age may be due to genetics and innate susceptibility of men to this disorder. HV is more common in adult women, which may be due to environmental reasons such as shoes, and the prevalence of PF in obese adult women may also be due to higher foot pressure and housekeeping activities.

Keywords: decision tree, demographic characteristics, foot disorders, machine learning

Procedia PDF Downloads 262
915 Plant Genetic Diversity in Home Gardens and Its Contribution to Household Economy in Western Part of Ethiopia

Authors: Bedilu Tafesse

Abstract:

Home gardens are important social and cultural spaces where knowledge related to agricultural practice is transmitted and through which households may improve their income and livelihood. High levels of inter- and intra-specific plant genetic diversity are preserved in home gardens. Plant diversity is threatened by rapid and unplanned urbanization, which increases environmental problems such as heating, pollution, loss of habitats and ecosystem disruption. Tropical home gardens have played a significant role in conserving plant diversity while providing substantial benefits to households. This research aimed to understand the relationship between household characteristics and plant diversity in western Ethiopia home gardens and the contributions of plants to the household economy. Plant diversity and different uses of plants were studied in a random sample of 111 suburban home gardens in the Ilu Ababora, Jima and Wellega suburban area, western Ethiopia, based on complete garden inventories followed by household surveys on socio-economic status during 2012. A total of 261 species of plants were observed, of which 41% were ornamental plants, 36% food plants, and 22% medicinal plants. Of these 16% were sold commercially to produce income. Avocado, bananas, and other fruits produced in excess. Home gardens contributed the equivalent of 7% of total annual household income in terms of food and commercial sales. Multiple regression analysis showed that education, time spent in gardening, land for cultivation, household expenses, primary conservation practices, and uses of special techniques explained 56% of the total plant diversity. Food, medicinal and commercial plant species had significant positive relationships with time spent gardening and land area for gardening. Education and conservation practices significantly affected food and medicinal plant diversity. Special techniques used in gardening showed significant positive relations with ornamental and commercial plants. Reassessments in different suburban and urban home gardens and proper documentation using same methodology is essential to build a firm policy for enhancing plant diversity and related values to households and surroundings.

Keywords: plant genetic diversity, urbanization, suburban home gardens, Ethiopia

Procedia PDF Downloads 303
914 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China

Authors: Y. Sakai, C. Wang

Abstract:

The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.

Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete

Procedia PDF Downloads 182
913 Reasons for Lack of an Ideal Disinfectant after Dental Treatments

Authors: Ilma Robo, Saimir Heta, Rialda Xhizdari, Kers Kapaj

Abstract:

Background: The ideal disinfectant for surfaces, instruments, air, skin, both in dentistry and in the fields of medicine, does not exist.This is for the sole reason that all the characteristics of the ideal disinfectant cannot be contained in one; these are the characteristics that if one of them is emphasized, it will conflict with the other. A disinfectant must be stable, not be affected by changes in the environmental conditions where it stands, which means that it should not be affected by an increase in temperature or an increase in the humidity of the environment. Both of these elements contradict the other element of the idea of an ideal disinfectant, as they disrupt the solubility ratios of the base substance of the disinfectant versus the diluent. Material and methods: The study aims to extract the constant of each disinfectant/antiseptic used during dental disinfection protocols, accompanied by the side effects of the surface of the skin or mucosa where it is applied in the role of antiseptic. In the end, attempts were made to draw conclusions about the best possible combination for disinfectants after a dental procedure, based on the data extracted from the basic literature required during the development of the pharmacology module, as a module in the formation of a dentist, against data published in the literature. Results: The sensitivity of the disinfectant to changes in the atmospheric conditions of the environment where it is kept is a known fact. The care against this element is always accompanied by the advice on the application of the specific disinfectant, in order to have the desired clinical result. The constants of disinfectants according to the classification based on the data collected and presented are for alcohols 70-120, glycols 0.2, aldehydes 30-200, phenols 15-60, acids 100, povidone iodine halogens 5-75, hypochlorous acid halogens 150, sodium hypochlorite halogens 30-35, oxidants 18-60, metals 0.2-10. The part of halogens should be singled out, where specific results were obtained according to the representatives of this class, since it is these representatives that find scope for clinical application in dentistry. Conclusions: The search for the "ideal", in the conditions where its defining criteria are also established, not only for disinfectants but also for any medication or pharmaceutical product, is an ongoing search, without any definitive results. In this mine of data in the published literature if there is something fixed, calculable, such as the specific constant for disinfectants, the search for the ideal is more concrete. During the disinfection protocols, different disinfectants are applied since the field of action is different, including water, air, aspiration devices, tools, disinfectants used in full accordance with the production indications.

Keywords: disinfectant, constant, ideal, side effects

Procedia PDF Downloads 69
912 Temperamental Determinants of Eye-Hand Coordination Formation in the Special Aerial Gymnastics Instruments (SAGI)

Authors: Zdzisław Kobos, Robert Jędrys, Zbigniew Wochyński

Abstract:

Motor activity and good health are sine qua non determinants of a proper practice of the profession, especially aviation. Therefore, candidates to the aviation are selected according their psychomotor ability by both specialist medical commissions. Moreover, they must past an examination of the physical fitness. During the studies in the air force academy, eye-hand coordination is formed in two stages. The future aircraft pilots besides all-purpose physical education must practice specialist training on SAGI. Training includes: looping, aerowheel, and gyroscope. Aim of the training on the above listed apparatuses is to form eye-hand coordination during the tasks in the air. Such coordination is necessary to perform various figures in the real flight. Therefore, during the education of the future pilots, determinants of the effective ways of this important parameter of the human body functioning are sought for. Several studies of the sport psychology indicate an important role of the temperament as a factor determining human behavior during the task performance and acquiring operating skills> Polish psychologist Jan Strelau refers to the basic, relatively constant personality features which manifest themselves in the formal characteristics of the human behavior. Temperament, being initially determined by the inborn physiological mechanisms, changes in the course of maturation and some environmental factors and concentrates on the energetic level and reaction characteristics in time. Objectives. This study aimed at seeking a relationship between temperamental features and eye-hand coordination formation during training on SAGI. Material and Methods: Group of 30 students of pilotage was examined in two situations. The first assessment of the eye-hand coordination level was carried out before the beginning of a 30-hour training on SAGI. The second assessment was carried out after training completion. Training lasted for 2 hours once a week. Temperament was evaluated with The Formal Characteristics of Behavior − Temperament Inventory (FCB-TI) developed by Bogdan Zawadzki and Jan Strelau. Eye-hand coordination was assessed with a computer version of the Warsaw System of Psychological Tests. Results: It was found that the training on SAGI increased the level of eye-hand coordination in the examined students. Conclusions: Higher level of the eye-hand coordination was obtained after completion of the training. Moreover, a relationship between eye-hand coordination level and selected temperamental features was statistically significant.

Keywords: temperament, eye-hand coordination, pilot, SAGI

Procedia PDF Downloads 440
911 Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics

Authors: Namasivayam Navaranjan, Eric Dimla

Abstract:

The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years.

Keywords: bioplastics, plastics, renewable resources, biomass

Procedia PDF Downloads 308
910 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation

Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari

Abstract:

Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.

Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite

Procedia PDF Downloads 39
909 A Review of Digital Twins to Reduce Emission in the Construction Industry

Authors: Zichao Zhang, Yifan Zhao, Samuel Court

Abstract:

The carbon emission problem of the traditional construction industry has long been a pressing issue. With the growing emphasis on environmental protection and advancement of science and technology, the organic integration of digital technology and emission reduction has gradually become a mainstream solution. Among various sophisticated digital technologies, digital twins, which involve creating virtual replicas of physical systems or objects, have gained enormous attention in recent years as tools to improve productivity, optimize management and reduce carbon emissions. However, the relatively high implementation costs including finances, time, and manpower associated with digital twins have limited their widespread adoption. As a result, most of the current applications are primarily concentrated within a few industries. In addition, the creation of digital twins relies on a large amount of data and requires designers to possess exceptional skills in information collection, organization, and analysis. Unfortunately, these capabilities are often lacking in the traditional construction industry. Furthermore, as a relatively new concept, digital twins have different expressions and usage methods across different industries. This lack of standardized practices poses a challenge in creating a high-quality digital twin framework for construction. This paper firstly reviews the current academic studies and industrial practices focused on reducing greenhouse gas emissions in the construction industry using digital twins. Additionally, it identifies the challenges that may be encountered during the design and implementation of a digital twin framework specific to this industry and proposes potential directions for future research. This study shows that digital twins possess substantial potential and significance in enhancing the working environment within the traditional construction industry, particularly in their ability to support decision-making processes. It proves that digital twins can improve the work efficiency and energy utilization of related machinery while helping this industry save energy and reduce emissions. This work will help scholars in this field to better understand the relationship between digital twins and energy conservation and emission reduction, and it also serves as a conceptual reference for practitioners to implement related technologies.

Keywords: digital twins, emission reduction, construction industry, energy saving, life cycle, sustainability

Procedia PDF Downloads 100