Search results for: features extraction
4716 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation
Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino
Abstract:
This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.Keywords: corn stalk, natural geotextile, retting, soil erosion
Procedia PDF Downloads 2994715 Using Mining Methods of WEKA to Predict Quran Verb Tense and Aspect in Translations from Arabic to English: Experimental Results and Analysis
Authors: Jawharah Alasmari
Abstract:
In verb inflection, tense marks past/present/future action, and aspect marks progressive/continues perfect/completed actions. This usage and meaning of tense and aspect differ in Arabic and English. In this research, we applied data mining methods to test the predictive function of candidate features by using our dataset of Arabic verbs in-context, and their 7 translations. Weka machine learning classifiers is used in this experiment in order to examine the key features that can be used to provide guidance to enable a translator’s appropriate English translation of the Arabic verb tense and aspect.Keywords: Arabic verb, English translations, mining methods, Weka software
Procedia PDF Downloads 2724714 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria
Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur
Abstract:
The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria
Procedia PDF Downloads 3774713 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analysed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).Keywords: power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power
Procedia PDF Downloads 4744712 The Forensic Handwriting Analysis of a Painter’s Signature: Claude Monet’s Case
Authors: Olivia Rybak-Karkosz
Abstract:
This paper's purpose was to present a case study on a questioned Claude Monet's signature forensic handwriting analysis. It is an example taken from the author’s experience as a court handwriting expert. A comparative study was conducted to determine whether the signature resembles similarities (and if so, to what measure) with the features representing the writing patterns and their natural variability typical for Claude Monet. It was conducted to check whether all writing features are within the writer's normal range of variation. The paper emphasizes the difficulties and challenges encountered by the forensic handwriting expert while analysing the questioned signature.Keywords: artist’s signatures, authenticity of an artwork, forensic handwriting analysis, graphic-comparative method
Procedia PDF Downloads 1144711 Medical Image Classification Using Legendre Multifractal Spectrum Features
Authors: R. Korchiyne, A. Sbihi, S. M. Farssi, R. Touahni, M. Tahiri Alaoui
Abstract:
Trabecular bone structure is important texture in the study of osteoporosis. Legendre multifractal spectrum can reflect the complex and self-similarity characteristic of structures. The main objective of this paper is to develop a new technique of medical image classification based on Legendre multifractal spectrum. Novel features have been developed from basic geometrical properties of this spectrum in a supervised image classification. The proposed method has been successfully used to classify medical images of bone trabeculations, and could be a useful supplement to the clinical observations for osteoporosis diagnosis. A comparative study with existing data reveals that the results of this approach are concordant.Keywords: multifractal analysis, medical image, osteoporosis, fractal dimension, Legendre spectrum, supervised classification
Procedia PDF Downloads 5144710 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients
Authors: B. Kabane, G. G. Redhi
Abstract:
An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.Keywords: separation, activity coefficients, methyltrioctylammonium chloride, ionic liquid, capacity
Procedia PDF Downloads 1434709 Application of Data Mining for Aquifer Environmental Assessment
Authors: Saman Javadi, Mehdi Hashemy, Mohahammad Mahmoodi
Abstract:
Vulnerability maps are employed as an important solution in order to handle entrance of pollution into the aquifers. The common way to provide vulnerability map is DRASTIC. Meanwhile, application of the method is not easy to apply for any aquifer due to choosing appropriate constant values of weights and ranks. In this study, a new approach using k-means clustering is applied to make vulnerability maps. Four features of depth to groundwater, hydraulic conductivity, recharge value and vadose zone were considered at the same time as features of clustering. Five regions are recognized out of the case study represent zones with different level of vulnerability. The finding results show that clustering provides a realistic vulnerability map so that, Pearson’s correlation coefficients between nitrate concentrations and clustering vulnerability is obtained 61%.Keywords: clustering, data mining, groundwater, vulnerability assessment
Procedia PDF Downloads 6034708 Impact of Organic Architecture in Building Design
Authors: Zainab Yahaya Suleiman
Abstract:
Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning.Keywords: organic architecture, fitness center, environment, natural resources, natural features, building design
Procedia PDF Downloads 4144707 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 3204706 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections
Authors: Anthony D. Rhodes, Manan Goel
Abstract:
We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.Keywords: computer vision, object segmentation, interactive segmentation, model compression
Procedia PDF Downloads 1204705 Optimizing Inanda Dam Using Water Resources Models
Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno
Abstract:
The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.Keywords: complex, water resources, planning, cost effective and management
Procedia PDF Downloads 5734704 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements
Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles
Abstract:
During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium
Procedia PDF Downloads 3094703 Optimization of Gold Adsorption from Aqua-Regia Gold Leachate Using Baggase Nanoparticles
Authors: Oluwasanmi Teniola, Abraham Adeleke, Ademola Ibitoye, Moshood Shitu
Abstract:
To establish an economical and efficient process for the recovery of gold metal from refractory gold ore obtained from Esperando axis of Osun state Nigeria, the adsorption of gold (III) from aqua reqia leached solution of the ore using bagasse nanoparticles has been studied under various experimental variables using batch technique. The extraction percentage of gold (III) on the prepared bagasse nanoparticles was determined from its distribution coefficients as a function of solution pH, contact time, adsorbent, adsorbate concentrations, and temperature. The rate of adsorption of gold (III) on the prepared bagasse nanoparticles is dependent on pH, metal concentration, amount of adsorbate, stirring rate, and temperature. The adsorption data obtained fit into the Langmuir and Freundlich equations. Three different temperatures were used to determine the thermodynamic parameters of the adsorption of gold (III) on bagasse nanoparticles. The heat of adsorption was measured to be a positive value ΔHo = +51.23kJ/mol, which serves as an indication that the adsorption of gold (III) on bagasse nanoparticles is endothermic. Also, the negative value of ΔGo = -0.6205 kJ/mol at 318K shows the spontaneity of the process. As the temperature was increased, the value of ΔGo becomes more negative, indicating that an increase in temperature favors the adsorption process. With the application of optimal adsorption variables, the adsorption capacity of gold was 0.78 mg/g of the adsorbent, out of which 0.70 mg of gold was desorbed with 0.1 % thiourea solution.Keywords: adsorption, bagasse, extraction, nanoparticles, recovery
Procedia PDF Downloads 1554702 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms
Authors: Prabhakar Sathujoda
Abstract:
Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.Keywords: Continuous Wavelet Transform, Flexible Coupling, Rotor System, Sub Critical Speed
Procedia PDF Downloads 1624701 A Comparison of South East Asian Face Emotion Classification based on Optimized Ellipse Data Using Clustering Technique
Authors: M. Karthigayan, M. Rizon, Sazali Yaacob, R. Nagarajan, M. Muthukumaran, Thinaharan Ramachandran, Sargunam Thirugnanam
Abstract:
In this paper, using a set of irregular and regular ellipse fitting equations using Genetic algorithm (GA) are applied to the lip and eye features to classify the human emotions. Two South East Asian (SEA) faces are considered in this work for the emotion classification. There are six emotions and one neutral are considered as the output. Each subject shows unique characteristic of the lip and eye features for various emotions. GA is adopted to optimize irregular ellipse characteristics of the lip and eye features in each emotion. That is, the top portion of lip configuration is a part of one ellipse and the bottom of different ellipse. Two ellipse based fitness equations are proposed for the lip configuration and relevant parameters that define the emotions are listed. The GA method has achieved reasonably successful classification of emotion. In some emotions classification, optimized data values of one emotion are messed or overlapped to other emotion ranges. In order to overcome the overlapping problem between the emotion optimized values and at the same time to improve the classification, a fuzzy clustering method (FCM) of approach has been implemented to offer better classification. The GA-FCM approach offers a reasonably good classification within the ranges of clusters and it had been proven by applying to two SEA subjects and have improved the classification rate.Keywords: ellipse fitness function, genetic algorithm, emotion recognition, fuzzy clustering
Procedia PDF Downloads 5474700 Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil
Authors: Stella O. Olubodun, George E. Eriyamremu
Abstract:
The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (Zea mays) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant.Keywords: availability, crude oil contamination, EDTA, maize, metals
Procedia PDF Downloads 2304699 Educating through Design: Eco-Architecture as a Form of Public Awareness
Authors: Carmela Cucuzzella, Jean-Pierre Chupin
Abstract:
Eco-architecture today is being assessed and judged increasingly on the basis of its environmental performance and its dedication to urgent stakes of sustainability. Architects have responded to environmental imperatives in novel ways since the 1960s. In the last two decades, however, different forms of eco-architecture practices have emerged that seem to be as dedicated to the issues of sustainability, as to their ability to 'communicate' their ecological features. The hypothesis is that some contemporary eco-architecture has been developing a characteristic 'explanatory discourse', of which it is possible to identify in buildings around the world. Some eco-architecture practices do not simply demonstrate their alignment with pressing ecological issues, rather, these buildings seem to be also driven by the urgent need to explain their ‘greenness’. The design aims specifically to teach visitors of the eco-qualities. These types of architectural practices are referred to in this paper as eco-didactic. The aim of this paper is to identify and assess this distinctive form of environmental architecture practice that aims to teach. These buildings constitute an entirely new form of design practice that places eco-messages squarely in the public realm. These eco-messages appear to have a variety of purposes: (i) to raise awareness of unsustainable quotidian habits, (ii) to become means of behavioral change, (iii) to publicly announce their responsibility through the designed eco-features, or (iv) to engage the patrons of the building into some form of sustainable interaction. To do this, a comprehensive review of Canadian eco-architecture is conducted since 1998. Their potential eco-didactic aspects are analysed through a lens of three vectors: (1) cognitive visitor experience: between the desire to inform and the poetics of form (are parts of the design dedicated to inform the visitors of the environmental aspects?); (2) formal architectural qualities: between the visibility and the invisibility of environmental features (are these eco-features clearly visible by the visitors?); and (3) communicative method for delivering eco-message: this transmission of knowledge is accomplished somewhere between consensus and dissensus as a method for disseminating the eco-message (do visitors question the eco-features or are they accepted by visitors as features that are environmental?). These architectural forms distinguish themselves in their crossing of disciplines, specifically, architecture, environmental design, and art. They also differ from other architectural practices in terms of how they aim to mobilize different publics within various urban landscapes The diversity of such buildings, from how and what they aim to communicate, to the audience they wish to engage, are all key parameters to better understand their means of knowledge transfer. Cases from the major cities across Canada are analysed, aiming to illustrate this increasing worldwide phenomenon.Keywords: eco-architecture, public awareness, community engagement, didacticism, communication
Procedia PDF Downloads 1264698 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques
Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas
Abstract:
This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.Keywords: hit song science, product life cycle, machine learning, radio
Procedia PDF Downloads 1564697 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 904696 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: false negative rate, intrusion detection system, machine learning methods, performance
Procedia PDF Downloads 1184695 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 2724694 Rational Design of Potent Compounds for Inhibiting Ca2+ -Dependent Calmodulin Kinase IIa, a Target of Alzheimer’s Disease
Authors: Son Nguyen, Thanh Van, Ly Le
Abstract:
Ca2+ - dependent calmodulin kinase IIa (CaMKIIa) has recently been found to associate with protein tau missorting and polymerization in Alzheimer’s Disease (AD). However, there has yet inhibitors targeting CaMKIIa to investigate the correlation between CaMKIIa activity and protein tau polymer formation. Combining virtual screening and our statistics in binding contribution scoring function (BCSF), we rationally identified potential compounds that bind to specific CaMKIIa active site and specificity-affinity distribution of the ligand within the active site. Using molecular dynamics simulation, we identified structural stability of CaMKIIa and potent inhibitors, and site-directed bonding, separating non-specific and specific molecular interaction features. Despite of variation in confirmation of simulation time, interactions of the potent inhibitors were found to be strongly associated with the unique chemical features extracted from molecular binding poses. In addition, competitive inhibitors within CaMKIIa showed an important molecular recognition pattern toward specific ligand features. Our approach combining virtual screening with BCSF may provide an universally applicable method for precise identification in the discovery of compounds.Keywords: Alzheimer’s disease, Ca 2+ -dependent calmodulin kinase IIa, protein tau, molecular docking
Procedia PDF Downloads 2744693 Influence of the Popular Literature on Consciousness of the Person
Authors: Alua Temirbolat, Sergei Kibalnik, Zhuldyz Essimova
Abstract:
The article is devoted to research of influence of the modern literature on the consciousness of the person. Tendencies and features of the progress of the historical-cultural and artistic process at the end of XX–the beginning of XXI centuries are considered. The object of the analysis is the popular literature which has found last decades greater popularity among readers of different generations. In the article, such genres, as melodramas, female, espionage, criminal, pink, costume-historical novels, thrillers, elements, a fantasy are considered. During research, specific features of the popular literature, its difference from works of classics is revealed. On specific examples, its negative and positive influence on consciousness, psychology of the reader is shown, its role and value in a modern society are defined.Keywords: the popular literature, the person, consciousness, a genre, psychology
Procedia PDF Downloads 2994692 Spectroscopic Determination of Functionalized Active Principles from Coleus aromaticus Benth Leaf Extract Using Ionic Liquids
Authors: Zharama M. Llarena
Abstract:
Green chemistry for plant extraction of active principles is the main interest of many researchers concerned with climate change. While classical organic solvents are detrimental to our environment, greener alternatives to ionic liquids are very promising for sustainable organic chemistry. This study focused on the determination of functional groups observed in the main constituents from the ionic liquid extracts of Coleus aromaticus Benth leaves using FT-IR Spectroscopy. Moreover, this research aimed to determine the best ionic liquid that can separate functionalized plant constituents from the leaves Coleus aromaticus Benth using Fourier Transform Infrared Spectroscopy. Coleus aromaticus Benth leaf extract in different ionic liquids, elucidated pharmacologically important functional groups present in major constituents of the plant, namely, rosmarinic acid, caffeic acid and chlorogenic acid. In connection to distinctive appearance of functional groups in the spectrum and highest % transmittance, potassium chloride-glycerol is the best ionic liquid for green extraction.Keywords: chlorogenic acid, coleus aromaticus, ionic liquid, rosmarinic acid
Procedia PDF Downloads 3184691 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract
Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie
Abstract:
In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.Keywords: biopolymer, microencapsulation, spray-drying, walnut green husk
Procedia PDF Downloads 1614690 Approach to Honey Volatiles' Profiling by Gas Chromatography and Mass Spectrometry
Authors: Igor Jerkovic
Abstract:
Biodiversity of flora provides many different nectar sources for the bees. Unifloral honeys possess distinctive flavours, mainly derived from their nectar sources (characteristic volatile organic components (VOCs)). Specific or nonspecific VOCs (chemical markers) could be used for unifloral honey characterisation as addition to the melissopalynologycal analysis. The main honey volatiles belong, in general, to three principal categories: terpenes, norisoprenoids, and benzene derivatives. Some of these substances have been described as characteristics of the floral source, and other compounds, like several alcohols, branched aldehydes, and furan derivatives, may be related to the microbial purity of honey processing and storage conditions. Selection of the extraction method for the honey volatiles profiling should consider that heating of the honey produce different artefacts and therefore conventional methods of VOCs isolation (such as hydrodistillation) cannot be applied for the honey. Two-way approach for the isolation of the honey VOCs was applied using headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The extracts were analysed by gas chromatography and mass spectrometry (GC-MS). HS-SPME (with the fibers of different polarity such as polydimethylsiloxane/ divinylbenzene (PDMS/DVB) or divinylbenzene/carboxene/ polydimethylsiloxane (DVB/CAR/PDMS)) enabled isolation of high volatile headspace VOCs of the honey samples. Among them, some characteristic or specific compounds can be found such as 3,4-dihydro-3-oxoedulan (in Centaurea cyanus L. honey) or 1H-indole, methyl anthranilate, and cis-jasmone (in Citrus unshiu Marc. honey). USE with different solvents (mainly dichloromethane or the mixture pentane : diethyl ether 1 : 2 v/v) enabled isolation of less volatile and semi-volatile VOCs of the honey samples. Characteristic compounds from C. unshiu honey extracts were caffeine, 1H-indole, 1,3-dihydro-2H-indol-2-one, methyl anthranilate, and phenylacetonitrile. Sometimes, the selection of solvent sequence was useful for more complete profiling such as sequence I: pentane → diethyl ether or sequence II: pentane → pentane/diethyl ether (1:2, v/v) → dichloromethane). The extracts with diethyl ether contained hydroquinone and 4-hydroxybenzoic acid as the major compounds, while (E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’-trimethylcyclo-hexyl)but-3-en-2-one predominated in dichloromethane extracts of Allium ursinum L. honey. With this two-way approach, it was possible to obtain a more detailed insight into the honey volatile and semi-volatile compounds and to minimize the risks of compound discrimination due to their partial extraction that is of significant importance for the complete honey profiling and identification of the chemical biomarkers that can complement the pollen analysis.Keywords: honey chemical biomarkers, honey volatile compounds profiling, headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE)
Procedia PDF Downloads 2034689 Effect of Aqueous Enzymatic Extraction Parameters on the Moringa oleifera Oil Yield and Formation of Emulsion
Authors: Masni Mat Yusoff, Michael H. Gordon, Keshavan Niranjan
Abstract:
The study reports on the effect of aqueous enzymatic extraction (AEE) parameters on the Moringa oleifera (MO) oil yield and the formation of emulsion at the end of the process. A mixture of protease and cellulase enzymes was used at 3:1 (w/w) ratio. The highest oil yield of 19% (g oil/g sample) was recovered with the use of a mixture of pH 6, 1:4 material/moisture ratio, and incubation temperature, time, and shaking speed of 50 ⁰C, 12.5 hr, and 300 stroke/min, respectively. The use of pH 6 and 8 resulted in grain emulsions, while solid-intact emulsion was observed at pH 4. Upon fixing certain parameters, higher oil yield was extracted with the use of lower material/moisture ratio and higher shaking speed. Longer incubation time of 24 hr resulted in significantly (p < 0.05) similar oil yield with that of 12.5 hr, and an incubation temperature of 50 ⁰C resulted in significantly (p < 0.05) higher oil yield than that of 60 ⁰C. In overall, each AEE parameter showed significant effects on both the MO oil yields and the emulsions formed. One of the major disadvantages of an AEE process is the formation of emulsions which require further de-emulsification step for higher oil recovery. Therefore, critical studies on the effect of each AEE parameter may assist in minimizing the amount of emulsions formed whilst extracting highest total MO oil yield possible.Keywords: enzyme, emulsion, Moringa oleifera, oil yield
Procedia PDF Downloads 4314688 Case-Based Reasoning for Build Order in Real-Time Strategy Games
Authors: Ben G. Weber, Michael Mateas
Abstract:
We present a case-based reasoning technique for selecting build orders in a real-time strategy game. The case retrieval process generalizes features of the game state and selects cases using domain-specific recall methods, which perform exact matching on a subset of the case features. We demonstrate the performance of the technique by implementing it as a component of the integrated agent framework of McCoy and Mateas. Our results demonstrate that the technique outperforms nearest-neighbor retrieval when imperfect information is enforced in a real-time strategy game.Keywords: case based reasoning, real time strategy systems, requirements elicitation, requirement analyst, artificial intelligence
Procedia PDF Downloads 4414687 A Deep Learning Approach to Online Social Network Account Compromisation
Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang
Abstract:
The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.Keywords: computer security, network security, online social network, account compromisation
Procedia PDF Downloads 119