Search results for: charged transfer rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10431

Search results for: charged transfer rate

1761 Effect of a new Released Bio Organic-Fertilizer in Improving Tomato Growth in Hydroponic System and Under Greenhouse

Authors: Zayneb Kthiri, Walid Hamada

Abstract:

The application of organic fertilizers is generally known to be useful to sustain soil fertility and plant growth, especially in poor soils, with less than 1% of organic matter, as it is very common in our Tunisian fields. Therefore, we focused on evaluating the effect of a new released liquid organic fertilizer named Solorga (with 5% of organic matter) compared to a reference product (Espartan: Kimitec, Spain) on tomato plant growth and physiology. Both fertilizers, derived from plant decomposition, were applied at an early stage in hydroponic system and under greenhouse. In hydroponic system, after 14 days of their application by root feeding, a significant difference was observed between treatments. Indeed, Solorga improved shoots and roots length, as well as the biomass respectively, by 45%, 27%, and 27.8% increase rate, while compared to control plants. However, Espartan induced less the measured parameters while compared to untreated control. Moreover, Solorga significantly increased the chlorophyll content by 42% compared to control and by 32% compared to Espartan. In the greenhouse, after 20 days of treatments, the results showed a significant effect of both fertilizers on SPAD index and the number of flowers blossom. Solorga increased the amount of chlorophyll present in the leaf by 7% compared to Espartan as well as the plant height under greenhouse. Moreover, the number of flowers blossom increased by 15% in plants treated with Solorga while compared to Espartan. Whereas, there is no notable difference between both organic fertilizers on the fruits blossom and the number of fruits per blossom. In conclusion, even though there is a difference in the organic matter between both fertilizers, Solorga improved better the plant growth in controlled conditions in hydroponic system while compared to Espartan. Altogether the obtained results are encouraging for the use of Solorga as a soil enriching source of organic matter to help plants to boost their growth and help them to overcome abiotic stresses linked to soil fertility.

Keywords: tomato, plant growth, organic fertilizer, hydroponic system, greenhouse

Procedia PDF Downloads 123
1760 Shear Strength and Consolidation Behavior of Clayey Soil with Vertical and Radial Drainage

Authors: R. Pillai Aparna, S. R. Gandhi

Abstract:

Soft clay deposits having low strength and high compressibility are found all over the world. Preloading with vertical drains is a widely used method for improving such type of soils. The coefficient of consolidation, irrespective of the drainage type, plays an important role in the design of vertical drains and it controls accurate prediction of the rate of consolidation of soil. Also, the increase in shear strength of soil with consolidation is another important factor considered in preloading or staged construction. To our best knowledge no clear guidelines are available to estimate the increase in shear strength for a particular degree of consolidation (U) at various stages during the construction. Various methods are available for finding out the consolidation coefficient. This study mainly focuses on the variation of, consolidation coefficient which was found out using different methods and shear strength with pressure intensity. The variation of shear strength with the degree of consolidation was also studied. The consolidation test was done using two types of highly compressible clays with vertical, radial and a few with combined drainage. The test was carried out at different pressures intensities and for each pressure intensity, once the target degree of consolidation is achieved, vane shear test was done at different locations in the sample, in order to determine the shear strength. The shear strength of clayey soils under the application of vertical stress with vertical and radial drainage with target U value of 70% and 90% was studied. It was found that there is not much variation in cv or cr value beyond 80kPa pressure intensity. Correlations were developed between shear strength ratio and consolidation pressure based on laboratory testing under controlled condition. It was observed that the shear strength of sample with target U value of 90% is about 1.4 to 2 times than that of 70% consolidated sample. Settlement analysis was done using Asaoka’s and hyperbolic method. The variation of strength with respect to the depth of sample was also studied, using large-scale consolidation test. It was found, based on the present study that the gain in strength is more on the top half of the clay layer, and also the shear strength of the sample ensuring radial drainage is slightly higher than that of the vertical drainage.

Keywords: consolidation coefficient, degree of consolidation, PVDs, shear strength

Procedia PDF Downloads 220
1759 A Crossover Study of Therapeutic Equivalence of Generic Product Versus Reference Product of Ivabradine in Patients with Chronic Heart Failure

Authors: Hadeer E. Eliwa, Naglaa S. Bazan, Ebtissam A. Darweesh, Nagwa A. Sabri

Abstract:

Background: Generic substitution of brand ivabradine prescriptions can reduce drug expenditures and improve adherence. However, the distrust of generic medicines by practitioners and patients due to doubts regarding their quality and fear of counterfeiting compromise the acceptance of this practice. Aim: The goal of this study is to compare the therapeutic equivalence of brand product versus the generic product of ivabradine in adult patients with chronic heart failure with reduced ejection fraction (≤ 40%) (HFrEF). Methodology: Thirty-two Egyptian patients with chronic heart failure with reduced ejection fraction (HFrEF) were treated with branded ivabradine (Procrolan ©) and generic (Bradipect ©) during 24 (2x12) weeks. Primary outcomes were resting heart rate (HR), NYHA FC, Quality of life (QoL) using Minnesota Living with Heart Failure (MLWHF) and EF. Secondary outcomes were the number of hospitalizations for worsening HFrEF and adverse effects. The washout period was not allowed. Findings: At the 12th week, the reduction in HR was comparable in the two groups (90.13±7.11 to 69±11.41 vs 96.13±17.58 to 67.31±8.68 bpm in brand and generic groups, respectively). Also, the increase in EF was comparable in the two groups (27.44 ±4.59 to 33.38±5.62 vs 32±5.96 to 39.31±8.95 in brand and generic groups, respectively). The improvement in NYHA FC was comparable in both groups (87.5% in brand group vs 93.8% in the generic group). The mean value of the QOL improved from 31.63±15.8 to 19.6±14.7 vs 35.68±17.63 to 22.9±15.1 for the brand and generic groups, respectively. Similarly, at end of 24 weeks, no significant changes were observed from data observed at 12th week regarding HR, EF, QoL and NYHA FC. Only minor side effects, mainly phosphenes, and a comparable number of hospitalizations were observed in both groups. Conclusion: The study revealed no statistically significant differences in the therapeutic effect and safety between generic and branded ivabradine. We assume that practitioners can safely interchange between them for economic reasons.

Keywords: bradipect©, heart failure, ivabradine, Procrolan ©, therapeutic equivalence

Procedia PDF Downloads 450
1758 Social Media as a Tool for Medication Adherence and Personal Health Management

Authors: Huang Wei-Chi, Li Wei, Yu Tien-Chieh

Abstract:

Medication adherence is crucial for treatment success. Adherence problem is common in patients with polypharmacy, especially in the geriatric population who are vulnerable to multiple chronic conditions but averagely less knowledgeable about diseases and medications. In order to help patients take medications appropriately and enhance the understanding of diseases or medications, a Line official account named e-Pharmacist was designed. The line is a popular freeware app with the highest penetration rate (95.7%) in Taiwan. The interface of e-Pharmacist is user-friendly for easy-to-read and convenient operating. Differ from other medication adherence apps, users just added e-Pharmacist as a LINE friend without installing any more apps and the drug lists were automatically downloaded from the personal electronic medical records with security permission. Over and above medication reminder, several additional capabilities were set up and engaged in the platform of e-Pharmacist including prescription refill reservation, laboratory examination consultation, medical appointment registration, and “Daily Health Log” where patients can record and track data of blood pressure/blood sugar and daily meals for self-health management as well as can share the important information to clinical professionals when seeking medical help. Additionally, a Line chatbot was utilized to provide tailored medicine information for the individual user. From July 2020 to March 2022, around 3000 patients added e-pharmacist as Line friends. Every day more than 1500 patients receive messages from e-pharmacist to notify them to take medicine. Thanks to the e-pharmacist alert system and Chatbot, the low-compliance patients (defined by Program on Adherence to Medication, PAM) significantly dropped from 36% to 6%, whereas the high-compliance patients dramatically increased from 13% to 77%. The user satisfaction is 98%. In brief, an e-pharmacist is not only a medication reminder but also a tailored personal assistant with value-added service for health management.

Keywords: e-pharmacist, self-health management, medication reminder, value-added service

Procedia PDF Downloads 145
1757 Numerical Solution of Momentum Equations Using Finite Difference Method for Newtonian Flows in Two-Dimensional Cartesian Coordinate System

Authors: Ali Ateş, Ansar B. Mwimbo, Ali H. Abdulkarim

Abstract:

General transport equation has a wide range of application in Fluid Mechanics and Heat Transfer problems. In this equation, generally when φ variable which represents a flow property is used to represent fluid velocity component, general transport equation turns into momentum equations or with its well known name Navier-Stokes equations. In these non-linear differential equations instead of seeking for analytic solutions, preferring numerical solutions is a more frequently used procedure. Finite difference method is a commonly used numerical solution method. In these equations using velocity and pressure gradients instead of stress tensors decreases the number of unknowns. Also, continuity equation, by integrating the system, number of equations is obtained as number of unknowns. In this situation, velocity and pressure components emerge as two important parameters. In the solution of differential equation system, velocities and pressures must be solved together. However, in the considered grid system, when pressure and velocity values are jointly solved for the same nodal points some problems confront us. To overcome this problem, using staggered grid system is a referred solution method. For the computerized solutions of the staggered grid system various algorithms were developed. From these, two most commonly used are SIMPLE and SIMPLER algorithms. In this study Navier-Stokes equations were numerically solved for Newtonian flow, whose mass or gravitational forces were neglected, for incompressible and laminar fluid, as a hydro dynamically fully developed region and in two dimensional cartesian coordinate system. Finite difference method was chosen as the solution method. This is a parametric study in which varying values of velocity components, pressure and Reynolds numbers were used. Differential equations were discritized using central difference and hybrid scheme. The discritized equation system was solved by Gauss-Siedel iteration method. SIMPLE and SIMPLER were used as solution algorithms. The obtained results, were compared for central difference and hybrid as discritization methods. Also, as solution algorithm, SIMPLE algorithm and SIMPLER algorithm were compared to each other. As a result, it was observed that hybrid discritization method gave better results over a larger area. Furthermore, as computer solution algorithm, besides some disadvantages, it can be said that SIMPLER algorithm is more practical and gave result in short time. For this study, a code was developed in DELPHI programming language. The values obtained in a computer program were converted into graphs and discussed. During sketching, the quality of the graph was increased by adding intermediate values to the obtained result values using Lagrange interpolation formula. For the solution of the system, number of grid and node was found as an estimated. At the same time, to indicate that the obtained results are satisfactory enough, by doing independent analysis from the grid (GCI analysis) for coarse, medium and fine grid system solution domain was obtained. It was observed that when graphs and program outputs were compared with similar studies highly satisfactory results were achieved.

Keywords: finite difference method, GCI analysis, numerical solution of the Navier-Stokes equations, SIMPLE and SIMPLER algoritms

Procedia PDF Downloads 377
1756 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 353
1755 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 130
1754 Odor-Color Association Stroop-Task and the Importance of an Odorant in an Odor-Imagery Task

Authors: Jonathan Ham, Christopher Koch

Abstract:

There are consistently observed associations between certain odors and colors, and there is an association between the ability to imagine vivid visual objects and imagine vivid odors. However, little has been done to investigate how the associations between odors and visual information effect visual processes. This study seeks to understand the relationship between odor imaging, color associations, and visual attention by utilizing a Stroop-task based on common odor-color associations. This Stroop-task was designed using three fruits with distinct odors that are associated with the color of the fruit: lime with green, strawberry with red, and lemon with yellow. Each possible word-color combination was presented in the experimental trials. When the word matched the associated color (lime written in green) it was considered congruent; if it did not, it was considered incongruent (lime written in red or yellow). In experiment I (n = 34) participants were asked to both imagine the odor of the fruit on the screen and identify which fruit it was, and each word-color combination was presented 20 times (a total of 180 trials, with 60 congruent and 120 incongruent instances). Response time and error rate of the participant responses were recorded. There was no significant difference in either measure between the congruent and incongruent trials. In experiment II participants (n = 18) followed the identical procedure as in the previous experiment with the addition of an odorant in the room. The odorant (orange) was not the fruit or color used in the experimental trials. With a fruit-based odorant in the room, the response times (measured in milliseconds) between congruent and incongruent trials were significantly different, with incongruent trials (M = 755.919, SD = 239.854) having significantly longer response times than congruent trials (M = 690.626, SD = 198.822), t (1, 17) = 4.154, p < 0.01. This suggests that odor imagery does affect visual attention to colors, and the ability to inhibit odor-color associations; however, odor imagery is difficult and appears to be facilitated in the presence of a related odorant.

Keywords: odor-color associations, odor imagery, visual attention, inhibition

Procedia PDF Downloads 163
1753 Environmental Effect of Empty Nest Households in Germany: An Empirical Approach

Authors: Dominik Kowitzke

Abstract:

Housing constructions have direct and indirect environmental impacts especially caused by soil sealing and gray energy consumption related to the use of construction materials. Accordingly, the German government introduced regulations limiting additional annual soil sealing. At the same time, in many regions like metropolitan areas the demand for further housing is high and of current concern in the media and politics. It is argued that meeting this demand by making better use of the existing housing supply is more sustainable than the construction of new housing units. In this context, targeting the phenomenon of so-called over the housing of empty nest households seems worthwhile to investigate for its potential to free living space and thus, reduce the need for new housing constructions and related environmental harm. Over housing occurs if no space adjustment takes place in household lifecycle stages when children move out from home and the space formerly created for the offspring is from then on under-utilized. Although in some cases the housing space consumption might actually meet households’ equilibrium preferences, frequently space-wise adjustments to the living situation doesn’t take place due to transaction or information costs, habit formation, or government intervention leading to increasing costs of relocations like real estate transfer taxes or tenant protection laws keeping tenure rents below the market price. Moreover, many detached houses are not long-term designed in a way that freed up space could be rent out. Findings of this research based on socio-economic survey data, indeed, show a significant difference between the living space of empty nest and a comparison group of households which never had children. The approach used to estimate the average difference in living space is a linear regression model regressing the response variable living space on a two-dimensional categorical variable distinguishing the two groups of household types and further controls. This difference is assumed to be the under-utilized space and is extrapolated to the total amount of empty nests in the population. Supporting this result, it is found that households that move, despite market frictions impairing the relocation, after children left their home tend to decrease the living space. In the next step, only for areas with tight housing markets in Germany and high construction activity, the total under-utilized space in empty nests is estimated. Under the assumption of full substitutability of housing space in empty nests and space in new dwellings in these locations, it is argued that in a perfect market with empty nest households consuming their equilibrium demand quantity of housing space, dwelling constructions in the amount of the excess consumption of living space could be saved. This, on the other hand, would prevent environmental harm quantified in carbon dioxide equivalence units related to average constructions of detached or multi-family houses. This study would thus provide information on the amount of under-utilized space inside dwellings which is missing in public data and further estimates the external effect of over housing in environmental terms.

Keywords: empty nests, environment, Germany, households, over housing

Procedia PDF Downloads 164
1752 Dynamic Modelling of Hepatitis B Patient Using Sihar Model

Authors: Alakija Temitope Olufunmilayo, Akinyemi, Yagba Joy

Abstract:

Hepatitis is the inflammation of the liver tissue that can cause whiteness of the eyes (Jaundice), lack of appetite, vomiting, tiredness, abdominal pain, diarrhea. Hepatitis is acute if it resolves within 6 months and chronic if it last longer than 6 months. Acute hepatitis can resolve on its own, lead to chronic hepatitis or rarely result in acute liver failure. Chronic hepatitis may lead to scarring of the liver (Cirrhosis), liver failure and liver cancer. Modelling Hepatitis B may become necessary in order to reduce its spread. So, dynamic SIR model can be used. This model consists of a system of three coupled non-linear ordinary differential equation which does not have an explicit formula solution. It is an epidemiological model used to predict the dynamics of infectious disease by categorizing the population into three possible compartments. In this study, a five-compartment dynamic model of Hepatitis B disease was proposed and developed by adding control measure of sensitizing the public called awareness. All the mathematical and statistical formulation of the model, especially the general equilibrium of the model, was derived, including the nonlinear least square estimators. The initial parameters of the model were derived using nonlinear least square embedded in R code. The result study shows that the proportion of Hepatitis B patient in the study population is 1.4 per 1,000,000 populations. The estimated Hepatitis B induced death rate is 0.0108, meaning that 1.08% of the infected individuals die of the disease. The reproduction number of Hepatitis B diseases in Nigeria is 6.0, meaning that one individual can infect more than 6.0 people. The effect of sensitizing the public on the basic reproduction number is significant as the reproduction number is reduced. The study therefore recommends that programme should be designed by government and non-governmental organization to sensitize the entire Nigeria population in order to reduce cases of Hepatitis B disease among the citizens.

Keywords: hepatitis B, modelling, non-linear ordinary differential equation, sihar model, sensitization

Procedia PDF Downloads 71
1751 Assessing the Macroeconomic Effects of Fiscal Policy Changes in Egypt: A Bayesian Structural Vector Autoregression Approach

Authors: Walaa Diab, Baher Atlam, Nadia El Nimer

Abstract:

Egypt faces many obvious economic challenges, and it is so clear that a real economic transformation is needed to address those problems, especially after the recent decisions of floating the Egyptian pound and the gradual subsidy cuts that are trying to meet the needed conditions to get the IMF support of (a £12bn loan) for its economic reform program. Following the post-2008 revival of the interest in the fiscal policy and its vital role in speeding up or slowing down the economic growth. Here comes the value of this paper as it seeks to analyze the macroeconomic effects of fiscal policy in Egypt by applying A Bayesian SVAR Approach. The study uses the Bayesian method because it includes the prior information and no relevant information is omitted and so it is well suited for rational, evidence-based decision-making. Since the study aims to define the effects of fiscal policy shocks in Egypt to help the decision-makers in determining the proper means to correct the structural problems in the Egyptian economy, it has to study the period of 1990s economic reform, but unfortunately; the available data is on an annual frequency. Thus, it uses annual time series to study the period 1991: 2005 And quarterly data over the period 2006–2016. It uses a set of six main variables includes government expenditure and net tax revenues as fiscal policy arms affecting real GDP, unemployment, inflation and the interest rate. The study also tries to assess the 'crowding out' effects by considering the effects of government spending and government revenue shocks on the composition of GDP, namely, on private consumption and private investment. Last but not least the study provides its policy implications regarding the needed role of fiscal policy in Egypt in the upcoming economic reform building on the results it concludes from the previous reform program.

Keywords: fiscal policy, government spending, structural vector autoregression, taxation

Procedia PDF Downloads 266
1750 The Extent of Proliferation, Apoptosis and Angiogenesis at the Site of Injury Determine the Course of Healing Either as Scar Free or as Scarred One in the Appendages of Lizard

Authors: Isha Ranadive, Sonam Patel, Suresh Balakrishnan

Abstract:

It has been observed that in lizards wound can be healed by either a scar free mechanism or by scarring. The animal model used to study both these healing processes was Northern House Gecko. In lizard, the tail when amputated heals by scar free mechanism which allows it to regenerate, the same is not seen when the limb is amputated. Proliferation, apoptosis, and angiogenesis are the main events which succeed an injury. We observed that proliferation of the cells beneath the wound epidermis was much higher in case of wound healing in tail. This could be because after the wound gets covered by the epithelium, it enters in to a cross-talk with the underlying mesenchyme to recruit a pool of blastemal cells which proliferate and later differentiate to form the lost part through epimorphic regeneration. This was substantiated by mRNA expression levels of various FGFs which facilitate the cross-talk and also by PCNA which is a marker for proliferation. Western blot result reaffirms the same notion. However, in case of the limb, the rate of apoptosis was more than proliferation as there are a lot of debris that needs to be removed. We came to this conclusion as we observed that p53 the apoptotic gene was highly upregulated in case of the scarred tissue. Further, we confirmed this result by checking the anti-apoptotic gene bcl2 and found it to be significantly down-regulated. As we noticed heightened proliferation in the case of scar-free wound healing in tail, angiogenesis was targeted for the study. This is because, when the cells are proliferating they require constant supply of blood and hence neo-vascularization is inevitable. It was observed that the marker of angiogenesis, VEGF, was expressed more during wound healing as compared to the resting stage of tail. Moreover, a high up-regulation was seen in KDR, a receptor of VEGF. Thus, this study reveals how proliferation, apoptosis, and angiogenesis play a key role in the scar-free as well as scarred wound healing.

Keywords: epimorphic regeneration, injury, northern house gecko, wound healing

Procedia PDF Downloads 234
1749 Study and Fine Characterization of the SS 316L Microstructures Obtained by Laser Beam Melting Process

Authors: Sebastien Relave, Christophe Desrayaud, Aurelien Vilani, Alexey Sova

Abstract:

Laser beam melting (LBM) is an additive manufacturing process that enables complex 3D parts to be designed. This process is now commonly employed for various applications such as chemistry or energy, requiring the use of stainless steel grades. LBM can offer comparable and sometimes superior mechanical properties to those of wrought materials. However, we observed an anisotropic microstructure which results from the process, caused by the very high thermal gradients along the building axis. This microstructure can be harmful depending on the application. For this reason, control and prediction of the microstructure are important to ensure the improvement and reproducibility of the mechanical properties. This study is focused on the 316L SS grade and aims at understanding the solidification and transformation mechanisms during process. Experiments to analyse the nucleation and growth of the microstructure obtained by the LBM process according to several conditions. These samples have been designed on different type of support bulk and lattice. Samples are produced on ProX DMP 200 LBM device. For the two conditions the analysis of microstructures, thanks to SEM and EBSD, revealed a single phase Austenite with preferential crystallite growth along the (100) plane. The microstructure was presented a hierarchical structure consisting columnar grains sizes in the range of 20-100 µm and sub grains structure of size 0.5 μm. These sub-grains were found in different shapes (columnar and cellular). This difference can be explained by a variation of the thermal gradient and cooling rate or element segregation while no sign of element segregation was found at the sub-grain boundaries. A high dislocation concentration was observed at sub-grain boundaries. These sub-grains are separated by very low misorientation walls ( < 2°) this causes a lattice of curvature inside large grain. A discussion is proposed on the occurrence of these microstructures formation, in regard of the LBM process conditions.

Keywords: selective laser melting, stainless steel, microstructure

Procedia PDF Downloads 143
1748 Palatability of a Flavoured Oral Paste, Containing Prebiotics, Probiotics, and Postbiotics in Dogs and Cats: A Monadic Test in Seventy-Four Animals

Authors: Navarro C., Jahier B., Gard C.

Abstract:

Diarrhoea is a common disorder in both cats and dogs. Recent guidelines highlight the importance of gut microbiota and the use of strategies such as prebiotics, probiotics, postbiotics, and fecal transplants for modulating the microbiota. The objective of this study was to evaluate the palatability of a flavoured oral paste containing prebiotics (brewer’s yeast products, fructo-oligosaccharide), probiotics (Enterococcus faecium), and postbiotics (lactic ferment products), in dogs and cats. Material and methods: Healthy adult animals (cats and dogs) from various breeds received the tested product (Ultradiar® Biotic, MP Labo, France) at the recommended dosage over a small quantity of kibbles: animals less than 2 kg bodyweight received 2 ml per day, animals between2 and 6 kg received 4 ml per day, animals between 6 and 12 kg received 5 ml per day, animals between 12 and 30 kg received 8 ml per day, and animals weighing more than 30 kg received 10 ml per day. For each animal, the investigator noted the intake (immediate in less than 2 seconds, delayed after 2 seconds, no intake), the consumption of the product (no consumption, partial consumption ≤ 5%, < 50%, 50% ≤ x < 95%, ≥ 95%, total consumption). Acceptability was defined as the percentage of dogs having consumed more than 95% of the product. Results: Thirty-seven dogs were included: 19 small size, 11 medium size, and 7 large size dogs. Thirty-six dogs (97%) took the product, with 65% showing immediate intake. Only one small-sized dog did not take the product. Among the 36 dogs who took the product, 19 (53%) had a complete consumption, 13 (36%) consumed more than 95% of the product, 3 dogs consumed more than 50% (and less than 95%), and one dog consumed less than 50%. The acceptability rate was 86%. Thirty-seven cats were included. Twenty-eight cats (76%) took the product, with 8% showing immediate intake. Among those 28 cats, 7 (25%) consumed more than 95% of the product, 13 (47%) consumed more than 50% (and less than 95%), 6 consumed less than 50% and 2 cats consumed less than 5%. Conclusion: The flavoured oral paste, Ultradiar® Biotic, was well-accepted by both dogs and cats, with higher acceptability observed in dogs compared to cats. These results suggest that the product is palatable and can be usefully administered to support gastrointestinal health in companion animals. Further studies should explore the clinical benefits of this formulation in managing gastrointestinal disorders.

Keywords: cat, dog, palatability, prebiotic, probiotic

Procedia PDF Downloads 5
1747 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.

Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic

Procedia PDF Downloads 125
1746 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.

Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing

Procedia PDF Downloads 165
1745 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 376
1744 Dairy Value Chain: Assessing the Inter Linkage of Dairy Farm and Small-Scale Dairy Processing in Tigray: Case Study of Mekelle City

Authors: Weldeabrha Kiros Kidanemaryam, DepaTesfay Kelali Gidey, Yikaalo Welu Kidanemariam

Abstract:

Dairy services are considered as sources of income, employment, nutrition and health for smallholder rural and urban farmers. The main objective of this study is to assess the interlinkage of dairy farms and small-scale dairy processing in Mekelle, Tigray. To achieve the stated objective, a descriptive research approach was employed where data was collected from 45 dairy farmers and 40 small-scale processors and analyzed by calculating the mean values and percentages. Findings show that the dairy business in the study area is characterized by a shortage of feed and water for the farm. The dairy farm is dominated by breeds of hybrid type, followed by the so called ‘begait’. Though the farms have access to medication and vaccination for the cattle, they fell short of hygiene practices, reliable shade for the cattle and separate space for the claves. The value chain at the milk production stage is characterized by a low production rate, selling raw milk without adding value and a very meager traditional processing practice. Furthermore, small-scale milk processors are characterized by collecting milk from farmers and producing cheese, butter, ghee and sour milk. They do not engage in modern milk processing like pasteurized milk, yogurt and table butter. Most small-scale milk processors are engaged in traditional production systems. Additionally, the milk consumption and marketing part of the chain is dominated by the informal market (channel), where market problems, lack of skill and technology, shortage of loans and weak policy support are being faced as the main challenges. Based on the findings, recommendations and future research areas are forwarded.

Keywords: value-chain, dairy, milk production, milk processing

Procedia PDF Downloads 6
1743 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants

Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López

Abstract:

In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.

Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization

Procedia PDF Downloads 79
1742 Assessment of Sperm Aneuploidy Using Advanced Sperm Fish Technique in Infertile Patients

Authors: Archana. S, Usha Rani. G, Anand Balakrishnan, Sanjana.R, Solomon F, Vijayalakshmi. J

Abstract:

Background: There is evidence that male factors contribute to the infertility of up to 50% of couples, who are evaluated and treated for infertility using advanced assisted reproductive technologies. Genetic abnormalities, including sperm chromosome aneuploidy as well as structural aberrations, are one of the major causes of male infertility. Recent advances in technology expedite the evaluation of sperm aneuploidy. The purpose of the study was to de-termine the prevalence of sperm aneuploidy in infertile males and the degree of association between DNA fragmentation and sperm aneuploidy. Methods: In this study, 75 infertile men were included, and they were divided into four abnormal groups (Oligospermia, Terato-spermia, Asthenospermia and Oligoasthenoteratospermia (OAT)). Men with children who were normozoospermia served as the control group. The Fluorescence in situ hybridization (FISH) method was used to test for sperm aneuploidy, and the Sperm Chromatin Dispersion Assay (SCDA) was used to measure the fragmentation of sperm DNA. Spearman's correla-tion coefficient was used to evaluate the relationship between sperm aneuploidy and sperm DNA fragmentation along with age. P < 0.05 was regarded as significant. Results: 75 partic-ipants' ages varied from 28 to 48 years old (35.5±5.1). The percentage of spermatozoa bear-ing X and Y was determined to be statistically significant (p-value < 0.05) and was found to be 48.92% and 51.18% of CEP X X 1 – nucish (CEP XX 1) [100] and CEP Y X 1 – nucish (CEP Y X 1) [100]. When compared to the rate of DNA fragmentation, it was discovered that infertile males had a greater frequency of sperm aneuploidy. Asthenospermia and OAT groups in sex chromosomal aneuploidy were significantly correlated (p<0.05). Conclusion: Sperm FISH and SCDA assay results showed increased sperm aneuploidy frequency, and DNA fragmentation index in infertile men compared with fertile men. There is a significant relationship observed between sperm aneuploidy and DNA fragmentation in OAT patients. When evaluating male variables and idiopathic infertility, the sperm FISH screening method can be used as a valuable diagnostic tool.

Keywords: ale infertility, dfi (dna fragmentation assay) (scd-sperm chromatin dispersion).art (artificial reproductive technology), trisomy, aneuploidy, fish (fluorescence in-situ hybridization), oat (oligoasthoteratospermia)

Procedia PDF Downloads 43
1741 Political Economy on the Recent Labor Condition in the Philippines: A Literature Review

Authors: Lloyd B. Ranises

Abstract:

The Philippine labor force has been affected by the pandemic recently. The situation was added by the high inflation rate, which makes matter worse. Since the Philippines has a new government after the 2022 national election, the labor condition under the previous government has been passed on to the new one. To understand the labor challenges the present government faces, this study revisits the labor conditions and responses of the previous government from 2016 to 2022. Thus, this study reviews the labor force of the Philippines within the time frame. It explores the challenges in the labor market and examines government policy. This study uses secondary sources in tracing the labor conditions and government actions that addressed them. The Literatures are consolidated to see its relevance to the new government’s labor policy. This study found that the labor force had a sluggish growth earlier until 2018 and thrived on but was affected by the pandemic. By 2020, the National Capital Region’s labor force dropped, although, after which, it begins to thrive again, showing recovery. However, its composition is much more complex. Cognitive skill is high in demand that requires tertiary education. But the production of goods and services is low in the scientific workforce in addition to the mismatch between position and profession. Moreover, Philippine labor has poor female participation. In addition to these complexities, the agricultural rural areas have high underemployment, which implies surplus labor of low skill. Overseas employment, on the other, is significant to the decrease in domestic production. The major responses of the previous government, by far, have been focused on the minimum wage increase and the social services and health insurance, which are appropriate to the post-pandemic needs. Yet still, some issues are unattended. This study concludes that the previous government’s policy needs to be fleshed out substantially. It necessitates that the new administration shall consider encompassing all aspects of the Philippine labor force to sustain and strengthen the economy of the country.

Keywords: cognitive skills, minimum wage, national capital region, underemployment

Procedia PDF Downloads 98
1740 Treatment of a Galvanization Wastewater in a Fixed-Bed Column Using L. hyperborean and P. canaliculata Macroalgae as Natural Cation Exchangers

Authors: Tatiana A. Pozdniakova, Maria A. P. Cechinel, Luciana P. Mazur, Rui A. R. Boaventura, Vitor J. P. Vilar.

Abstract:

Two brown macroalgae, Laminaria hyperborea and Pelvetia canaliculata, were employed as natural cation exchangers in a fixed-bed column for Zn(II) removal from a galvanization wastewater. The column (4.8 cm internal diameter) was packed with 30-59 g of previously hydrated algae up to a bed height of 17-27 cm. The wastewater or eluent was percolated using a peristaltic pump at a flow rate of 10 mL/min. The effluent used in each experiment presented similar characteristics: pH of 6.7, 55 mg/L of chemical oxygen demand and about 300, 44, 186 and 244 mg/L of sodium, calcium, chloride and sulphate ions, respectively. The main difference was nitrate concentration: 20 mg/L for the effluent used with L. hyperborean and 341 mg/L for the effluent used with P. canaliculata. The inlet zinc concentration also differed slightly: 11.2 mg/L for L. hyperborean and 8.9 mg/L for P. canaliculata experiments. The breakthrough time was approximately 22.5 hours for both macroalgae, corresponding to a service capacity of 43 bed volumes. This indicates that 30 g of biomass is able to treat 13.5 L of the galvanization wastewater. The uptake capacities at the saturation point were similar to that obtained in batch studies (unpublished data) for both algae. After column exhaustion, desorption with 0.1 M HNO3 was performed. Desorption using 9 and 8 bed volumes of eluent achieved an efficiency of 100 and 91%, respectively for L. hyperborean and P. canaliculata. After elution with nitric acid, the column was regenerated using different strategies: i) convert all the binding sites in the sodium form, by passing a solution of 0.5 M NaCl, until achieve a final pH of 6.0; ii) passing only tap water in order to increase the solution pH inside the column until pH 3.0, and in this case the second sorption cycle was performed using protonated algae. In the first approach, in order to remove the excess of salt inside the column, distilled water was passed through the column, leading to the algae structure destruction and the column collapsed. Using the second approach, the algae remained intact during three consecutive sorption/desorption cycles without loss of performance.

Keywords: biosorption, zinc, galvanization wastewater, packed-bed column

Procedia PDF Downloads 305
1739 Phytoextraction of Heavy Metals in a Contaminated Site in Assam, India Using Indian Pennywort and Fenugreek: An Experimental Study

Authors: Chinumani Choudhury

Abstract:

Heavy metal contamination is an alarming problem, which poses a serious risk to human health and the surrounding geology. Soils get contaminated with heavy metals due to the un-regularized industrial discharge of the toxic metal-rich effluents. Under such a condition, the remediation of the contaminated sites becomes imperative for a sustainable, safe, and healthy environment. Phytoextraction, which involves the removal of heavy metals from the soil through root absorption and uptake, is a viable remediation technique, which ensures extraction of the toxic inorganic compound available in the soil even at low concentrations. The soil present in the Silghat Region of Assam, India, is mostly contaminated with Zinc (Zn) and Lead (Pb), having concentrations as high as to cause a serious environmental problem if proper measures are not taken. In the present study, an extensive experimental study was carried out to understand the effectiveness of two commonly planted trees in Assam, namely, i) Indian Pennywort and ii) Fenugreek, in the removal of heavy metals from the contaminated soil. The basic characterization of the soil in the contaminated site of the Silghat region was performed and the field concentration of Zn and Pb was recorded. Various long-term laboratory pot tests were carried out by sowing the seeds of Indian Pennywort and Fenugreek in a soil, which was spiked, with a very high dosage of Zn and Pb. The tests were carried out for different concentration of a particular heavy metal and the individual effectiveness in the absorption of the heavy metal by the plants were studied. The concentration of the soil was monitored regularly to assess the rate of depletion and the simultaneous uptake of the heavy metal from the soil to the plant. The amount of heavy metal uptake by the plant was also quantified by analyzing the plant sample at the end of the testing period. Finally, the study throws light on the applicability of the studied plants in the field for effective remediation of the contaminated sites of Assam.

Keywords: phytoextraction, heavy-metals, Indian pennywort, fenugreek

Procedia PDF Downloads 112
1738 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks

Authors: Andrew C. Eloka Eboka, Freddie L. Inambao

Abstract:

Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.

Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond

Procedia PDF Downloads 356
1737 Oil Logistics for Refining to Northern Europe

Authors: Vladimir Klepikov

Abstract:

To develop the programs to supply crude oil to North European refineries, it is necessary to take into account the refineries’ location, crude refining capacity, and the transport infrastructure capacity. Among the countries of the region, we include those having a marine boundary along the Northern Sea and the Baltic Sea (from France in the west to Finland in the east). The paper envisages the geographic allocation of the refineries and contains the evaluation of the refineries’ capacities for the region under review. The sustainable operations of refineries in the region are determined by the transportation system capacity to supply crude oil to them. The assessment of capacity of crude oil transportation to the refineries is conducted. The research is performed for the period of 2005/2015, using the quantitative analysis method. The countries are classified by the refineries’ aggregate capacities and the crude oil output on their territory. The crude oil output capacities in the region in the period under review are determined. The capacities of the region’s transportation system to supply crude oil produced in the region to the refineries are revealed. The analysis suggested that imported raw materials are the main source of oil for the refineries in the region. The main sources of crude oil supplies to North European refineries are reviewed. The change in the refineries’ capacities in the group of countries and each particular country, as well as the utilization of the refineries' capacities in the region in the period under review, was studied. The input suggests that the bulk of crude oil is supplied by marine and pipeline transport. The paper contains the assessment of the crude oil transportation by pipeline transport in the overall crude oil cargo flow. The refineries’ production rate for the groups of countries under the review and for each particular country was the subject of study. Our study yielded the trend towards the increase in the crude oil refining at the refineries of the region and reduction in the crude oil output. If this trend persists in the near future, the cargo flow of imported crude oil and the utilization of the North European logistics infrastructure may increase. According to the study, the existing transport infrastructure in the region is able to handle the increasing imported crude oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, tanker draft

Procedia PDF Downloads 160
1736 Imaginal and in Vivo Exposure Blended with Emdr: Becoming Unstuck, an Integrated Inpatient Treatment for Post-Traumatic Stress Disorder

Authors: Merrylord Harb-Azar

Abstract:

Traditionally, PTSD treatment has involved trauma-focused cognitive behaviour therapy (TF CBT) to consolidate traumatic memories. A piloted integrated treatment of TF CBT and eye movement desensitisation reprocessing therapy (EMDR) of eight phases will fasten the rate memory is being consolidated and enhance cognitive functioning in patients with PTSD. Patients spend a considerable amount of time in treatment managing their traumas experienced firsthand, or from aversive details ranging from war, assaults, accidents, abuse, hostage related, riots, or natural disasters. The time spent in treatment or as inpatient affects overall quality of life, relationships, cognitive functioning, and overall sense of identity. EMDR is being offered twice a week in conjunction with the standard prolonged exposure as an inpatient in a private hospital. Prolonged exposure for up to 5 hours per day elicits the affect response required for EMDR sessions in the afternoon to unlock unprocessed memories and facilitate consolidation in the amygdala and hippocampus. Results are indicating faster consolidation of memories, reduction in symptoms in a shorter period of time, reduction in admission time, which is enhancing the quality of life and relationships, and improved cognition. The impact of events scale (IES) results demonstrate a significant reduction in symptoms, trauma symptoms inventory (TSI), and posttraumatic stressor disorder check list (PCL) that demonstrates large effect sizes to date. An integrated treatment approach for PTSD achieves a faster resolution of memories, improves cognition, and reduces the amount of time spent in therapy.

Keywords: EMDR enhances cognitive functioning, faster consolidation of trauma memory, integrated treatment of TF CBT and EMDR, reduction in inpatient admission time

Procedia PDF Downloads 137
1735 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran

Authors: Nasser Hosseini

Abstract:

Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.

Keywords: corn (KSC704), output and input, energy efficiency, Khoy city

Procedia PDF Downloads 427
1734 A Case Study of Rainfall Derived Inflow/Infiltration in a Separate Sewer System in Gwangju, Korea

Authors: Bumjo Kim, Hyun Jin Kim, Joon Ha Kim

Abstract:

The separate sewer system is that collects the wastewater as a sewer pipe and rainfall as a stormwater pipe separately, and then sewage is treated in the wastewater treatment plant, the stormwater is discharged to rivers or lakes through stormwater drainage pipes. Unfortunately, even for separate sewer systems, it is not possible to prevent Rainfall Driven Inflow/Infiltration(RDII) completely to the sewer pipe. Even if the sewerage line is renovated, there is an ineluctable RDII due to the combined sewer system in the house or the difficulty of sewage maintenance in private areas. The basic statistical analysis was performed using environmental data including rainfall, sewage, water qualities and groundwater level in the strict of Gwangju in ​South Korea. During rainfall in the target area, RDII showed an increased rate of 13.4 ~ 53.0% compared to that of a clear day and showed a rapid hydrograph response of 0.3 ~ 3.0 hr. As a result of water quality analysis, BOD5 concentration decreased by 17.3 % and salinity concentration decreased by 8.8 % at the representative spot in the project area compared to the sunny day during rainfall. In contrast to the seasonal fluctuation range of 0.38 m ~ 0.55 m in groundwater in Gwangju area and 0.58 m ~ 0.78 m in monthly fluctuation range, while the difference between groundwater level and the depth of sewer pipe laying was 2.70 m on average, which is larger than the range of fluctuation. Comprehensively, it can be concluded that the increasing of flowrate at sewer line is due to not infiltration water caused by groundwater level rise, construction failure, cracking due to joint failure or conduit deterioration, rainfall was directly inflowed into the sewer line rapidly. Acknowledgements: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: ground water, rainfall, rainfall driven inflow/infiltration, separate sewer system

Procedia PDF Downloads 147
1733 Seismic Hazard Assessment of Tehran

Authors: Dorna Kargar, Mehrasa Masih

Abstract:

Due to its special geological and geographical conditions, Iran has always been exposed to various natural hazards. Earthquake is one of the natural hazards with random nature that can cause significant financial damages and casualties. This is a serious threat, especially in areas with active faults. Therefore, considering the population density in some parts of the country, locating and zoning high-risk areas are necessary and significant. In the present study, seismic hazard assessment via probabilistic and deterministic method for Tehran, the capital of Iran, which is located in Alborz-Azerbaijan province, has been done. The seismicity study covers a range of 200 km from the north of Tehran (X=35.74° and Y= 51.37° in LAT-LONG coordinate system) to identify the seismic sources and seismicity parameters of the study region. In order to identify the seismic sources, geological maps at the scale of 1: 250,000 are used. In this study, we used Kijko-Sellevoll's method (1992) to estimate seismicity parameters. The maximum likelihood estimation of earthquake hazard parameters (maximum regional magnitude Mmax, activity rate λ, and the Gutenberg-Richter parameter b) from incomplete data files is extended to the case of uncertain magnitude values. By the combination of seismicity and seismotectonic studies of the site, the acceleration with antiseptic probability may happen during the useful life of the structure is calculated with probabilistic and deterministic methods. Applying the results of performed seismicity and seismotectonic studies in the project and applying proper weights in used attenuation relationship, maximum horizontal and vertical acceleration for return periods of 50, 475, 950 and 2475 years are calculated. Horizontal peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.12g, 0.30g, 0.37g and 0.50, and Vertical peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.08g, 0.21g, 0.27g and 0.36g.

Keywords: peak ground acceleration, probabilistic and deterministic, seismic hazard assessment, seismicity parameters

Procedia PDF Downloads 55
1732 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry

Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh

Abstract:

The demand for energy is cumulatively increasing with time.  Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields.  In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector.  The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India.  A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system.  The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C).  Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.

Keywords: organic Rankine cycle, regenerative organic Rankine cycle, waste heat recovery, Indian industry

Procedia PDF Downloads 365