Search results for: switch-mode power supply
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8263

Search results for: switch-mode power supply

7423 Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine

Authors: Anthony Okechukwu Ifediniru, Austin Ikechukwu Gbasouzor, Isidore Uche Uju

Abstract:

This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design.

Keywords: AC current, arc welding machine, DC current, transformer, welds

Procedia PDF Downloads 187
7422 Feasibility Study of Potential and Economic of Rice Straw VSPP Power Plant in Thailand

Authors: Sansanee Sansiribhan, Anusorn Rattanathanaophat, Chirapan Nuengchaknin

Abstract:

The potential feasibility of a 9.5 MWe capacity rice straw power plant project in Thailand was studied by evaluating the rice straw resource. The result showed that Thailand had a high rice straw biomass potential at the provincial level, especially, the provinces in the central, northeastern and western Thailand, which could feasibly develop plants. The economic feasibility of project was also investigated. The financial feasibility is also evaluated based on two important factors in the project, i.e., NPV ≥ 0 and IRR ≥ 11%. It was found that the rice straw power plant project at 9.5 MWe was financially feasible with the cost of fuel in the range of 30.6-47.7 USD/t.

Keywords: power plant, project feasibility, rice straw, Thailand

Procedia PDF Downloads 339
7421 Thermal Vacuum Chamber Test Result for CubeSat Transmitter

Authors: Fitri D. Jaswar, Tharek A. Rahman, Yasser A. Ahmad

Abstract:

CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition.

Keywords: communication system, CubeSat, SNR, UHF transmitter

Procedia PDF Downloads 267
7420 Apply Commitment Method in Power System to Minimize the Fuel Cost

Authors: Mohamed Shaban, Adel Yahya

Abstract:

The goal of this paper study is to schedule the power generation units to minimize fuel consumption cost based on a model that solves unit commitment problems. This can be done by utilizing forward dynamic programming method to determine the most economic scheduling of generating units. The model was applied to a power station, which consists of four generating units. The obtained results show that the applications of forward dynamic programming method offer a substantial reduction in fuel consumption cost. The fuel consumption cost has been reduced from $116,326 to $102,181 within a 24-hour period. This means saving about 12.16 % of fuel consumption cost. The study emphasizes the importance of applying modeling schedule programs to the operation of power generation units. As a consequence less consumption of fuel, less loss of power and less pollution

Keywords: unit commitment, forward dynamic, fuel cost, programming, generation scheduling, operation cost, power system, generating units

Procedia PDF Downloads 617
7419 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator

Procedia PDF Downloads 327
7418 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters

Authors: Eyhab El-Kharashi, Maher El-Dessouki

Abstract:

The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.

Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion

Procedia PDF Downloads 561
7417 Volume Density of Power of Multivector Electric Machine

Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev

Abstract:

Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.

Keywords: electric machine, electric motor, electromagnet, efficiency of electric motor

Procedia PDF Downloads 339
7416 Use of Logistics for Demand Control in a Commercial Establishment in Rio De Janeiro, Brazil

Authors: Carlos Fontanillas

Abstract:

Brazil is going through a real revolution in the logistics area. It is increasingly common to find articles and news in this context, as companies begin to become aware that a good management of the areas that make up the logistics can bring excellent results in reducing costs and increasing productivity. With this, companies are investing more emphasis on reduced spending on storage and transport of their products to ensure competitiveness. The scope of this work is the analysis of the logistics of a restaurant and materials will be presented the best way to serve the customer, avoiding the interruption of production due to lack of materials; for it will be analyzed the supply chain in terms of acquisition costs, maintenance and service demand.

Keywords: ABC curve, logistic, productivity, supply chain

Procedia PDF Downloads 317
7415 Mathematical Modeling of Carotenoids and Polyphenols Content of Faba Beans (Vicia faba L.) during Microwave Treatments

Authors: Ridha Fethi Mechlouch, Ahlem Ayadi, Ammar Ben Brahim

Abstract:

Given the importance of the preservation of polyphenols and carotenoids during thermal processing, we attempted in this study to investigate the variation of these two parameters in faba beans during microwave treatment using different power densities (1; 2; and 3W/g), then to perform a mathematical modeling by using non-linear regression analysis to evaluate the models constants. The variation of the carotenoids and polyphenols ratio of faba beans and the models are tested to validate the experimental results. Exponential models were found to be suitable to describe the variation of caratenoid ratio (R²= 0.945, 0.927 and 0.946) for power densities (1; 2; and 3W/g) respectively, and polyphenol ratio (R²= 0.931, 0.989 and 0.982) for power densities (1; 2; and 3W/g) respectively. The effect of microwave power density Pd(W/g) on the coefficient k of models were also investigated. The coefficient is highly correlated (R² = 1) and can be expressed as a polynomial function.

Keywords: microwave treatment, power density, carotenoid, polyphenol, modeling

Procedia PDF Downloads 262
7414 OMTHD Strategy in Asymmetrical Seven-Level Inverter for High Power Induction Motor

Authors: Rachid Taleb, M’hamed Helaimi, Djilali Benyoucef, Ahmed Derrouazin

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the Optimal Minimization of the Total Harmonic Distortion (OMTHD) strategy of a uniform step asymmetrical seven-level inverter (USA7LI). The OMTHD approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the OMTHD controller in feeding a High Power Induction Motor (HPIM).

Keywords: uniform step asymmetrical seven-level inverter (USA7LI), optimal minimization of the THD (OMTHD), sinusoidal PWM (SPWM), high power induction motor (HPIM)

Procedia PDF Downloads 590
7413 Diagnostic of Breakdown in High Voltage Bushing Power Transformer 500 kV Cirata Substation

Authors: Andika Bagaskara, Andhika Rizki Pratama, Lalu Arya Repatmaja, Septhian Ditaputra Raharja

Abstract:

The power transformer is one of the critical things in system transmission. Regular testing of the power transformer is very important to maintain the reliability of the power. One of the causes of the failure of the transformer is the breakdown of insulation caused by the presence of voids in the equipment that is electrified. As a result of the voids that occur in this power transformer equipment, it can cause partial discharge. Several methods were used to determine the occurrence of damage to the power transformer equipment, such as Sweep Frequency Response Analysis (SFRA) and Tan Delta. In Inter Bus Transformer (IBT) 500/150 kV Cirata Extra High Voltage (EHV) Substation, a breakdown occurred in the T-phase tertiary bushing. From the lessons learned in this case, a complete electrical test was carried out. From the results of the complete electrical test, there was a suspicion of deterioration in the post-breakdown SFRA results. After overhaul and inspection, traces of voids were found on the tertiary bushing, which indicated a breakdown in the tertiary bushing of the IBT 500/150kV Cirata Substation transformer.

Keywords: void, bushing, SFRA, Tan Delta

Procedia PDF Downloads 145
7412 Assessing the Cumulative Impact of PM₂.₅ Emissions from Power Plants by Using the Hybrid Air Quality Model and Evaluating the Contributing Salient Factor in South Taiwan

Authors: Jackson Simon Lusagalika, Lai Hsin-Chih, Dai Yu-Tung

Abstract:

Particles with an aerodynamic diameter of 2.5 meters or less are referred to as "fine particulate matter" (PM₂.₅) are easily inhaled and can go deeper into the lungs than other particles in the atmosphere, where it may have detrimental health consequences. In this study, we use a hybrid model that combined CMAQ and AERMOD as well as initial meteorological fields from the Weather Research and Forecasting (WRF) model to study the impact of power plant PM₂.₅ emissions in South Taiwan since it frequently experiences higher PM₂.₅ levels. A specific date of March 3, 2022, was chosen as a result of a power outage that prompted the bulk of power plants to shut down. In some way, it is not conceivable anywhere in the world to turn off the power for the sole purpose of doing research. Therefore, this catastrophe involving a power outage and the shutdown of power plants offers a great occasion to evaluate the impact of air pollution driven by this power sector. As a result, four numerical experiments were conducted in the study using the Continuous Emission Data System (CEMS), assuming that the power plants continued to function normally after the power outage. The hybrid model results revealed that power plants have a minor impact in the study region. However, we examined the accumulation of PM₂.₅ in the study and discovered that once the vortex at 925hPa was established and moved to the north of Taiwan's coast, the study region experienced higher observed PM₂.₅ concentrations influenced by meteorological factors. This study recommends that decision-makers take into account not only control techniques, specifically emission reductions, but also the atmospheric and meteorological implications for future investigations.

Keywords: PM₂.₅ concentration, powerplants, hybrid air quality model, CEMS, Vorticity

Procedia PDF Downloads 79
7411 Development of Fault Diagnosis Technology for Power System Based on Smart Meter

Authors: Chih-Chieh Yang, Chung-Neng Huang

Abstract:

In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.

Keywords: ANFIS, fault diagnosis, power system, smart meter

Procedia PDF Downloads 142
7410 Suitability of Alternative Insulating Fluid for Power Transformer: A Laboratory Investigation

Authors: S. N. Deepa, A. D. Srinivasan, K. T. Veeramanju, R. Sandeep Kumar, Ashwini Mathapati

Abstract:

Power transformer is a vital element in a power system as it continuously regulates power flow, maintaining good voltage regulation. The working of transformer much depends on the oil insulation, the oil insulation also decides the aging of transformer and hence its reliability. The mineral oil based liquid insulation is globally accepted for power transformer insulation; however it is potentially hazardous due to its non-biodegradability. In this work efficient alternative biodegradable insulating fluid is presented as a replacement to conventional mineral oil. Dielectric tests are performed as distinct alternating fluid to evaluate the suitability for transformer insulation. The selection of the distinct natural esters for an insulation system is carried out by the laboratory investigation of Breakdown voltage, Oxidation stability, Dissipation factor, Permittivity, Viscosity, Flash and Fire point. It is proposed to study and characterize the properties of natural esters to be used in power transformer. Therefore for the investigation of the dielectric behavior rice bran oil, sesame oil, and sunflower oil are considered for the study. The investigated results have been compared with the mineral oil to validate the dielectric behavior of natural esters.

Keywords: alternative insulating fluid, dielectric properties, natural esters, power transformers

Procedia PDF Downloads 149
7409 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System

Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah

Abstract:

Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.

Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm

Procedia PDF Downloads 507
7408 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques

Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan

Abstract:

A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.

Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104

Procedia PDF Downloads 595
7407 Feasibility Study for Implementation of Geothermal Energy Technology as a Means of Thermal Energy Supply for Medium Size Community Building

Authors: Sreto Boljevic

Abstract:

Heating systems based on geothermal energy sources are becoming increasingly popular among commercial/community buildings as management of these buildings looks for a more efficient and environmentally friendly way to manage the heating system. The thermal energy supply of most European commercial/community buildings at present is provided mainly by energy extracted from natural gas. In order to reduce greenhouse gas emissions and achieve climate change targets set by the EU, restructuring in the area of thermal energy supply is essential. At present, heating and cooling account for approx... 50% of the EU primary energy supply. Due to its physical characteristics, thermal energy cannot be distributed or exchange over long distances, contrary to electricity and gas energy carriers. Compared to electricity and the gas sectors, heating remains a generally black box, with large unknowns to a researcher and policymaker. Ain literature number of documents address policies for promoting renewable energy technology to facilitate heating for residential/community/commercial buildings and assess the balance between heat supply and heat savings. Ground source heat pump (GSHP) technology has been an extremely attractive alternative to traditional electric and fossil fuel space heating equipment used to supply thermal energy for residential/community/commercial buildings. The main purpose of this paper is to create an algorithm using an analytical approach that could enable a feasibility study regarding the implementation of GSHP technology in community building with existing fossil-fueled heating systems. The main results obtained by the algorithm will enable building management and GSHP system designers to define the optimal size of the system regarding technical, environmental, and economic impacts of the system implementation, including payback period time. In addition, an algorithm is created to be utilized for a feasibility study for many different types of buildings. The algorithm is tested on a building that was built in 1930 and is used as a church located in Cork city. The heating of the building is currently provided by a 105kW gas boiler.

Keywords: GSHP, greenhouse gas emission, low-enthalpy, renewable energy

Procedia PDF Downloads 223
7406 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array

Authors: Rachid Dehini, Brahim Berbaoui

Abstract:

The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)

Procedia PDF Downloads 336
7405 Development of a Decision Model to Optimize Total Cost in Food Supply Chain

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

All along the length of the supply chain, fresh food firms face the challenge of managing both product quality, due to the perishable nature of the products, and product cost. This paper develops a method to assist logistics managers upstream in the fresh food supply chain in making cost optimized decisions regarding transportation, with the objective of minimizing the total cost while maintaining the quality of food products above acceptable levels. Considering the case of multiple fresh food products collected from multiple farms being transported to a warehouse or a retailer, this study develops a total cost model that includes various costs incurred during transportation. The practical application of the model is illustrated by using several computational intelligence approaches including Genetic Algorithms (GA), Fuzzy Genetic Algorithms (FGA) as well as an improved Simulated Annealing (SA) procedure applied with a repair mechanism for efficiency benchmarking. We demonstrate the practical viability of these approaches by using a simulation study based on pertinent data and evaluate the simulation outcomes. The application of the proposed total cost model was demonstrated using three approaches of GA, FGA and SA with a repair mechanism. All three approaches are adoptable; however, based on the performance evaluation, it was evident that the FGA is more likely to produce a better performance than the other two approaches of GA and SA. This study provides a pragmatic approach for supporting logistics and supply chain practitioners in fresh food industry in making important decisions on the arrangements and procedures related to the transportation of multiple fresh food products to a warehouse from multiple farms in a cost-effective way without compromising product quality. This study extends the literature on cold supply chain management by investigating cost and quality optimization in a multi-product scenario from farms to a retailer and, minimizing cost by managing the quality above expected quality levels at delivery. The scalability of the proposed generic function enables the application to alternative situations in practice such as different storage environments and transportation conditions.

Keywords: cost optimization, food supply chain, fuzzy sets, genetic algorithms, product quality, transportation

Procedia PDF Downloads 226
7404 A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology

Authors: Wenhao Wang, Xinzhi Xu, Limin Feng, Wei Cong

Abstract:

This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition.

Keywords: energy transition, geographic information system, fossil energy, power systems

Procedia PDF Downloads 156
7403 Cuban's Supply Chains Development Model: Qualitative and Quantitative Impact on Final Consumers

Authors: Teresita Lopez Joy, Jose A. Acevedo Suarez, Martha I. Gomez Acosta, Ana Julia Acevedo Urquiaga

Abstract:

Current trends in business competitiveness indicate the need to manage businesses as supply chains and not in isolation. The use of strategies aimed at maximum satisfaction of customers in a network and based on inter-company cooperation; contribute to obtaining successful joint results. In the Cuban economic context, the development of productive linkages to achieve integrated management of supply chains is considering a key aspect. In order to achieve this jump, it is necessary to develop acting capabilities in the entities that make up the chains through a systematic procedure that allows arriving at a management model in consonance with the environment. The objective of the research focuses on: designing a model and procedure for the development of integrated management of supply chains in economic entities. The results obtained are: the Model and the Procedure for the Development of the Supply Chains Integrated Management (MP-SCIM). The Model is based on the development of logistics in the network actors, the joint work between companies, collaborative planning and the monitoring of a main indicator according to the end customers. The application Procedure starts from the well-founded need for development in a supply chain and focuses on training entrepreneurs as doers. The characterization and diagnosis is done to later define the design of the network and the relationships between the companies. It takes into account the feedback as a method of updating the conditions and way to focus the objectives according to the final customers. The MP-SCIM is the result of systematic work with a supply chain approach in companies that have consolidated as coordinators of their network. The cases of the edible oil chain and explosives for construction sector reflect results of more remarkable advances since they have applied this approach for more than 5 years and maintain it as a general strategy of successful development. The edible oil trading company experienced a jump in sales. In 2006, the company started the analysis in order to define the supply chain, apply diagnosis techniques, define problems and implement solutions. The involvement of the management and the progressive formation of performance capacities in the personnel allowed the application of tools according to the context. The company that coordinates the explosives chain for construction sector shows adequate training with independence and opportunity in the face of different situations and variations of their business environment. The appropriation of tools and techniques for the analysis and implementation of proposals is a characteristic feature of this case. The coordinating entity applies integrated supply chain management to its decisions based on the timely training of the necessary action capabilities for each situation. Other cases of study and application that validate these tools are also detailed in this paper, and they highlight the results of generalization in the quantitative and qualitative improvement according to the final clients. These cases are: teaching literature in universities, agricultural products of local scope and medicine supply chains.

Keywords: integrated management, logistic system, supply chain management, tactical-operative planning

Procedia PDF Downloads 155
7402 Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers

Authors: E. Taslak, C. Kocatepe, O. Arıkan, C. F. Kumru

Abstract:

In insulation and cooling of power transformers various liquids are used. Mineral oils have wide availability and low cost. However, they have a poor biodegradability potential and lower fire point in comparison with other insulating liquids. Use of a liquid having high biodegradability is important due to environmental consideration. This paper investigates edible corn oil as an alternative to mineral oil. Various properties of mineral and corn oil like breakdown voltage, dissipation factor, relative dielectric constant, power loss and resistivity were measured according to different standards.

Keywords: breakdown voltage, corn oil, dissipation factor, mineral oil, power loss, relative dielectric constant, resistivity

Procedia PDF Downloads 582
7401 Planning a European Policy for Increasing Graduate Population: The Conditions That Count

Authors: Alice Civera, Mattia Cattaneo, Michele Meoli, Stefano Paleari

Abstract:

Despite the fact that more equal access to higher education has been an objective public policy for several decades, little is known about the effectiveness of alternative means for achieving such goal. Indeed, nowadays, high level of graduate population can be observed both in countries with the high and low level of fees, or high and low level of public expenditure in higher education. This paper surveys the extant literature providing some background on the economic concepts of the higher education market, and reviews key determinants of demand and supply. A theoretical model of aggregate demand and supply of higher education is derived, with the aim to facilitate the understanding of the challenges in today’s higher education systems, as well as the opportunities for development. The model is validated on some exemplary case studies describing the different relationship between the level of public investment and levels of graduate population and helps to derive general implications. In addition, using a two-stage least squares model, we build a macroeconomic model of supply and demand for European higher education. The model allows interpreting policies shifting either the supply or the demand for higher education, and allows taking into consideration contextual conditions with the aim of comparing divergent policies under a common framework. Results show that the same policy objective (i.e., increasing graduate population) can be obtained by shifting either the demand function (i.e., by strengthening student aid) or the supply function (i.e., by directly supporting higher education institutions). Under this theoretical perspective, the level of tuition fees is irrelevant, and empirically we can observe high levels of graduate population in both countries with high (i.e., the UK) or low (i.e., Germany) levels of tuition fees. In practice, this model provides a conceptual framework to help better understanding what are the external conditions that need to be considered, when planning a policy for increasing graduate population. Extrapolating a policy from results in different countries, under this perspective, is a poor solution when contingent factors are not addressed. The second implication of this conceptual framework is that policies addressing the supply or the demand function needs to address different contingencies. In other words, a government aiming at increasing graduate population needs to implement complementary policies, designing them according to the side of the market that is interested. For example, a ‘supply-driven’ intervention, through the direct financial support of higher education institutions, needs to address the issue of institutions’ moral hazard, by creating incentives to supply higher education services in efficient conditions. By contrast, a ‘demand-driven’ policy, providing student aids, need to tackle the students’ moral hazard, by creating an incentive to responsible behavior.

Keywords: graduates, higher education, higher education policies, tuition fees

Procedia PDF Downloads 170
7400 Direct Power Control Applied on 5-Level Diode Clamped Inverter Powered by a Renewable Energy Source

Authors: A. Elnady

Abstract:

This paper presents an improved Direct Power Control (DPC) scheme applied to the multilevel inverter that forms a Distributed Generation Unit (DGU). This paper demonstrates the performance of active and reactive power injected by the DGU to the smart grid. The DPC is traditionally operated by the hysteresis controller with the Space Vector Modulation (SVM) which is applied on the 2-level inverters or 3-level inverters. In this paper, the DPC is operated by the PI controller with the Phase-Disposition Pulse Width Modulation (PD-PWM) applied to the 5-level diode clamped inverter. The new combination of the DPC, PI controller, PD-PWM and multilevel inverter proves that its performance is much better than the conventional hysteresis-SVM based DPC. Simulations results have been presented to validate the performance of the suggested control scheme in the grid-connected mode.

Keywords: direct power control, PI controller, PD-PWM, and power control

Procedia PDF Downloads 242
7399 Power Consumption for Viscoplastic Fluid in a Rotating Vessel with an Anchor Impeller

Authors: Draoui Belkacem, Rahmani Lakhdar, Benachour Elhadj, Seghier Oussama

Abstract:

Rheology is known to have a strong impact on the flow behavior and the power consumption of mechanically agitated vessels. The laminar 2D agitation flow and power consumption of viscoplastic fluids with an anchor impeller in a stirring tank is studied by using computational fluid dynamics (CFD). In this work the objective of this paper is: to evaluate the power consumption for yield stress fluids in standard mixing system. The power consumption is calculated for the different types of anchor impeller configurations and an optimum configuration is proposed.The hydrodynamic fields of incompressible yield stress fluid with model of Bingham in a cylindrical vessel not chicaned equipped with anchor stirrer was undertaken by means of numerical simulation. The flow structures, and especially the effect of inertia, the plasticity and the yield stress, are discussed.

Keywords: rheology, 2D, numerical, anchor, rotating vissel, non-Newtonien fluid

Procedia PDF Downloads 525
7398 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications

Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin

Abstract:

This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.

Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack

Procedia PDF Downloads 86
7397 A Flexible Pareto Distribution Using α-Power Transformation

Authors: Shumaila Ehtisham

Abstract:

In Statistical Distribution Theory, considering an additional parameter to classical distributions is a usual practice. In this study, a new distribution referred to as α-Power Pareto distribution is introduced by including an extra parameter. Several properties of the proposed distribution including explicit expressions for the moment generating function, mode, quantiles, entropies and order statistics are obtained. Unknown parameters have been estimated by using maximum likelihood estimation technique. Two real datasets have been considered to examine the usefulness of the proposed distribution. It has been observed that α-Power Pareto distribution outperforms while compared to different variants of Pareto distribution on the basis of model selection criteria.

Keywords: α-power transformation, maximum likelihood estimation, moment generating function, Pareto distribution

Procedia PDF Downloads 217
7396 Power-Aware Adaptive Coverage Control with Consensus Protocol

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we propose a new approach to coverage control problem by using adaptive coordination and power aware control laws. Nonholonomic mobile nodes position themselves suboptimally according to a time-varying density function using Centroidal Voronoi Tesellations. The Lyapunov stability analysis of the adaptive and decentralized approach is given. A linear consensus protocol is used to establish synchronization among the mobile nodes. Also, repulsive forces prevent nodes from collision. Simulation results show that by using power aware control laws, energy consumption of the nodes can be reduced.

Keywords: power aware, coverage control, adaptive, consensus, nonholonomic, coordination

Procedia PDF Downloads 356
7395 Engineering in Saudi Arabia: Importance of Communications and Power Engineering

Authors: Hamed D. Alsharari

Abstract:

This paper first analyses the current status regarding electrical engineering higher education in Saudi Arabian public universities. The paper focuses on the two EE sub-specialties most commonly present in Saudi Arabia, power and communications and discusses recruitment in this field, showing various market and employment demand for EE.

Keywords: communications, electrical engineering, higher education, Saudi Arabia, power

Procedia PDF Downloads 415
7394 Switched Ultracapacitors for Maximizing Energy Supply

Authors: Nassouh K. Jaber

Abstract:

Supercapacitors (S.C.) are presently attracting attention for driving general purpose (12VDC to 220VAC) inverters in renewable energy systems. Unfortunately, when the voltage of the S.C supplying the inverter reaches the minimal threshold of 7-8VDC the inverter shuts down leaving the remaining 40% of the valuable energy stored inside the ultracapacitor un-usable. In this work a power electronic circuit is proposed which switches 2 banks of supercapacitors from parallel connection when both are fully charged at 14VDC to serial connection when their voltages drop down to 7 volts, thus keeping the inverter working within its operating limits for a longer time and advantageously tapping almost 92% of the stored energy in the supercapacitors.

Keywords: ultra capacitor, switched ultracapacitors, inverter, supercapacitor, parallel connection, serial connection, battery limitation

Procedia PDF Downloads 415