Search results for: huge thick gravel layer
3280 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.Keywords: heat transfer, nanofluid, shrinking surface, stability analysis, three-dimensional flow
Procedia PDF Downloads 2873279 Investigation of Lead and Zinc Oxide Deposits Using Geological and Geophysical Techniques at Oshiri Province in Onicha Local Government Area of Ebonyi State Located Within Southeastern Part of Nigeria, West Africa
Authors: Amaechi O. Azi, Uche D. Aluge, Lim H. San, Godwin A. Agbo
Abstract:
This paper is centered on the investigation of mineral deposits in selected locations in Oshiri province in Ebonyi State. Mineral deposits contribute immensely to the economic growth of a society. In researching lead and zinc oxide-bearing sites at Oshiri, geological and geophysical research technique was employed. Petrozenith, Earth Resistivity Meter, and Schlumberger setup were selected to examine the electrical characteristics of the subsurface. To determine the apparent resistivity of the subsurface, five soundings were taken, and the field data were processed using WinResist software. The mudstone, lead-shale, shale-granite, and lateritic topsoil were the four geoelectric strata that were found. The third layer, which corresponds to the shale-lead lithology, has a resistivity value between 211.9 m to 807.7 m at a depth of 25 m. Due to its resistivity levels and geological trend, this layer makes an excellent signature for lead-zinc occurrence. This zone is expected to house deposits of lead and zinc oxide in commercial quantity.Keywords: Schlumberger, current, resistivity, lithology
Procedia PDF Downloads 763278 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams
Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis
Abstract:
This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.Keywords: earth dams, flow, moisture content, slope stability
Procedia PDF Downloads 1893277 Application of Rapid Prototyping to Create Additive Prototype Using Computer System
Authors: Meftah O. Bashir, Fatma A. Karkory
Abstract:
Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.Keywords: rapid prototyping, wax, manufacturing processes, shape
Procedia PDF Downloads 4643276 Innovative Waste Management Practices in Remote Areas
Authors: Dolores Hidalgo, Jesús M. Martín-Marroquín, Francisco Corona
Abstract:
Municipal waste consist of a variety of items that are everyday discarded by the population. They are usually collected by municipalities and include waste generated by households, commercial activities (local shops) and public buildings. The composition of municipal waste varies greatly from place to place, being mostly related to levels and patterns of consumption, rates of urbanization, lifestyles, and local or national waste management practices. Each year, a huge amount of resources is consumed in the EU, and according to that, also a huge amount of waste is produced. The environmental problems derived from the management and processing of these waste streams are well known, and include impacts on land, water and air. The situation in remote areas is even worst. Difficult access when climatic conditions are adverse, remoteness of centralized municipal treatment systems or dispersion of the population, are all factors that make remote areas a real municipal waste treatment challenge. Furthermore, the scope of the problem increases significantly because the total lack of awareness of the existing risks in this area together with the poor implementation of advanced culture on waste minimization and recycling responsibly. The aim of this work is to analyze the existing situation in remote areas in reference to the production of municipal waste and evaluate the efficiency of different management alternatives. Ideas for improving waste management in remote areas include, for example: the implementation of self-management systems for the organic fraction; establish door-to-door collection models; promote small-scale treatment facilities or adjust the rates of waste generation thereof.Keywords: door to door collection, islands, isolated areas, municipal waste, remote areas, rural communities
Procedia PDF Downloads 2603275 Correlation between Defect Suppression and Biosensing Capability of Hydrothermally Grown ZnO Nanorods
Authors: Mayoorika Shukla, Pramila Jakhar, Tejendra Dixit, I. A. Palani, Vipul Singh
Abstract:
Biosensors are analytical devices with wide range of applications in biological, chemical, environmental and clinical analysis. It comprises of bio-recognition layer which has biomolecules (enzymes, antibodies, DNA, etc.) immobilized over it for detection of analyte and transducer which converts the biological signal into the electrical signal. The performance of biosensor primarily the depends on the bio-recognition layer and therefore it has to be chosen wisely. In this regard, nanostructures of metal oxides such as ZnO, SnO2, V2O5, and TiO2, etc. have been explored extensively as bio-recognition layer. Recently, ZnO has the attracted attention of researchers due to its unique properties like high iso-electric point, biocompatibility, stability, high electron mobility and high electron binding energy, etc. Although there have been many reports on usage of ZnO as bio-recognition layer but to the authors’ knowledge, none has ever observed correlation between optical properties like defect suppression and biosensing capability of the sensor. Here, ZnO nanorods (ZNR) have been synthesized by a low cost, simple and low-temperature hydrothermal growth process, over Platinum (Pt) coated glass substrate. The ZNR have been synthesized in two steps viz. initially a seed layer was coated over substrate (Pt coated glass) followed by immersion of it into nutrient solution of Zinc nitrate and Hexamethylenetetramine (HMTA) with in situ addition of KMnO4. The addition of KMnO4 was observed to have a profound effect over the growth rate anisotropy of ZnO nanostructures. Clustered and powdery growth of ZnO was observed without addition of KMnO4, although by addition of it during the growth, uniform and crystalline ZNR were found to be grown over the substrate. Moreover, the same has resulted in suppression of defects as observed by Normalized Photoluminescence (PL) spectra since KMnO4 is a strong oxidizing agent which provides an oxygen rich growth environment. Further, to explore the correlation between defect suppression and biosensing capability of the ZNR Glucose oxidase (Gox) was immobilized over it, using physical adsorption technique followed by drop casting of nafion. Here the main objective of the work was to analyze effect of defect suppression over biosensing capability, and therefore Gox has been chosen as model enzyme, and electrochemical amperometric glucose detection was performed. The incorporation of KMnO4 during growth has resulted in variation of optical and charge transfer properties of ZNR which in turn were observed to have deep impact on biosensor figure of merits. The sensitivity of biosensor was found to increase by 12-18 times, due to variations introduced by addition of KMnO4 during growth. The amperometric detection of glucose in continuously stirred buffer solution was performed. Interestingly, defect suppression has been observed to contribute towards the improvement of biosensor performance. The detailed mechanism of growth of ZNR along with the overall influence of defect suppression on the sensing capabilities of the resulting enzymatic electrochemical biosensor and different figure of merits of the biosensor (Glass/Pt/ZNR/Gox/Nafion) will be discussed during the conference.Keywords: biosensors, defects, KMnO4, ZnO nanorods
Procedia PDF Downloads 2823274 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly
Procedia PDF Downloads 2293273 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir
Authors: Fengxia Li, Lufeng Zhang, Haibo Wang
Abstract:
The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties
Procedia PDF Downloads 753272 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam
Authors: Huu Hue Van
Abstract:
The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir
Procedia PDF Downloads 853271 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks
Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain
Abstract:
As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)
Procedia PDF Downloads 1923270 A Unified Approach for Naval Telecommunication Architectures
Authors: Y. Lacroix, J.-F. Malbranque
Abstract:
We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.Keywords: equilibrium beach profile, eastern tombolo of Giens, potential function, erosion
Procedia PDF Downloads 2913269 Influence of Electrode Assembly on Catalytic Activation and Deactivation of a PT Film Immobilized H+ Conducting Solid Electrolyte in Electrocatalytic Reduction Reactions
Authors: M. A. Hasnat, M. Amirul Islam, M. A. Rashed, Jamil. Safwan, M. Mahabubul Alam
Abstract:
Symmetric (Cu–Pt|Nafion|Pt–Cu) and asymmetric(Pt|Nafion|Pt–Cu) assemblies were fabricated to study the nitrate reduction processes at the cathode. The electrocatalytic nitrate reduction reactions were performed in these assemblies in order to investigate the prerequisite for the enhanced catalytic activity, electrochemical cell durability as well as preferable product selectivity resulting from the reduction of nitrate at the cathode. It has been observed for the symmetric assembly that Cu particles were oxidized on the anode surface under an applied potential and the resulting copper ions migrated to the cathode surface through the Nafion membrane, which deposited as copper oxide on the cathode surface. The formation of this copper oxide covering layer on the Pt–Cu cathode surface is attributed as the reason for the deactivation of the cathode that governed the reduced nitrate reduction along with increasing nitrite selectivity. These problems were addressed and resolved with the asymmetric design of the electrocatalytic reactor, where enhanced hydrogen evolution activates the surface by eroding the CuO over layer as well as speeding up the slow rate determining hydrogenation reactions.Keywords: membrane, nitrate, electrocatalysis, voltammetry, electrolysis
Procedia PDF Downloads 2683268 A Comparison between the Results of Hormuz Strait Wave Simulations Using WAVEWATCH-III and MIKE21-SW and Satellite Altimetry Observations
Authors: Fatemeh Sadat Sharifi
Abstract:
In the present study, the capabilities of WAVEWATCH-III and MIKE21-SW for predicting the characteristics of wind waves in Hormuz Strait are evaluated. The GFS wind data (Global Forecast System) were derived. The bathymetry of gride with 2 arc-minute resolution, also were extracted from the ETOPO1. WAVEWATCH-III findings illustrate more valid prediction of wave features comparing to the MIKE-21 SW in deep water. Apparently, in shallow area, the MIKE-21 provides more uniformities with altimetry measurements. This may be due to the merits of the unstructured grid which are used in MIKE-21, leading to better representations of the coastal area. The findings on the direction of waves generated by wind in the modeling area indicate that in some regions, despite the increase in wind speed, significant wave height stays nearly unchanged. This is fundamental because of swift changes in wind track over the Strait of Hormuz. After discussing wind-induced waves in the region, the impact of instability of the surface layer on wave growth has been considered. For this purpose, the average monthly mean air temperature has been used. The results in cold months, when the surface layer is unstable, indicates an acceptable increase in the accuracy of prediction of the indicator wave height.Keywords: numerical modeling, WAVEWATCH-III, Strait of Hormuz, MIKE21-SW
Procedia PDF Downloads 2073267 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA
Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita
Abstract:
This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis
Procedia PDF Downloads 4343266 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel
Authors: Richard E. Miller
Abstract:
12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.Keywords: dissimilar materials, friction stir, welding, materials science
Procedia PDF Downloads 2693265 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid
Authors: Shilpesh R. Rajpurohit, Harshit K. Dave
Abstract:
Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.Keywords: 3D Printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength
Procedia PDF Downloads 1973264 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC
Authors: Yu-Zhou Zheng, Wen-Wei Wang
Abstract:
In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening
Procedia PDF Downloads 3473263 Numerical Investigation of Geotextile Application in Clay Reinforcement in ABAQUS Software
Authors: Seyed Abolhasan Naeini, Eisa Aliagahei
Abstract:
Today, the use of geosynthetic materials in geotechnical activities is increasing significantly. One of the main uses of these materials is to increase the compressive strength of clay reinforced by geotextile layers. In the present study, the effect of clay reinforcement by geotextile layers in increasing the compressive strength of clay has been investigated using modeling in ABAQUS 6.11.3 software. For this purpose, the modified Drager Prager model has been chosen to simulate the stress-strain behavior of soil layers and the linear elastic model for the geotextile layer. Unreinforced samples and reinforced samples are modeled by geotextile layers (1, 2 and 3 geotextile layers) by software. In order to validate the results, an article in the same field was used and the numerical modeling results were calibrated with the laboratory results. Based on the obtained results, the software has a suitable capability for modeling and the results of the numerical model overlap with the laboratory results to a very acceptable extent, by increasing the number of geotextile layers, the error between the results of the laboratory sample and the software model increases. The highest amount of error is related to the sample reinforced with three layers of geotextile and is 7.3%.Keywords: Abaqus, cap model, clay, geotextile layer, reinforced soil
Procedia PDF Downloads 883262 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell
Authors: F. Djaafar, B. Hadri, G. Bachir
Abstract:
This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.Keywords: heterojunction, modeling, simulation, thin film, Tcad Silvaco
Procedia PDF Downloads 3693261 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate
Authors: Shingo Murakami, Shinichi Enoki
Abstract:
In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis
Procedia PDF Downloads 2663260 Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study
Authors: Tsu-Hsu Yen
Abstract:
The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks.Keywords: gas aggregation, interfacial nanobubble, molecular dynamics simulation, wettability
Procedia PDF Downloads 1153259 Nanostructured Oxide Layer by Anodization on Austenitic Stainless Steels: Structural and Corrosion Insights
Authors: Surya Prakash Gajagouni, Akram Alfantazi, Imad Barsoum
Abstract:
Austenitic stainless steels are widely recognized for their exceptional corrosion resistance and mechanical properties, rendering them indispensable materials across various industries from construction to biomedical applications. However, in chloride and high temperature atmosphere it to further enhance their surface properties, anodization has emerged as a promising surface treatment technique. Anodization modifies the surface of stainless steels by creating a protective oxide layer, improving corrosion resistance and imparting additional functional characteristics. This paper explores the structural and corrosion characteristics of anodized austenitic stainless steels (AISI 304) using a two-step anodic technique. We utilized a perchloric acid-based electrolyte followed by an ammonium fluoride-based electrolyte. This sequential approach aimed to cultivate deeper and intricately self-ordered nanopore oxide arrays on a substrate made of 304 stainless steel. Electron Microscopic (SEM and TEM) images revealed nanoporous layered structures with increased length and crack development correlating with higher voltage and anodization time. Surface composition and chemical oxidation state of surface-treated SS were determined using X-ray photoelectron spectroscopy (XPS) techniques, revealing a surface layer rich in Ni and suppressed Cr, resulting in a thin film composed of Ni and Fe oxide compared to untreated SS. Electrochemical studies demonstrated enhanced corrosion resistance in a strong alkaline medium compared to untreated SS. Understanding the intricate relationship between the structural features of anodized stainless steels and their corrosion resistance is crucial for optimizing the performance of these materials in diverse applications. This study aims to contribute to the advancement of surface engineering strategies for enhancing the durability and functionality of austenitic stainless steels in aggressive environments.Keywords: austenitic stainless steel, anodization, nanoporous oxides, marine corrosion
Procedia PDF Downloads 343258 Isolation of Different Brachyspira spp. from Laying Hens in North-East of Iran
Authors: Ahdieh Alijani, Mina Zarrabi, Abdollah Jamshidi, Jamshid Razmyar
Abstract:
Avian intestinal spirochetosis (AIS) is caused by spiral-shaped Gram-negative Brachyspira spp. in poultry and is known as a cause of diarrhea, low egg production and increased the occurrence of dirty eggs in layer hens. In this study the presence of some Brachyspira spp. was investigated in laying hens. A total of 100 cloacal swab samples were individually collected from 20 laying hen flocks showing fecal egg staining in northeastern Iran. By culture and morphologic examination, 41 samples (41%) from 20 flocks were positive but by using genus–specific PCR only 37 (37%) samples were confirmed as Brachyspira spp. Using species-specific primers, single colonization was identified in 18 samples associated with B. pilosicoli (48.6%) while single colonization with B. intermedia was found in only two samples (5.4%). Simultaneous colonization by B. intermedia and B. murdochii was detected in 3 samples (8.1%). B. pilosicoli was the most prevalent species in concurrent colonization in 11 cases (29.7%). Finally, co-colonization by B. intermedia and B. innocens was identified in 3 samples (8.1%). The results of this study show the colonization of different species of Brachyspira with the dominance of B. pilosicoli in layer hens. In simultaneous colonization with pathogenic and non-pathogenic species the symptoms of intestinal spirochetosis were reduced, suggesting a competitive role in preventing and reducing the colonization of pathogenic species.Keywords: intestinal spirochetosis, Brachyspira, laying hen, PCR
Procedia PDF Downloads 5433257 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis
Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez
Abstract:
Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel
Procedia PDF Downloads 903256 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink
Authors: Bandari Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreementKeywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet
Procedia PDF Downloads 2753255 Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method
Authors: Kim Quy Le, Duan Fei, Jia Wei Chew, Jun Zeng, Maria Fabiola Leyva
Abstract:
In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen.Keywords: 3D printing, multi-jet fusion, molded fiber screen, discrete element method
Procedia PDF Downloads 1143254 MHD Stagnation-Point Flow over a Plate
Authors: H. Niranjan, S. Sivasankaran
Abstract:
Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point
Procedia PDF Downloads 3023253 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design
Authors: Vahid Nademi
Abstract:
In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.Keywords: blood glucose monitoring, insulin pump, predictive control, optimization
Procedia PDF Downloads 1363252 The Role of Artificial Intelligence in Criminal Procedure
Authors: Herke Csongor
Abstract:
The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment
Procedia PDF Downloads 383251 The Onset of Ironing during Casing Expansion
Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers
Abstract:
Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.Keywords: casing expansion, cement, formation, metal forming, plasticity, well design
Procedia PDF Downloads 180