Search results for: circular metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1292

Search results for: circular metrics

452 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 45
451 Importance of Human Factors on Cybersecurity within Organizations: A Study of Attitudes and Behaviours

Authors: Elham Rajabian

Abstract:

The ascent of cybersecurity incidents is a rising threat to most organisations in general, while the impact of the incidents is unique to each of the organizations. It is a need for behavioural sciences to concentrate on employees’ behaviour in order to prepare key security mitigation opinions versus cybersecurity incidents. There are noticeable differences among users of a computer system in terms of complying with security behaviours. We can discuss the people's differences under several subjects such as delaying tactics on something that must be done, the tendency to act without thinking, future thinking about unexpected implications of present-day issues, and risk-taking behaviours in security policies compliance. In this article, we introduce high-profile cyber-attacks and their impacts on weakening cyber resiliency in organizations. We also give attention to human errors that influence network security. Human errors are discussed as a part of psychological matters to enhance compliance with the security policies. The organizational challenges are studied in order to shape a sustainable cyber risks management approach in the related work section. Insiders’ behaviours are viewed as a cyber security gap to draw proper cyber resiliency in section 3. We carry out the best cybersecurity practices by discussing four CIS challenges in section 4. In this regard, we provide a guideline and metrics to measure cyber resilience in organizations in section 5. In the end, we give some recommendations in order to build a cybersecurity culture based on individual behaviours.

Keywords: cyber resilience, human factors, cybersecurity behavior, attitude, usability, security culture

Procedia PDF Downloads 85
450 Improving Patient Journey in the Obstetrics and Gynecology Emergency Department: A Comprehensive Analysis of Patient Experience

Authors: Lolwa Alansari, Abdelhamid Azhaghdani, Sufia Athar, Hanen Mrabet, Annaliza Cruz, Tamara Alshadafat, Almunzer Zakaria

Abstract:

Introduction: Improving the patient experience is a fundamental pillar of healthcare's quadruple aims. Recognizing the importance of patient experiences and perceptions in healthcare interactions is pivotal for driving quality improvement. This abstract centers around the Patient Experience Program, an endeavor crafted with the purpose of comprehending and elevating the experiences of patients in the Obstetrics & Gynecology Emergency Department (OB/GYN ED). Methodology: This comprehensive endeavor unfolded through a structured sequence of phases following Plan-Do-Study-Act (PDSA) model, spanning over 12 months, focused on enhancing patient experiences in the Obstetrics & Gynecology Emergency Department (OB/GYN ED). The study meticulously examined the journeys of patients with acute obstetrics and gynecological conditions, collecting data from over 100 participants monthly. The inclusive approach covered patients of different priority levels (1-5) admitted for acute conditions, with no exclusions. Historical data from March and April 2022 serves as a benchmark for comparison, strengthening causality claims by providing a baseline understanding of OB/GYN ED performance before interventions. Additionally, the methodology includes the incorporation of staff engagement surveys to comprehensively understand the experiences of healthcare professionals with the implemented improvements. Data extraction involved administering open-ended questions and comment sections to gather rich qualitative insights. The survey covered various aspects of the patient journey, including communication, emotional support, timely access to care, care coordination, and patient-centered decision-making. The project's data analysis utilized a mixed-methods approach, combining qualitative techniques to identify recurring themes and extract actionable insights and quantitative methods to assess patient satisfaction scores and relevant metrics over time, facilitating the measurement of intervention impact and longitudinal tracking of changes. From the themes we discovered in both the online and in-person patient experience surveys, several key findings emerged that guided us in initiating improvements, including effective communication and information sharing, providing emotional support and empathy, ensuring timely access to care, fostering care coordination and continuity, and promoting patient-centered decision-making. Results: The project yielded substantial positive outcomes, significantly improving patient experiences in the OB/GYN ED. Patient satisfaction levels rose from 62% to a consistent 98%, with notable improvements in satisfaction with care plan information and physician care. Waiting time satisfaction increased from 68% to a steady 97%. The project positively impacted nurses' and midwives' job satisfaction, increasing from 64% to an impressive 94%. Operational metrics displayed positive trends, including a decrease in the "left without being seen" rate from 3% to 1%, the discharge against medical advice rate dropping from 8% to 1%, and the absconded rate reducing from 3% to 0%. These outcomes underscore the project's effectiveness in enhancing both patient and staff experiences in the healthcare setting. Conclusion: The use of a patient experience questionnaire has been substantiated by evidence-based research as an effective tool for improving the patient experience, guiding interventions, and enhancing overall healthcare quality in the OB/GYN ED. The project's interventions have resulted in a more efficient allocation of resources, reduced hospital stays, and minimized unnecessary resource utilization. This, in turn, contributes to cost savings for the healthcare facility.

Keywords: patient experience, patient survey, person centered care, quality initiatives

Procedia PDF Downloads 50
449 Kurma (Kerma Culture) at Nubia: Migration to Dholavira (Indus Valley Civilization)

Authors: Dhanpat Singh Dhania

Abstract:

Kurma-avatara and the Kachchhapraj is the name of the same person. Tortoise is called Kurma in Kerma valley (Nubia) and also called Kachchhap in India. Wherever a culture migrates, its faiths and beliefs remain intact. The tortoise culture of Kurma valley migrated to Dholavira, and its cultural symbolism remained the same as Kurma, the tortoise. Culture is known by burial traditions, pottery formations, language use, faiths, and beliefs. Following the cultural identification methodology, the Kurma culture buried their dead in circular burials found during excavation at Toshka, Nubia, and built their houses the type of tortoise shell. The Nubian tortoise of a specific species had a triangular on the shell found to be extinct was the cultural symbolism of the culture found on the excavated pottery. Kurma cultural head known as the Seth was known as Kurma-avatara. The Seth of Egypt came to know when the combined efforts of the Seth and the Osiris defeated the Egyptian 1st dynastic rule in about 2775 BCE. Osiris became the king of the 2nd dynastic Egypt. It annoyed Seth. He killed the Osiris and went to Rann of Kachchh and declared him as the Chachchhapraj, the king of Kachchh (now Gujarat, India). The Kurma (Kachchhap) culture migration at Dholavira (Gujarat) attested by the Dholavira signboard found during excavation and deciphered as the ‘Chakradhar’, the eighth incarnation of Kurma-avatara.

Keywords: Kurma, Egyptian, Kachchhap, Dholavira, Harappan

Procedia PDF Downloads 66
448 FEM for Stress Reduction by Optimal Auxiliary Holes in a Uniaxially Loaded Plate

Authors: Basavaraj R. Endigeri, Shriharsh Desphande

Abstract:

Optimization and reduction of stress concentration around holes in a uniaxially loaded plate is one of the important design criteria in many of the engineering applications. These stress risers will lead to failure of the component at the region of high stress concentration which has to be avoided by means of providing auxiliary holes on either side of the parent hole. By literature survey it is known that till date, there is no analytical solution documented to reduce the stress concentration by providing auxiliary holes expect for fever geometries. In the present work, plate with a hole subjected to uniaxial load is analyzed with the numerical method to determine the optimum sizes and locations for the auxillary holes for different center hole diameter to plate width ratios. The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 8.0 is used to carry out analysis and optimization is performed to determine the location and radii for optimum values of auxiliary holes to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. It is found from the work that introduction of auxiliary holes on either side of central circular hole will reduce stress concentration factor by a factor of 19 to 21 percentage.

Keywords: finite element method, optimization, stress concentration factor, auxiliary holes

Procedia PDF Downloads 433
447 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings

Authors: A. W. J. Wong, I. H. Ibrahim

Abstract:

Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.

Keywords: buildings, CFD Simulations, natural ventilation, urban airflow

Procedia PDF Downloads 212
446 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns

Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)

Procedia PDF Downloads 64
445 Procedure for Impact Testing of Fused Recycled Glass

Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi

Abstract:

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Keywords: construction materials, drop weight impact, impact testing, recycled glass

Procedia PDF Downloads 289
444 Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet

Authors: Gurkirat Kaur, Manoj Kumar, Manju Bala

Abstract:

Ethernet is the most influential and widely used technology in the world. With the growing demand of low latency and high throughput technologies like InfiniBand and RoCE, unique features viz. RDMA (Remote Direct Memory Access) have evolved. RDMA is an effective technology which is used for reducing system load and improving performance. InfiniBand is a well known technology which provides high-bandwidth and low-latency and makes optimal use of in-built features like RDMA. With the rapid evolution of InfiniBand technology and Ethernet lacking the RDMA and zero copy protocol, the Ethernet community has came out with a new enhancements that bridges the gap between InfiniBand and Ethernet. By adding the RDMA and zero copy protocol to the Ethernet a new networking technology is evolved, called RDMA over Converged Ethernet (RoCE). RoCE is a standard released by the IBTA standardization body to define RDMA protocol over Ethernet. With the emergence of lossless Ethernet, RoCE uses InfiniBand’s efficient transport to provide the platform for deploying RDMA technology in mainstream data centres over 10GigE, 40GigE and beyond. RoCE provide all of the InfiniBand benefits transport benefits and well established RDMA ecosystem combined with converged Ethernet. In this paper, we evaluate the heterogeneous Linux cluster, having multi nodes with fast interconnects i.e. gigabit Ethernet and Soft RoCE. This paper presents the heterogeneous Linux cluster configuration and evaluates its performance using Intel’s MPI Benchmarks. Our result shows that Soft RoCE is performing better than Ethernet in various performance metrics like bandwidth, latency and throughput.

Keywords: ethernet, InfiniBand, RoCE, RDMA, MPI, Soft RoCE

Procedia PDF Downloads 454
443 Progress in Combining Image Captioning and Visual Question Answering Tasks

Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima

Abstract:

Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.

Keywords: image captioning, visual question answering, deep learning, natural language processing

Procedia PDF Downloads 65
442 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 92
441 Pattern of Blood Vessels Development at First Seven Days of Incubation of the Wild Helmeted Guinea Fowl (Numida meleagris galeata). Gross Approach

Authors: Nathaniel Wanmi, O. M. Samuel, N. Plang, P. O. Brenda

Abstract:

The wild helmeted guinea fowl has in recent time been used for research in the field of anatomy because of its peculiarity from other domesticated species of avian. Eggs of the wild helmeted guinea fowl are considered to be nutritious and has been used for medicinal purposes in some rural settlements in Nigeria. Eggs of the wild helmeted guinea fowl were purchased from hunters and taken to the National Veterinary Research Institution (NVRI) for incubation. Immediately fresh eggs were purchased, it was kindle using high powered light because of its thick egg shell and only eggs which have not started developing will be incubated and that marks the first day of incubation. On day 3 of incubation, large patches of appears redden on the surface of the egg yolk. These congested sites, develop around portion were future embryo will formed. Blood vessel were first, observed on day 4 of incubation and as days on, as embryo increases in size, blood vessels increase as well. The point of embryo implantation is evident first; by formation of congested areas and most importantly, a single zone of circular red rim. This mark the point of implantation. Blood vessels of the wild helmeted guinea fowl develops from the surface of the egg yolk, which appears initially as small strips of line. Blood vessels connects to the site of embryo implantation on day 3 of incubation. Blood vessel is the first structure to be form prior to the manifestation of the embryo.

Keywords: brain, development, helmeted, incubation

Procedia PDF Downloads 86
440 Personalized Social Resource Recommender Systems on Interest-Based Social Networks

Authors: C. L. Huang, J. J. Sia

Abstract:

The interest-based social networks, also known as social bookmark sharing systems, are useful platforms for people to conveniently read and collect internet resources. These platforms also providing function of social networks, and users can share and explore internet resources from the social networks. Providing personalized internet resources to users is an important issue on these platforms. This study uses two types of relationship on the social networks—following and follower and proposes a collaborative recommender system, consisting of two main steps. First, this study calculates the relationship strength between the target user and the target user's followings and followers to find top-N similar neighbors. Second, from the top-N similar neighbors, the articles (internet resources) that may interest the target user are recommended to the target user. In this system, users can efficiently obtain recent, related and diverse internet resources (knowledge) from the interest-based social network. This study collected the experimental dataset from Diigo, which is a famous bookmark sharing system. The experimental results show that the proposed recommendation model is more accurate than two traditional baseline recommendation models but slightly lower than the cosine model in accuracy. However, in the metrics of the diversity and executing time, our proposed model outperforms the cosine model.

Keywords: recommender systems, social networks, tagging, bookmark sharing systems, collaborative recommender systems, knowledge management

Procedia PDF Downloads 159
439 Urban Forest Innovation Lab as a Driver to Boost Forest Bioeconomy

Authors: Carmen Avilés Palacios, Camilo Muñoz Arenas, Joaquín García Alfonso, Jesús González Arteaga, Alberto Alcalde Calonge

Abstract:

There is a need for review of the consumption and production models of industrialized states in accordance with the Paris Agreement and the Sustainable Development Goals (1) (OECD, 2016). This constitutes the basis of the bioeconomy (2) that is focused on striking a balance between economic development, social development and environmental protection. Bioeconomy promotes the adequate use and consumption of renewable natural resources (3) and involves developing new products and services adapted to the principles of circular economy: more sustainable (reusable, biodegradable, renewable and recyclable) and with a lower carbon footprint (4). In this context, Urban Forest Innovation Lab (UFIL) grows, an Urban Laboratory for experimentation focused on promoting entrepreneurship in forest bioeconomy (www.uiacuenca.es). UFIL generates local wellness taking sustainable advantage of an endogenous asset, forests. UFIL boosts forest bioeconomy opening its doors of knowledge to pioneers in this field, giving the opportunity to be an active part of a change in the way of understanding the exploitation of natural resources, discovering business, learning strategies and techniques and incubating business ideas So far now, 100 entrepreneurs are incubating their nearly 30 new business plans. UFIL has promoted an ecosystem to connect the rural-urban world that promotes sustainable rural development around the forest.

Keywords: bioeconomy, forestry, innovation, entrepreneurship

Procedia PDF Downloads 109
438 The Analysis of Defects Prediction in Injection Molding

Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian

Abstract:

This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.

Keywords: injection molding, plastic defects, short shot, Taguchi method

Procedia PDF Downloads 210
437 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark

Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos

Abstract:

This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.

Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark

Procedia PDF Downloads 106
436 Geometrical Analysis of Tiling Patterns in Azari Style: The Case of Tabriz Kaboud Mosque

Authors: Seyyedeh Faezeh Miralami, Sahar Sayyadchapari, Mona Laleh, Zahra Poursafar

Abstract:

Tiling patterns are magnificent display of decoration in Islamic period. They transform the dusty and dreary facades to splendid and ornate ones. Due to ideological factors and elements of Azari style decorations, geometrical patterns and vegetative designs became prevalent and pervasive in religious sites like mosques. Objectives: The objective of this research is a study of tiling patterns in Tabriz Kaboud mosque, as a splendid work of architecture in Azari style. In this study, the geometrical designs and tiling patterns employed in the mosque decorations are examined and analyzed. Method: The research is based on a descriptive analysis method. Data and information are collected based on documents library and field study. Then, polished and brushed, the study resulted in an illustrative conclusion. Findings: In religious sites such as mosques, geometry represents ‘divination’ in Christian theology and ‘Unity with God’ or ‘Tawhid’ in Islamic terminology. In other words, science, literature, architecture, and all forms of human expression and representation are pointed towards one cause, unity or divination. Tiling patterns of Kaboud Mosque, mostly hexagonal, circular, square and triangle, form outstanding architectonic features which recount a story, a narration of divination or unification with the One.

Keywords: tiling, Azari style, Tabriz Kaboud Mosque, Islamic architecture

Procedia PDF Downloads 314
435 Clarification of Taxonomic Confusions among Adulterated Drugs Coffee Seena and Seena Weed through Systematic and Pharmaceutical Markers

Authors: Shabnum Shaheen, Nida Haroon, Farah Khan, Sumera Javad, Mehreen Jalal, Samina Sarwar

Abstract:

Coffee Senna is pharmaceutically very important and used for multiple health disorders such as gastric pains, indigestion, snakebites, asthma and fever, tuberculosis and menstrual problems. However, its immense medicinal value and great demand lead to adulteration issue which could be injurious for users. Some times its adulterant Seena weed (Senna occidentalis L.) is used as its substitute which definitely not as effective as Coffee Senna. Hence, the present study was undertaken to provide some tools for systematic and pharmaceutical authentication of a shrubby plant Coffee Senna (Cassia occidentalis Linn.). These parameters included macro and micro morphological characters, anatomical and palynomorph characterization, solubility, fluorescence and phytochemical analysis. By the application of these parameters acquired results revealed that, these two plants are distinct from each other. The Coffee Seena was found to be an annual shrub with trilobed pollen, diacytic, paracytic and anisocytic stomata whereas the Seena weed stands out as an annual or perennial herb with spheroidal and circular pollen and paracytic type of stomata. The powdered drug of Coffee seena is dark grayish green whereas the powdered drug of Seena weed is light green in color. These findings are constructive in authentic identification of these plants.

Keywords: coffee senna, Senna weed, taxonomic evaluation, pharmaceutical markers

Procedia PDF Downloads 501
434 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps

Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur

Abstract:

The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.

Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion

Procedia PDF Downloads 111
433 A Medical Vulnerability Scoring System Incorporating Health and Data Sensitivity Metrics

Authors: Nadir A. Carreon, Christa Sonderer, Aakarsh Rao, Roman Lysecky

Abstract:

With the advent of complex software and increased connectivity, the security of life-critical medical devices is becoming an increasing concern, particularly with their direct impact on human safety. Security is essential, but it is impossible to develop completely secure and impenetrable systems at design time. Therefore, it is important to assess the potential impact on the security and safety of exploiting a vulnerability in such critical medical systems. The common vulnerability scoring system (CVSS) calculates the severity of exploitable vulnerabilities. However, for medical devices it does not consider the unique challenges of impacts to human health and privacy. Thus, the scoring of a medical device on which human life depends (e.g., pacemakers, insulin pumps) can score very low, while a system on which human life does not depend (e.g., hospital archiving systems) might score very high. In this paper, we propose a medical vulnerability scoring system (MVSS) that extends CVSS to address the health and privacy concerns of medical devices. We propose incorporating two new parameters, namely health impact, and sensitivity impact. Sensitivity refers to the type of information that can be stolen from the device, and health represents the impact on the safety of the patient if the vulnerability is exploited (e.g., potential harm, life-threatening). We evaluate fifteen different known vulnerabilities in medical devices and compare MVSS against two state-of-the-art medical device-oriented vulnerability scoring systems and the foundational CVSS.

Keywords: common vulnerability system, medical devices, medical device security, vulnerabilities

Procedia PDF Downloads 154
432 An Insight into the Interaction Study of a WhiB Protein and its Binding Partner

Authors: Sonam Kumari

Abstract:

Tuberculosis is the deadliest disease worldwide. Millions of people lose their lives every year due to this disease. It has turned lethal due to the erratic nature of its causative organism, Mycobacterium tuberculosis (Mtb). Mtb tends to enter into an inactive, dormant state and emerge to replicating state upon encountering favorable conditions. The mechanism by which Mtb switches from the dormant state to the replicative form is still poorly characterized. Proteome studies have given us an insight into the role of certain proteins in giving stupendous virulence to Mtb, but numerous dotsremain unconnected and unaccounted. The WhiB family of proteins is one such protein that is associated with developmental processes in actinomycetes. Mtb has seven such proteins (WhiB1 to WhiB7). WhiB proteins are transcriptional regulators; they regulate various essential genes of Mtbby binding to their promoter DNA. Biophysical parameters of the effect of DNA binding on WhiB proteins has not yet been appropriately characterized. Interaction with DNA induces conformational changes in the WhiB proteins, confirmed by steady-state fluorescence and circular dichroism spectroscopy. ITC has deduced thermodynamic parameters and the binding affinity of the interaction. Since these transcription factors are highly unstable in vitro, their stability and solubility were enhanced by the co-expression of molecular chaperones. The present study findings help determine the conditions under which the WhiB proteins interact with their interacting partner and the factors that influence their binding affinity. This is crucial in understanding their role in regulating gene expression in Mtbandin targeting WhiB proteins as a drug target to cure TB.

Keywords: mycobacterium tuberculosis, TB, whiB proteins, ITC

Procedia PDF Downloads 87
431 Highway Lighting of the 21st Century is Smart, but is it Cost Efficient?

Authors: Saurabh Gupta, Vanshdeep Parmar, Sri Harsha Reddy Yelly, Michele Baker, Elizabeth Bigler, Kunhee Choi

Abstract:

It is known that the adoption of solar powered LED highway lighting systems or sensory LED highway lighting systems can dramatically reduce energy consumption by 55 percent when compared to conventional on-grid High Pressure Sodium (HPS) lamps that are widely applied to most highways. However, an initial high installation cost for building the infrastructure of solar photovoltaic devices hampers a wider adoption of such technologies. This research aims to examine currently available state-of-the-art solar photovoltaic and sensory technologies, identify major obstacles, and analyze each technology to create a benchmarking metrics from the benefit-cost analysis perspective. The on-grid HPS lighting systems will serve as the baseline for this study to compare it with other lighting alternatives such as solar and sensory LED lighting systems. This research will test the validity of the research hypothesis that alternative LED lighting systems produce more favorable benefit-cost ratios and the added initial investment costs are recouped by the savings in the operation and maintenance cost. The payback period of the excess investment and projected savings over the life-cycle of the selected lighting systems will be analyzed by utilizing the concept of Net Present Value (NPV). Researchers believe that if this study validates the research hypothesis, it can promote a wider adoption of alternative lighting systems that will eventually save millions of taxpayer dollars in the long-run.

Keywords: lighting systems, sensory and solar PV, benefit cost analysis, net present value

Procedia PDF Downloads 343
430 Determination of the Bearing Capacity of Granular Pumice Soils by Laboratory Tests

Authors: Mustafa Yildiz, Ali Sinan Soganci

Abstract:

Pumice soils are countered in many projects such as transportation roads, channels and residential units throughout the World. The pumice deposits are characterized by the vesicular nature of their particles. When the pumice soils are evaluated considering the geotechnical viewpoint, they differ from silica sands in terms of physical and engineering characteristics. These differences are low grain strength, high friction angle, void ratio and compressibility. At stresses greater than a few hundred kPa, the stress-strain-strength behaviour of these soils is determined by particle crushing. Particle crushing leads to changes in the density and reduction in the components of shear stress due to expansion. In this study, the bearing capacity and behaviour of granular pumice soils compared to sand-gravels were investigated by laboratory model tests. Firstly the geotechnical properties of granular pumice soils were determined; then, the behaviour of pumice soils with an equivalent diameter of sand and gravel soils were investigated by model rectangular and circular foundation types and were compared with each other. For this purpose, basic types of model footing (15*15 cm, 20*20 cm, Φ=15 cm and Φ=20 cm) have been selected. When the experimental results of model bearing capacity are analyzed, the values of sand and gravel bearing capacity tests were found to be 1.0-1.5 times higher than the bearing capacity of pumice the same size. This fact has shown that sand and gravel have a higher bearing capacity than pumice of the similar particle sizes.

Keywords: pumice soils, laboratory model tests, bearing capacity, laboratory model tests, Nevşehir

Procedia PDF Downloads 204
429 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 206
428 Planning Quality and Maintenance Activities in a Closed-Loop Serial Multi-Stage Manufacturing System under Constant Degradation

Authors: Amauri Josafat Gomez Aguilar, Jean Pierre Kenné

Abstract:

This research presents the development of a self-sustainable manufacturing system from a circular economy perspective, structured by a multi-stage serial production system consisting of a series of machines under deterioration in charge of producing a single product and a reverse remanufacturing system constituted by the same productive systems of the first scheme and different tooling, fed by-products collected at the end of their life cycle, and non-conforming elements of the first productive scheme. Since the advanced production manufacturing system is unable to satisfy the customer's quality expectations completely, we propose the development of a mixed integer linear mathematical model focused on the optimal search and assignment of quality stations and preventive maintenance operation to the machines over a time horizon, intending to segregate the correct number of non-conforming parts for reuse in the remanufacturing system and thereby minimizing production, quality, maintenance, and customer non-conformance penalties. Numerical experiments are performed to analyze the solutions found by the model under different scenarios. The results showed that the correct implementation of a closed manufacturing system and allocation of quality inspection and preventive maintenance operations generate better levels of customer satisfaction and an efficient manufacturing system.

Keywords: closed loop, mixed integer linear programming, preventive maintenance, quality inspection

Procedia PDF Downloads 70
427 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts

Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti

Abstract:

Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.

Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization

Procedia PDF Downloads 50
426 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 23
425 Challenges in Early Diagnosis of Enlarged Vestibular Aqueduct (EVA) in Pediatric Population: A Single Case Report

Authors: Asha Manoharan, Sooraj A. O, Anju K. G

Abstract:

Enlarged vestibular aqueduct (EVA) refers to the presence of congenital sensorineural hearing loss with an enlarged vestibular aqueduct. The Audiological symptoms of EVA are fluctuating and progressive in nature and the diagnosis of EVAS can be confirmed only with radiological evaluation. Hence it is difficult to differentiate EVA from conditions like Meniere’s disease, semi-circular dehiscence, etc based on audiological findings alone. EVA in adults is easy to identify due to distinct vestibular symptoms. In children, EVA can remain either unidentified or misdiagnosed until the vestibular symptoms are evident. Motor developmental delay, especially the ones involving a change of body alignment, has been reported in the pediatric population with EVA. So, it should be made mandatory to recommend radiological evaluation in young children with fluctuating hearing loss reporting with motor developmental delay. This single case study of a baby with Enlarged Vestibular Aqueduct (EVA) primarily aimed to address the following: a) Challenges while diagnosing young patients with EVA and fluctuating hearing loss, b) Importance of radiological evaluation in audiological diagnosis in the pediatric population, c) Need for regular monitoring of hearing, hearing aid performance, and cochlear implant mapping closely for potential fluctuations in such populations, d) Importance of reviewing developmental, language milestones in very young children with fluctuating hearing loss.

Keywords: enlarged vestibular aqueduct (EVA), motor delay, radiological evaluation, fluctuating hearing loss, cochlear implant

Procedia PDF Downloads 158
424 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning

Authors: Redouane Larbi Boufeniza, Jing-Jia Luo

Abstract:

This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.

Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning

Procedia PDF Downloads 66
423 Normalized Enterprises Architectures: Portugal's Public Procurement System Application

Authors: Tiago Sampaio, André Vasconcelos, Bruno Fragoso

Abstract:

The Normalized Systems Theory, which is designed to be applied to software architectures, provides a set of theorems, elements and rules, with the purpose of enabling evolution in Information Systems, as well as ensuring that they are ready for change. In order to make that possible, this work’s solution is to apply the Normalized Systems Theory to the domain of enterprise architectures, using Archimate. This application is achieved through the adaptation of the elements of this theory, making them artifacts of the modeling language. The theorems are applied through the identification of the viewpoints to be used in the architectures, as well as the transformation of the theory’s encapsulation rules into architectural rules. This way, it is possible to create normalized enterprise architectures, thus fulfilling the needs and requirements of the business. This solution was demonstrated using the Portuguese Public Procurement System. The Portuguese government aims to make this system as fair as possible, allowing every organization to have the same business opportunities. The aim is for every economic operator to have access to all public tenders, which are published in any of the 6 existing platforms, independently of where they are registered. In order to make this possible, we applied our solution to the construction of two different architectures, which are able of fulfilling the requirements of the Portuguese government. One of those architectures, TO-BE A, has a Message Broker that performs the communication between the platforms. The other, TO-BE B, represents the scenario in which the platforms communicate with each other directly. Apart from these 2 architectures, we also represent the AS-IS architecture that demonstrates the current behavior of the Public Procurement Systems. Our evaluation is based on a comparison between the AS-IS and the TO-BE architectures, regarding the fulfillment of the rules and theorems of the Normalized Systems Theory and some quality metrics.

Keywords: archimate, architecture, broker, enterprise, evolvable systems, interoperability, normalized architectures, normalized systems, normalized systems theory, platforms

Procedia PDF Downloads 345