Search results for: hydrocarbon solvent
278 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method
Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta
Abstract:
Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse
Procedia PDF Downloads 130277 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia
Authors: Josua Sihotang
Abstract:
Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.Keywords: aquifer, deep groundwater potential, well devices, well logging analysis
Procedia PDF Downloads 254276 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method
Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru
Abstract:
Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).Keywords: electrochemical remediation, pollution, total petroleum hydrocarbons, soil contamination
Procedia PDF Downloads 241275 Kuwait Environmental Remediation Program: Waste Management Data Analytics for Planning and Optimization of Waste Collection
Authors: Aisha Al-Baroud
Abstract:
The United Nations Compensation Commission (UNCC), Kuwait National Focal Point (KNFP) and Kuwait Oil Company (KOC) cooperated in a joint project to undertake comprehensive and collaborative efforts to remediate 26 million m3 of crude oil contaminated soil that had resulted from the Gulf War in 1990/1991. These efforts are referred to as the Kuwait Environmental Remediation Program (KERP). KOC has developed a Total Remediation Solution (TRS) for KERP, which will guide the Remediation projects, comprises of alternative remedial solutions with treatment techniques inclusive of limited landfills for non-treatable soil materials disposal, and relies on treating certain ranges of Total Petroleum Hydrocarbon (TPH) contamination with the most appropriate remediation techniques. The KERP Remediation projects will be implemented within the KOC’s oilfields in North and South East Kuwait. The objectives of this remediation project is to clear land for field development and treat all the oil contaminated features (dry oil lakes, wet oil lakes, and oil contaminated piles) through TRS plan to optimize the treatment processes and minimize the volume of contaminated materials to be placed into landfills. The treatment strategy will comprise of Excavation and Transportation (E&T) of oil contaminated soils from contaminated land to remote treatment areas and to use appropriate remediation technologies or a combination of treatment technologies to achieve remediation target criteria (RTC). KOC has awarded five mega projects to achieve the same and is currently in the execution phase. As a part of the company’s commitment to environment and for the fulfillment of the mandatory HSSEMS procedures, all the Remediation contractors needs to report waste generation data from the various project activities on a monthly basis. Data on waste generation is collected in order to implement cost-efficient and sustainable waste management operations. Data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information for planning and optimization of waste collection and recycling.Keywords: waste, tencnolgies, KERP, data, soil
Procedia PDF Downloads 113274 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater
Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig
Abstract:
The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant
Procedia PDF Downloads 258273 Synthesis of Electrospun Polydimethylsiloxane (PDMS)/Polyvinylidene Fluoriure (PVDF) Nanofibrous Membranes for CO₂ Capture
Authors: Wen-Wen Wang, Qian Ye, Yi-Feng Lin
Abstract:
Carbon dioxide emissions are expected to increase continuously, resulting in climate change and global warming. As a result, CO₂ capture has attracted a large amount of research attention. Among the various CO₂ capture methods, membrane technology has proven to be highly efficient in capturing CO₂, because it can be scaled up, low energy consumptions and small area requirements for use by the gas separation. Various nanofibrous membranes were successfully prepared by a simple electrospinning process. The membrane contactor combined with chemical absorption and membrane process in the post-combustion CO₂ capture is used in this study. In a membrane contactor system, the highly porous and water-repellent nanofibrous membranes were used as a gas-liquid interface in a membrane contactor system for CO₂ absorption. In this work, we successfully prepared the polyvinylidene fluoride (PVDF) porous membranes with an electrospinning process. Afterwards, the as-prepared water-repellent PVDF porous membranes were used for the CO₂ capture application. However, the pristine PVDF nanofibrous membranes were wetted by the amine absorbents, resulting in the decrease in the CO₂ absorption flux, the hydrophobic polydimethylsiloxane (PDMS) materials were added into the PVDF nanofibrous membranes to improve the solvent resistance of the membranes. To increase the hydrophobic properties and CO₂ absorption flux, more hydrophobic surfaces of the PDMS/PVDF nanofibrous membranes are obtained by the grafting of fluoroalkylsilane (FAS) on the membranes surface. Furthermore, the highest CO₂ absorption flux of the PDMS/PVDF nanofibrous membranes is reached after the FAS modification with four times. The PDMS/PVDF nanofibrous membranes with 60 wt% PDMS addition can be a long and continuous operation of the CO₂ absorption and regeneration experiments. It demonstrates the as-prepared PDMS/PVDF nanofibrous membranes could potentially be used for large-scale CO₂ absorption during the post-combustion process in power plants.Keywords: CO₂ capture, electrospinning process, membrane contactor, nanofibrous membranes, PDMS/PVDF
Procedia PDF Downloads 274272 Sulfonic Acid Functionalized Ionic Liquid in Combinatorial Approach: A Recyclable and Water Tolerant-Acidic Catalyst for Friedlander Quinoline Synthesis
Authors: Jafar Akbari
Abstract:
Quinolines are very important compounds partially because of their pharmacological properties which include wide applications in medicinal chemistry. notable among them are antimalarial drugs, anti-inflammatory agents, antiasthamatic, antibacterial, antihypertensive, and tyrosine kinase inhibiting agents. Despite quinoline usage in pharmaceutical and other industries, comparatively few methods for their preparation have been reported.The Friedlander annulation is one of the simplest and most straightforward methods for the synthesis of poly substituted quinolines. Although, modified methods employing lewis or br¢nsted acids have been reported for the synthesis of quinolines, the development of water stable acidic catalyst for quinoline synthesis is quite desirable. One of the most remarkable features of ionic liquids is that the yields can be optimized by changing the anions or the cations. Recently, sulfonic acid functionalized ionic liquids were used as solvent-catalyst for several organic reactions. We herein report the one pot domino approach for the synthesis of quinoline derivatives in Friedlander manner using TSIL as a catalyst. These ILs are miscible in water, and their homogeneous system is readily separated from the reaction product, combining advantages of both homogeneous and heterogeneous catalysis. In this reaction, the catalyst plays a dual role; it ensures an effective condensation and cyclization of 2-aminoaryl ketone with second carbonyl group and it also promotes the aromatization to the final product. Various types of quinolines from 2-aminoaryl ketones and β-ketoesters/ketones were prepared in 85-98% yields using the catalytic system of SO3-H functionalized ionic liquid/H2O. More importantly, the catalyst could be easily recycled for five times without loss of much activity.Keywords: antimalarial drugs, green chemistry, ionic liquid, quinolines
Procedia PDF Downloads 210271 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters
Authors: Natalia Fijol, Aji P. Mathew
Abstract:
We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid
Procedia PDF Downloads 115270 Preparation and Optimization of Curcumin-HPβCD Complex Bioadhesive Vaginal Films for Vaginal Candidiasis by Factorial Design
Authors: Umme Hani, H. G. Shivakumar, M. D. Younus Pasha
Abstract:
The purpose of this work was to design and optimize a novel vaginal drug delivery system for more effective treatment against vaginal candidiasis. To achieve a better therapeutic efficacy and patient compliance in the treatment for vaginal candidiasis, herbal antifungal agent Curcumin which is 2.5 fold more potent than fluconazole at inhibiting the adhesion of candida albicans has been formulated in a bio-adhesive vaginal film. Curcumin was formulated in bio-adhesive film formulations that could be retained in the vagina for prolonged intervals. The polymeric films were prepared by solvent evaporation and optimized for various physicodynamic and aesthetic properties. Curcumin HPβCD (Hydroxypropyl β Cyclodextrin) was first developed to increase the solubility of curcumin. The formation of the Curcumin HPβCD complex was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and FT-IR and evaluated for its solubility. Curcumin HPβCD complex was formulated in a bio-adhesive film using hydroxypropyl methyl cellulose (HPMC) and Carbopol 934P and characterized. DSC and FT-IR data of Curcumin HPβCD indicate there was complex formation between the drug and HPβCD. The little moisture content (8.02±0.34% w/w) was present in the film, which helps them to remain stable and kept them from being completely dry and brittle. The mechanical properties, tensile strength, and percentage elongation at break reveal that the formulations were found to be soft and tough. The films showed good peelability, relatively good swelling index, and moderate tensile strength and retained vaginal mucosa up to 8 h. The developed Curcumin vaginal film could be a promising safe herbal medication and can ensure longer residence at the vagina and provide an efficient therapy for vaginal candidiasis.Keywords: curcumin, curcumin-HPβCD complex, bio-adhesive vaginal film, vaginal candidiasis, 23 factorial design
Procedia PDF Downloads 382269 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles
Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose
Abstract:
The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics
Procedia PDF Downloads 118268 Polystyrene Paste as a Substitute for a Portland Cement: A Solution to the Nigerian Dilemma
Authors: Lanre Oluwafemi Akinyemi
Abstract:
The reduction of limestone to cement in Nigeria is expensive and requires huge amounts of energy. This significantly affects the cost of cement. Concrete is heavy: a cubic foot of it weighs about 150 lbs. and a cubic yard is about 4000 lbs. Thus a ready-mix truck with 9 cubic yards is carrying 36,000 lbs excluding the weight of the truck itself, thereby accumulating cost for also manufacturers. Therein lies the need to find a substitute for cement by using the polystyrene paste that benefits both the manufactures and the consumers. Polystyrene Paste Constructional Cement (PPCC), a patented material obtained by dissolving Waste EPS in volatile organic solvent, has recently been identified as a suitable binder/cement for construction and building material production. This paper illustrates the procedures of a test experiment undertaken to determine the splitting tensile strength of PPCC mortar compared to that of OPC (Ordinary Portland Cement). Expanded polystyrene was dissolved in gasoline to form a paste referred to as Polystyrene Paste Constructional Cement (PPCC). Mortars of mix ratios 1:4, 1:5, 1:6, 1:7 (PPCC: fine aggregate) batched by volume were used to produce 50mm x 100mm cylindrical PPCC mortar splitting tensile strength specimens. The control experiment was done by creating another series of cylindrical OPC mortar splitting tensile strength specimens following the same mix ratio used earlier. The PPCC cylindrical splitting tensile strength specimens were left to air-set, and the ones made with Ordinary Portland Cement (OPC) were demoded after 24 hours and cured in water. The cylindrical PPCC splitting tensile strength specimens were tested at 28 days and compared with those of the Ordinary Portland cement splitting tensile strength specimens. The result shows that hence for this two mixes, PPCC exhibits a better binding property than the OPC. With this my new invention I recommend the use of PPCC as a substitute for a Portland cement.Keywords: polystyrene paste, Portland cement, construction, mortar
Procedia PDF Downloads 159267 Organic Geochemistry and Oil-Source Correlation of Cretaceous Sediments in the Kohat Basin, Pakistan
Authors: Syed Mamoon Siyar, Fayaz Ali, Sajjad Ahmad, Samina Jahandad, George Kontakiotis, Hammad T. Janjuhah, Assimina Antonarakou, Waqas Naseem
Abstract:
The Cretaceous Chichali Formation in the Chanda-01, Chanda-02, Chanda-03 and Mela-05 wells and the oil samples from Chanda-01 and Chanda-01 wells located in the Kohat Basin, Pakistan, were analyzed with the objectives of evaluating the hydrocarbon generation potential, source, thermal maturity and depositional of organic matter, and oil-source correlation by employing geochemical screening techniques and biomarker studies. The total organic carbon (TOC) values in Chanda-02, Chanda-03 and Mela-05 indicate, in general, poor to fair, fair and fair to good source rock potential with low genetic potential, respectively. The nature of organic matter has been determined by standard cross plots of Rock Eval pyrolysis parameters, indicating that studied cuttings from the Chichali Formation dominantly contain type III kerogen at present and show maturity for oil generation in the studied wells. The organic petrographic study also confirmed the vitrinite (type III) as a major maceral in the investigated Chichali Shales and its reflectance values show maturity for oil. The different ratios of non-biomarkers and biomarkers i.e., steranes, terpenes and aromatics parameters, indicate the marine source of organic matter deposited in the anoxic environment for the Chichali Formation in Chanda-01 and Chanda-02 wells and mixed source input of organic matter deposited in suboxic conditions for oil in the same wells. The CPI, and different biomarkers parameters such as C29 S/S+R, ββ/αα+ββ), M29/H30, Ts/Ts+Tm, H31 (S/S+R) and aromatic compounds methyl phenanthrene index (MPI) and organic petrographic analysis (vitrinite reflectance) suggest mature stage of oil generation for Chichali Shales and oil samples in the study area with little high thermal maturity in case of oils. Based on source and thermal maturity biomarkers and non-biomarkers parameters, the produced oils have no correlation with the Cretaceous Chichali Formation in the studied Chanda-01 and Chanda-02 wells in Kohat Basin, Pakistan, but it has been suggested that these oils have been generated by the strata containing high terrestrial organic input compare to Chichali Shales.Keywords: Organic geochemistry, Chichali Shales and crude oils, Kohat Basin, Pakistan
Procedia PDF Downloads 84266 Developing an Automated Protocol for the Wristband Extraction Process Using Opentrons
Authors: Tei Kim, Brooklynn McNeil, Kathryn Dunn, Douglas I. Walker
Abstract:
To better characterize the relationship between complex chemical exposures and disease, our laboratory uses an approach that combines low-cost, polydimethylsiloxane (silicone) wristband samplers that absorb many of the chemicals we are exposed to with untargeted high-resolution mass spectrometry (HRMS) to characterize 1000’s of chemicals at a time. In studies with human populations, these wristbands can provide an important measure of our environment: however, there is a need to use this approach in large cohorts to study exposures associated with the disease. To facilitate the use of silicone samplers in large scale population studies, the goal of this research project was to establish automated sample preparation methods that improve throughput, robustness, and scalability of analytical methods for silicone wristbands. Using the Opentron OT2 automated liquid platform, which provides a low-cost and opensource framework for automated pipetting, we created two separate workflows that translate the manual wristband preparation method to a fully automated protocol that requires minor intervention by the operator. These protocols include a sequence generation step, which defines the location of all plates and labware according to user-specified settings, and a transfer protocol that includes all necessary instrument parameters and instructions for automated solvent extraction of wristband samplers. These protocols were written in Python and uploaded to GitHub for use by others in the research community. Results from this project show it is possible to establish automated and open source methods for the preparation of silicone wristband samplers to support profiling of many environmental exposures. Ongoing studies include deployment in longitudinal cohort studies to investigate the relationship between personal chemical exposure and disease.Keywords: bioinformatics, automation, opentrons, research
Procedia PDF Downloads 117265 Model Organic Ranikin Cycle Power Plant for Waste Heat Recovery in Olkaria-I Geothermal Power Plant
Authors: Haile Araya Nigusse, Hiram M. Ndiritu, Robert Kiplimo
Abstract:
Energy consumption is an indispensable component for the continued development of the human population. The global energy demand increases with development and population rise. The increase in energy demand, high cost of fossil fuels and the link between energy utilization and environmental impacts have resulted in the need for a sustainable approach to the utilization of the low grade energy resources. The Organic Rankine Cycle (ORC) power plant is an advantageous technology that can be applied in generation of power from low temperature brine of geothermal reservoirs. The power plant utilizes a low boiling organic working fluid such as a refrigerant or a hydrocarbon. Researches indicated that the performance of ORC power plant is highly dependent upon factors such as proper organic working fluid selection, types of heat exchangers (condenser and evaporator) and turbine used. Despite a high pressure drop, shell-tube heat exchangers have satisfactory performance for ORC power plants. This study involved the design, fabrication and performance assessment of the components of a model Organic Rankine Cycle power plant to utilize the low grade geothermal brine. Two shell and tube heat exchangers (evaporator and condenser) and a single stage impulse turbine have been designed, fabricated and the performance assessment of each component has been conducted. Pentane was used as a working fluid and hot water simulating the geothermal brine. The results of the experiment indicated that the increase in mass flow rate of hot water by 0.08 kg/s caused a rise in overall heat transfer coefficient of the evaporator by 17.33% and the heat transferred was increased by 6.74%. In the condenser, the increase of cooling water flow rate from 0.15 kg/s to 0.35 kg/s increased the overall heat transfer coefficient by 1.21% and heat transferred was increased by 4.26%. The shaft speed varied from 1585 to 4590 rpm as inlet pressure was varied from 0.5 to 5.0 bar and power generated was varying from 4.34 to 14.46W. The results of the experiments indicated that the performance of each component of the model Organic Rankine Cycle power plant operating at low temperature heat resources was satisfactory.Keywords: brine, heat exchanger, ORC, turbine
Procedia PDF Downloads 651264 Exploring the Bifunctional Organocatalysts for Asymmetric Synthesis of 3-Substituted-3-Aminooxindoles
Authors: Jasneet Kaur, Swapandeep Singh Chimni
Abstract:
The unfavorable use of metal-based catalysts that are often extortionate and toxic can be overcome by using small organic molecules known as organocatalysts. A variety of small organic molecules, including Brønsted/Lewis bases and acids, based on sulfonic acids, phosphoric acids, amines, phosphines or carbenes, Cinchona alkaloids, have been used as organocatalysts. One of the key reasons for using organocatalysis is their ability to be effectively removed from the final product in comparison to the metallic counterparts, which are exceedingly difficult to remove. The present investigation seeks to explore the catalytic nature of Cinchona alkaloids as an organocatalyst for enantioselective synthesis of 3-substituted-3-aminooxindole, which is known to exhibit a variety of biological activities and pharmacological activities. In this context, an organocatalytic asymmetric route for the synthesis of 3-aminooxindoles via reaction of isatin imine with α-acetoxy-β-ketoesters has been developed. The bifunctional Cinchona derived thiourea catalyzed the reaction of α-acetoxy-β-ketoesters derivatives with isatin imine to afford 3-substituted-aminooxindole derivatives in up to 93% yield, 95% enantiomeric excess and >20:1 diastereomeric ratio. The reaction was performed at room temperature for two hours using 10 mol% of catalyst, in the presence of 4Å molecular sieves in tetrahydrofuran as a solvent at ambient temperature. After the completion of the reaction, the pure product could be easily separated by using column chromatography using hexane and ethyl acetate as solvents. In conclusion, the catalytic potential of Cinchona derived chiral thiourea-tertiary amine catalyst was explored for an organocatalytic enantioselective Mannich reaction of β-ketoester derivatives with various isatin imine derivatives under mild conditions.Keywords: asymmetric synthesis, aminooxindoles, enantioselective, isatin imine
Procedia PDF Downloads 114263 ZnO Nanoparticles as Photocatalysts: Synthesis, Characterization and Application
Authors: Pachari Chuenta, Suwat Nanan
Abstract:
ZnO nanostructures have been synthesized successfully in high yield via catalyst-free chemical precipitation technique by varying zinc source (either zinc nitrate or zinc acetate) and oxygen source (either oxalic acid or urea) without using any surfactant, organic solvent or capping agent. The ZnO nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), UV-vis diffuse reflection spectroscopy (UV-vis DRS), and photoluminescence spectroscopy (PL). The FTIR peak in the range of 450-470 cm-1 corresponded to Zn-O stretching in ZnO structure. The synthesized ZnO samples showed well crystalized hexagonal wurtzite structure. SEM micrographs displayed spherical droplet of about 50-100 nm. The band gap of prepared ZnO was found to be 3.4-3.5 eV. The presence of PL peak at 468 nm was attributed to surface defect state. The photocatalytic activity of ZnO was studied by monitoring the photodegradation of reactive red (RR141) azo dye under ultraviolet (UV) light irradiation. Blank experiment was also separately carried out by irradiating the aqueous solution of the dye in absence of the photocatalyst. The initial concentration of the dye was fixed at 10 mgL-1. About 50 mg of ZnO photocatalyst was dispersed in 200 mL dye solution. The sample was collected at a regular time interval during the irradiation and then was analyzed after centrifugation. The concentration of the dye was determined by monitoring the absorbance at its maximum wavelength (λₘₐₓ) of 544 nm using UV-vis spectroscopic analysis technique. The sources of Zn and O played an important role on photocatalytic performance of the ZnO photocatalyst. ZnO nanoparticles which prepared by zinc acetate and oxalic acid at molar ratio of 1:1 showed high photocatalytic performance of about 97% toward photodegradation of reactive red azo dye (RR141) under UV light irradiation for only 60 min. This work demonstrates the promising potential of ZnO nanomaterials as photocatalysts for environmental remediation.Keywords: azo dye, chemical precipitation, photocatalytic, ZnO
Procedia PDF Downloads 144262 Ant-Tracking Attribute: A Model for Understanding Production Response
Authors: Prince Suka Neekia Momta, Rita Iheoma Achonyeulo
Abstract:
Ant Tracking seismic attribute applied over 4-seconds seismic volume revealed structural features triggered by clay diapirism, growth fault development, rapid deltaic sedimentation and intense drilling. The attribute was extracted on vertical seismic sections and time slices. Mega tectonic structures such as growth faults and clay diapirs are visible on vertical sections with obscured minor lineaments or fractures. Fractures are distinctively visible on time slices yielding recognizable patterns corroborating established geologic models. This model seismic attribute enabled the understanding of fluid flow characteristics and production responses. Three structural patterns recognized in the field include: major growth faults, minor faults or lineaments and network of fractures. Three growth faults mapped on seismic section form major deformation bands delimiting the area into three blocks or depocenters. The growth faults trend E-W, dip down-to-south in the basin direction, and cut across the study area. The faults initiating from about 2000ms extended up to 500ms, and tend to progress parallel and opposite to the growth direction of an upsurging diapiric structure. The diapiric structures form the major deformational bands originating from great depths (below 2000ms) and rising to about 1200ms where series of sedimentary layers onlapped and pinchout stratigraphically against the diapir. Several other secondary faults or lineaments that form parallel streaks to one another also accompanied the growth faults. The fracture networks have no particular trend but form a network surrounding the well area. Faults identified in the study area have potentials for structural hydrocarbon traps whereas the presence of fractures created a fractured-reservoir condition that enhanced rapid fluid flow especially water. High aquifer flow potential aided by possible fracture permeability resulted in rapid decline in oil rate. Through the application of Ant Tracking attribute, it is possible to obtain detailed interpretation of structures that can have direct influence on oil and gas production.Keywords: seismic, attributes, production, structural
Procedia PDF Downloads 74261 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.Keywords: fire prediction, drone, smoke toxicity, analyser, fire management
Procedia PDF Downloads 90260 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth
Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos
Abstract:
Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.Keywords: tissue engineering, PHBHV, stem cells, cellular attachment
Procedia PDF Downloads 211259 Evaluation of Reservoir Quality in Cretaceous Sandstone Complex, Western Flank of Anambra Basin, Southern Nigeria
Authors: Bayole Omoniyi
Abstract:
This study demonstrates the value of outcrops as analogues for evaluating reservoir quality of sandbody in a typical high-sinuosity fluvial system. The study utilized data acquired from selected outcrops in the Campanian-Maastrichtian siliciclastic succession of the western flank of Anambra Basin, southern Nigeria. Textural properties derived from outcrop samples were correlated and compared with porosity and permeability using established standard charts. Porosity was estimated from thin sections of selected samples to reduce uncertainty in the estimates. Following facies classification, 14 distinct facies were grouped into three facies associations (FA1-FA3) and were subsequently modeled as discrete properties in a block-centered Cartesian grid on a scale that captures geometry of principal sandbodies. Porosity and permeability estimated from charts were populated in the grid using comparable geostatistical techniques that reflect their spatial distribution. The resultant models were conditioned to facies property to honour available data. The results indicate a strong control of geometrical parameters on facies distribution, lateral continuity and connectivity with resultant effect on porosity and permeability distribution. Sand-prone FA1 and FA2 display reservoir quality that varies internally from channel axis to margin in each succession. Furthermore, isolated stack pattern of sandbodies reduces static connectivity and thus, increases risk of poor communication between reservoir-quality sandbodies. FA3 is non-reservoir because it is mud-prone. In conclusion, the risk of poor communication between sandbodies may be effectively accentuated in reservoirs that have similar architecture because of thick lateral accretion deposits, usually mudstone, that tend to disconnect good-quality point-bar sandbodies. In such reservoirs, mudstone may act as a barrier to impede flow vertically from one sandbody to another and laterally at the margins of each channel-fill succession in the system. The development plan, therefore, must be designed to effectively mitigate these risks and the risk of stratigraphic compartmentalization for maximum hydrocarbon recovery.Keywords: analogues, architecture, connectivity, fluvial
Procedia PDF Downloads 27258 Solubility and Dissolution Enhancement of Poorly Soluble Drugs Using Biosericin
Authors: Namdeo Jadhav, Nitin Salunkhe
Abstract:
Currently, sericin is being treated as waste of sericulture industry, especially at reeling process. Looking at prospective physicochemical properties, an attempt has been made to explore pharmaceutical applications of sericin waste in fabrication of medicated solid dispersions. Solid dispersions (SDs) of poorly soluble drugs (Lornoxicam, Meloxicam & Felodipine) were prepared by spray drying, solvent evaporation, ball milling and physical kneading in mass ratio of drug: sericin (1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 and 1:3 w/w) and were investigated by solubility, ATR-FTIR, XRD and DSC, micromeritics and tablettability, surface morphology and in-vitro dissolution. It has been observed that sericin improves solubility of drugs by 8 to 10 times compared to pure drugs. The presence of hydrogen bonding between drugs and sericin was confirmed from the ATR-FTIR spectra. Amongst these methods, spray dried (1:2 w/w) SDs showed fully amorphous state representing molecularly distributed drug as confirmed from XRD and DSC study. Spray dried meloxicam SDs showed better compressibility and compactibility. The microphotograph of spray dried batches of lornoxicam (SDLX) and meloxicam SDs (SDMX) showed bowl shaped, and bowl plus spherical particles respectively, while spray dried felodipine SDs (SDFL) showed spherical shape. The SDLX, SDMX and SDFL (1:2 w/w) displayed better dissolution performance than other methods. Conclusively, hydrophilic matrix of sericin can be used to deliver poor water soluble drugs and its aerodynamic shape may show a great potential for various drug deliveries. If established as pharmaceutical excipient, sericin holds a potential to revolutionise economics of pharmaceutical industry, and sericulture farming, especially of Asian countries.Keywords: biosericin, poorly soluble drugs, solid dispersion, solubility and dissolution improvement
Procedia PDF Downloads 256257 Full Fat Soybean Meal as a Substitute for Soybean Meal in Broiler Rations
Authors: R. M. K. S. Chandana, A. P. D. G. Pathirana, N. Priyankarage, W. A. D. Nayananjalie, S. S. P. Silva
Abstract:
Full fat soybean meal (FFSBM) has been used in many parts of the world together with solvent-extracted soybean meal (SBM) in livestock feeds. Although some local FFSBM is available, their use has not been assessed experimentally. This study was carried out to evaluate the use of local extruded FFSBM in broiler rations. Four treatment diets were formulated by incorporating locally produced FFSBM (0, 10, 20, and 30%) as a replacement for soybean meal (SBM) in a two-phase (starter and finisher) feeding program. Two hundred Hubbard F 15 day old broiler chicks were randomly assigned into four treatments with five replicates per each. Bodyweight gain (BWG), feed intakes (FI), and feed conversion ratio (FCR) were calculated for a period of 42 days. Nutrient utilization in the form of dry matter (DM), energy, nitrogen, and fat retention were estimated by the total collection method in three weeks old broilers. At the end of the experiment, carcass weight was measured, and the dressing percentage was calculated. Data were analyzed using one way analysis of variance (ANOVA) in SAS. There was no significant effect of FFSBM on feed intakes of chicks fed different diets (p > 0.05). Birds fed the control diet, and FF10 (10% FFSBM diet) gained significantly more than that of birds fed FF20 or FF30 diets (p > 0.05). In the finisher period, control birds gained more than all the other treatment birds. FCR was poorer in bird fed higher levels of FFSBM compared to the control or FF10 birds during their early life, but that was not evident in the latter part of the experiment. Treatments did not alter (p > 0.05) the retention of DM and nitrogen, but energy utilization was lowest (p < 0.05) in birds fed with 0% FFSBM, and the highest fat digestibility was observed in birds fed with 30% FFSBM diets. Thus, it can be concluded that FFSBM can be used as a substitute for SBM in broiler rations and could be incorporated up to 10% of the diet safely with no adverse effects on broiler performances.Keywords: body weight, broiler, digestibility, full fat soybean meal, soybean meal
Procedia PDF Downloads 150256 Deproteinization of Moroccan Sardine (Sardina pilchardus) Scales: A Pilot-Scale Study
Authors: F. Bellali, M. Kharroubi, Y. Rady, N. Bourhim
Abstract:
In Morocco, fish processing industry is an important source income for a large amount of by-products including skins, bones, heads, guts, and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Sardina plichardus scales from resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic, and biomedical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. And the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The advancement from lab scale to pilot scale is a critical stage in the technological development. In this study, the optimal condition for the deproteinization which was validated at laboratory scale was employed in the pilot scale procedure. The deproteinization of fish scale was then demonstrated on a pilot scale (2Kg scales, 20l NaOH), resulting in protein content (0,2mg/ml) and hydroxyproline content (2,11mg/l). These results indicated that the pilot-scale showed similar performances to those of lab-scale one.Keywords: deproteinization, pilot scale, scale, sardine pilchardus
Procedia PDF Downloads 447255 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor
Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles
Procedia PDF Downloads 317254 In vitro Assessment of Bioactive Properties and Dose-Dependent Antioxidant Activities of Commercial Grape Cultivars in Taiwan
Authors: Kandi Sridhar, Charles Albert Linton
Abstract:
Grapes are excellent sources of bioactive compounds, which have been suggested to be responsible for lowering the risk of chronic diseases. Fresh and freeze-dried extracts of Kyoho and Jubilee, commercial grape varieties available in Taiwan and attractive for their quality berries, were investigated for their total phenolics and total flavonoids contents and related dose-dependent antioxidants properties using various in vitro assays. The efficiency of the extraction yield ranged from 7.10 % to 25.53 % (w/w), depending on solvent used. Fresh samples of Kyoho and Jubilee exhibited total polyphenolic contents (351.56 ± 23.08 and 328.67 ± 16.54 µg GAE/mL, respectively), whereas Kyoho freeze-dried methanol: water extracts contains the good levels of total flavonoids (4767.82 ± 22.20 µg QE/mL). Kyoho and Jubilee freeze-dried extracts exhibited the highest total flavonoid contents. There was a weak correlation between total phenolic and flavonoid assays (r= -0.05, R2 = 0.02, p > 0.05). Kyoho fresh and freeze-dried samples showed the DPPH (11.51 – 77.82 %), superoxide scavenging activity (33.61 – 81.95 %), and total antioxidant inhibition (92.01 – 99.28 %), respectively. Total flavonoids were statistically correlated with EC50 DPPH scavenging radicals (r =0.91, p < 0.01), EC50 nitric oxide (r = 0.25, p > 0.05), and EC50 lipid peroxidation radicals (r = 0.38, p > 0.05). These results suggested that the two commercial grape cultivars in Taiwan could be used as a good source of natural antioxidants. Thus, consumption of grapes as a source antioxidant might lower the risk of chronic diseases. Moreover, future studies will investigate and develop phenolic acid profile for the cultivars in Taiwan.Keywords: antioxidants, EC50 radical scavenging activity, grape cultivars, total phenolics
Procedia PDF Downloads 180253 Compost Bioremediation of Oil Refinery Sludge by Using Different Manures in a Laboratory Condition
Authors: O. Ubani, H. I. Atagana, M. S. Thantsha
Abstract:
This study was conducted to measure the reduction in polycyclic aromatic hydrocarbons (PAHs) content in oil sludge by co-composting the sludge with pig, cow, horse and poultry manures under laboratory conditions. Four kilograms of soil spiked with 800 g of oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil:manure and wood-chips in a ratio of 2:1 (w/v) spiked soil:wood-chips. Control was set up similar as the one above but without manure. Mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Bacteria capable of utilizing PAHs were isolated, purified and characterized by molecular techniques using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), amplification of the 16S rDNA gene using the specific primers (16S-P1 PCR and 16S-P2 PCR) and the amplicons were sequenced. Extent of reduction of PAHs was measured using automated soxhlet extractor with dichloromethane as the extraction solvent coupled with gas chromatography/mass spectrometry (GC/MS). Temperature did not exceed 27.5O°C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78 µg/dwt/day. Microbial growth and activities were enhanced. Bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Results from PAH measurements showed reduction between 77 and 99%. The results from the control experiments may be because it was invaded by fungi. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs. Interestingly, all bacteria isolated and identified in this study were present in all treatments, including the control.Keywords: bioremediation, co-composting, oil refinery sludge, PAHs, bacteria spp, animal manures, molecular techniques
Procedia PDF Downloads 476252 Lignin Pyrolysis to Value-Added Chemicals: A Mechanistic Approach
Authors: Binod Shrestha, Sandrine Hoppe, Thierry Ghislain, Phillipe Marchal, Nicolas Brosse, Anthony Dufour
Abstract:
The thermochemical conversion of lignin has received an increasing interest in the frame of different biorefinery concepts for the production of chemicals or energy. It is needed to better understand the physical and chemical conversion of lignin for feeder and reactor designs. In-situ rheology reveals the viscoelastic behaviour of lignin upon thermal conversion. The softening, re-solidification (char formation), swelling and shrinking behaviours are quantified during pyrolysis in real-time [1]. The in-situ rheology of an alkali lignin (Protobind 1000) was conducted in high torque controlled strain rheometer from 35°C to 400°C with a heating rate of 5°C.min-1. The swelling, through glass phase transition overlapped with depolymerization, and solidification (crosslinking and “char” formation) are two main phenomena observed during lignin pyrolysis. The onset of temperatures for softening and solidification for this lignin has been found to be 141°C and 248°C respectively. An ex-situ characterization of lignin/char residues obtained at different temperatures after quenching in the rheometer gives a clear understanding of the pathway of lignin degradation. The lignin residues were sampled from the mid-point temperatures of the softening range and solidification range to study the chemical transformations undergoing. Elemental analysis, FTIR and solid state NMR were conducted after quenching the solid residues (lignin/char). The quenched solid was also extracted by suitable solvent and followed by acetylation and GPC-UV analysis. The combination of 13C NMR and GPC-UV reveals the depolymerization followed by crosslinking of lignin/char. NMR and FTIR provide the evolution of functional moieties upon temperature. Physical and chemical mechanisms occurring during lignin pyrolysis are accounted in this study. Thanks to all these complementary methods.Keywords: pyrolysis, bio-chemicals, valorization, mechanism, softening, solidification, cross linking, rheology, spectroscopic methods
Procedia PDF Downloads 425251 Seasonal Variations, Environmental Parameters, and Standing Crop Assessment of Benthic Foraminifera in Western Bahrain, Arabian Gulf
Authors: Muhammad Arslan, Michael A. Kaminski, Bassam S. Tawabini, Fabrizio Frontalini
Abstract:
We conducted a survey of living benthic foraminifera in a relatively unpolluted site of Bahrain in the Arabian Gulf, with the aim of determining the seasonal variability in their populations, as well as various environmental parameters that affect their distribution. The maximum standing crop was observed during winter, with highest population of rotaliids, followed by a peak in miliolids. The highest population is attributed to an increasing number juveniles observed along the depth transect. A strong correlation between sediment grain size and the foraminiferal population indicates that juveniles were most abundant on coarser sandy substrate and less abundant on fine substrate. In spring, the total living population decreased, and lowest values are observed in the summer. The population started to increase again in the autumn with highest juveniles/adult ratios. Moreover, results of relative abundance and species consistency show that Ammonia is found to be consistent from the shallowest to the deepest station, whereas miliolids start appearing in the deeper stations. The average numbers of Peneroplis and Elphidium also increases along the depth transect. Environmental characterization reveals that although the site is subjected to eutrophication caused by nitrates and sulfates, pollution caused by hydrocarbons and heavy metals is not significant. The assessment of 63 heavy metals showed that none of the metals had concentrations that exceed internationally accepted norms [the devised level of Effect Range-Low], with the exception of strontium. The lack of a significant environmental effect of heavy metals is confirmed by a Foraminiferal Deformities Index value of less than 2%. Likewise, no hydrocarbon contamination was detected in the water or sediment samples. Lastly, observations of cytoplasmic streaming and pseudopodial activity in Petri dishes suggest that the foraminiferal population is not stressed. We conclude that the site in Bahrain is not yet adversely affected by human development, and therefore can provide baseline information for future comparison and assessment of foraminiferal assemblages in contaminated zones of the Arabian Gulf.Keywords: Arabian Gulf, benthic foraminifera, standing crop, Western Bahrain
Procedia PDF Downloads 644250 Marzuq Basin Palaeozoic Petroleum System
Authors: M. Dieb, T. Hodairi
Abstract:
In the Southwest Libya area, the Palaeozoic deposits are an important petroleum system, with Silurian shale considered a hydrocarbon source rock and Cambro-Ordovician recognized as a good reservoir. The Palaeozoic petroleum system has the greatest potential for conventional and is thought to represent the significant prospect of unconventional petroleum resources in Southwest Libya. Until now, the lateral and vertical heterogeneity of the source rock was not well evaluated, and oil-source correlation is still a matter of debate. One source rock, which is considered the main source potential in Marzuq Basin, was investigated for its uranium contents using gamma-ray logs, rock-eval pyrolysis, and organic petrography for their bulk kinetic characteristics to determine the petroleum potential qualitatively and quantitatively. Thirty source rock samples and fifteen oil samples from the Tannezzuft source rock were analyzed by Rock-Eval Pyrolysis, microscopely investigation, GC, and GC-MS to detect acyclic isoprenoids and aliphatic, aromatic, and NSO biomarkers. Geochemistry tools were applied to screen source and age-significant biomarkers to high-spot genetic relationships. A grating heterogeneity exists among source rock zones from different levels of depth with varying uranium contents according to gamma-ray logs, rock-eval pyrolysis results, and kinetic features. The uranium-rich Tannezzuft Formations (Hot Shales) produce oils and oil-to-gas hydrocarbons based on their richness, kerogen type, and thermal maturity. Biomarker results such as C₂₇, C₂₈, and C₂₉ steranes concentrations and C₂₄ tetracyclic terpane/C₂₉ tricyclic terpane ratios, with sterane and hopane ratios, are considered the most promising biomarker information in differentiating within the Silurian Shale Tannezzuft Formation and in correlating with its expelled oils. The Tannezzuft Hot Shale is considered the main source rock for oil and gas accumulations in the Cambro-Ordovician reservoirs within the Marzuq Basin. Migration of the generated and expelled oil and gas from the Tannezzuft source rock to the reservoirs of the Cambro-Ordovician petroleum system was interpreted to have occurred along vertical and lateral pathways along the faults in the Palaeozoic Strata. The Upper Tannezzuft Formation (cold shale) is considered the primary seal in the Marzuq Basin.Keywords: heterogeneity, hot shale, kerogen, Silurian, uranium
Procedia PDF Downloads 63249 Navigating Creditors' Interests in the Context of Business Rescue
Authors: Hermanus J. Moolman
Abstract:
The COVID-19 pandemic had a severe impact on the society and companies in South Africa. This raises questions about the position of creditors of companies facing financial distress and the actions that directors should take to cater to the interests of creditors. The extent to which directors owe their duties and consideration to creditors has been the subject of debate. The directors of a solvent company owe their duties to the company in favour of its shareholders. When the company becomes insolvent, creditors are the beneficiaries of the directors’ duties. However, the intermittent phase between solvency and insolvency, otherwise referred to as the realm of insolvency, is not accounted for. The purpose of this paper is to determine whether South African company law appropriately addresses the duties that directors owe to creditors and the extent of consideration given to creditors’ interests when the company is in the realm of insolvency and has started business rescue proceedings. A comparative study on South Africa, the United States of America, the United Kingdom and international instruments was employed to achieve the purpose statement. In the United States of America and the United Kingdom, the focus shifts from shareholders to the best interests of creditors when business recue proceedings commence. Such an approach is not aligned with the purpose of the Companies Act of 2008 that calls for a balance of interests of all persons affected by a company’s financial distress and will not be suitable for the South African context. Business rescue in South Africa is relatively new when compared to the practices of the United States of America and the United Kingdom, and the entrepreneurial landscape in South Africa is still evolving. The interests of creditors are not the only interests at risk when a company is financially distressed. It is recommended that an enlightened creditor value approach is adopted for South Africa, where the interests of creditors, albeit paramount, are balanced with those of other stakeholders. This approach optimises a gradual shift in the duties of directors from shareholders to creditors, without disregarding the interests of shareholders.Keywords: business rescue, shareholders, creditors, financial distress, balance of interests, alternative remedies, company law
Procedia PDF Downloads 45