Search results for: acoustic shell
153 Diagnostics and Explanation of the Current Status of the 40- Year Railway Viaduct
Authors: Jakub Zembrzuski, Bartosz Sobczyk, Mikołaj MIśkiewicz
Abstract:
Besides designing new constructions, engineers all over the world must face another problem – maintenance, repairs, and assessment of the technical condition of existing bridges. To solve more complex issues, it is necessary to be familiar with the theory of finite element method and to have access to the software that provides sufficient tools which to enable create of sometimes significantly advanced numerical models. The paper includes a brief assessment of the technical condition, a description of the in situ non-destructive testing carried out and the FEM models created for global and local analysis. In situ testing was performed using strain gauges and displacement sensors. Numerical models were created using various software and numerical modeling techniques. Particularly noteworthy is the method of modeling riveted joints of the crossbeam of the viaduct. It is a simplified method that consists of the use of only basic numerical tools such as beam and shell finite elements, constraints, and simplified boundary conditions (fixed support and symmetry). The results of the numerical analyses were presented and discussed. It is clearly explained why the structure did not fail, despite the fact that the weld of the deck plate completely failed. A further research problem that was solved was to determine the cause of the rapid increase in values on the stress diagram in the cross-section of the transverse section. The problems were solved using the solely mentioned, simplified method of modeling riveted joints, which demonstrates that it is possible to solve such problems without access to sophisticated software that enables to performance of the advanced nonlinear analysis. Moreover, the obtained results are of great importance in the field of assessing the operation of bridge structures with an orthotropic plate.Keywords: bridge, diagnostics, FEM simulations, failure, NDT, in situ testing
Procedia PDF Downloads 72152 Motor Speech Profile of Marathi Speaking Adults and Children
Authors: Anindita Banik, Anjali Kant, Aninda Duti Banik, Arun Banik
Abstract:
Speech is a complex, dynamic unique motor activity through which we express thoughts and emotions and respond to and control our environment. The aim was based to compare select Motor Speech parameters and their sub parameters across typical Marathi speaking adults and children. The subjects included a total of 300 divided into Group I, II, III including males and females. Subjects included were reported of no significant medical history and had a rating of 0-1 on GRBAS scale. The recordings were obtained utilizing three stimuli for the acoustic analysis of Diadochokinetic rate (DDK), Second Formant Transition, Voice and Tremor and its sub parameters. And these aforementioned parameters were acoustically analyzed in Motor Speech Profile software in VisiPitch IV. The statistical analyses were done by applying descriptive statistics and Two- Way ANOVA.The results obtained showed statistically significant difference across age groups and gender for the aforementioned parameters and its sub parameters.In DDK, for avp (ms) there was a significant difference only across age groups. However, for avr (/s) there was a significant difference across age groups and gender. It was observed that there was an increase in rate with an increase in age groups. The second formant transition sub parameter F2 magn (Hz) also showed a statistically significant difference across both age groups and gender. There was an increase in mean value with an increase in age. Females had a higher mean when compared to males. For F2 rate (/s) a statistically significant difference was observed across age groups. There was an increase in mean value with increase in age. It was observed for Voice and Tremor MFTR (%) that a statistically significant difference was present across age groups and gender. Also for RATR (Hz) there was statistically significant difference across both age groups and gender. In other words, the values of MFTR and RATR increased with an increase in age. Thus, this study highlights the variation of the motor speech parameters amongst the typical population which would be beneficial for comparison with the individuals with motor speech disorders for assessment and management.Keywords: adult, children, diadochokinetic rate, second formant transition, tremor, voice
Procedia PDF Downloads 308151 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent
Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan
Abstract:
It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic
Procedia PDF Downloads 241150 Effect of Varietal Feeding on Larval Duration and Cocoon Parameters of Six Strains of Eri Silkworm Samia ricini Donovan in Nagaland, India
Authors: Lakhminandan Kakati, Merenjungla Jamir
Abstract:
Rearing of six strains of Samia ricini (eri silk worm) i.e. Yellow plain (YP), Yellow spotted (YS), Yellow Zebra (YZ), Greenish blue plain (GBP), Greenish blue spotted (GBS) and Greenish blue zebra (GBZ) was conducted on Ricinus communis (Castor), Heteropanax fragrans (Kesseru), Evodia fraxinifolia (Payam) and Manihot utilissima (Tapioca) to evaluate the effect of seasonal pattern on larval duration and cocoon parameters in Nagaland, India. Larval duration during spring season was maximum in all strains in all food plants; however minimum for all strains was recorded during summer season on Castor, Kesseru and Tapioca. Cocoon weight was recorded to be minimum (2.8 ± 2 0.55 gm) in YP on Kesseru and maximum (4.06 ± 0.68 gm) in GBZ on Castor during spring season; shell weight fluctuated between 0.34 ± 0.08 gm during spring in GBS on Kesseru and 0.58 ± 0.09 gm during summer in YZ on Castor and percentage of silk ratio was found to be minimum and maximum in YP on Payam during spring (11.37 ± 1.29) and in GBS on Castor during summer (16.05 ± 1.59) respectively. The variation in larval duration and cocoon parameters reflected variation in nutrient composition of food plants and dynamic environment conditions prevailing in different seasons of the year. Payam and Tapioca plants could be fed either singly or alternately with Castor or Kesseru to attain the commercial advantage to ensure more value added production. While there were differences in the productivity parameters with respect to strains and seasons, the present study shows that all the strains on four host plants expressed adaptability and suitability for commercial rearing under Nagaland climatic condition.Keywords: alternative food plants, Larval and cocoon parameters, Nagaland Inia, six strains of Samia ricini
Procedia PDF Downloads 209149 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia
Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli
Abstract:
In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ-Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5, and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ-Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.Keywords: nanocomposite, hyperthermia, cancer therapy, drug releasing
Procedia PDF Downloads 304148 Habitat Studies of Etheria elliptica in Some Water Bodies (River Ogbese and Owena Reservoir) in Ondo State, Nigeria
Authors: O. O. Olawusi-Peters, M. O. Adediran, O. A. Ajibare
Abstract:
Etheria elliptica population is declining due to various human activities on the freshwater habitat. This necessitate the habitat study of the mussel in river Ogbese and Owena reservoir in Ondo state, Nigeria in order to know the status of the organism within the ecosystem. Thirty (30) specimens each from River Ogbese and Owena reservoir were sampled between May and August 2012. The meristic variables such as length, breadth, shell thickness and weight of the mussel were measured. Also, some physico-chemical parameters, flow rate and soil profile of the two rivers were studied. In River Ogbese, the weight, length, breadth and thickness variables obtained were; 49.73g, 8.42cm, 3.78cm and 0.53cm respectively. In Owena reservoir, the values were; 111.17g, 8.80cm, 6.64cm, 0.22cm respectively. The condition factor showed that the samples from Owena reservoir (K = 16.33) were healthier than River Ogbese (K = 8.34). Also, the length-weight relationship indicated isometric growth in both water bodies (Ogbese r2 = 0.68; Owena r2 = 0.66). In River Ogbese, the physico-chemical parameters obtained were; temperature (24.3oC), pH (7.12), TDS (72ppm), DO (3.2mg/l), conductivity (145µ), BOD (0.7mg/l). The mean temperature (24.1oC), pH (7.69), TDS (102ppm), DO (3.1mg/l), conductivity (183µ), BOD (0.8mg/l) were obtained from Owena reservoir. The soil samples values obtained from both water bodies are; River Ogbese –phosphorus; 78.78, calcium; 3.60, magnesium; 1.90 and organic matter; 0.17. Owena reservoir - Phosphorus; 3.34, calcium; 4.40, magnesium; 1.20 and organic matter; 0.66. The river flow rate was 0.22m/s for Owena reservoir and 0.26m/s for river Ogbese. The study revealed that Etheria elliptica in Owena reservoir and Ogbese were in good and healthy conditions despite the various human activities on the water bodies. The water quality parameters obtained were within the preferred requirements of the mussels.Keywords: Etheria elliptica, mussels, Owena reservoir, River Ogbese
Procedia PDF Downloads 508147 An Event-Related Potential Investigation of Speech-in-Noise Recognition in Native and Nonnative Speakers of English
Authors: Zahra Fotovatnia, Jeffery A. Jones, Alexandra Gottardo
Abstract:
Speech communication often occurs in environments where noise conceals part of a message. Listeners should compensate for the lack of auditory information by picking up distinct acoustic cues and using semantic and sentential context to recreate the speaker’s intended message. This situation seems to be more challenging in a nonnative than native language. On the other hand, early bilinguals are expected to show an advantage over the late bilingual and monolingual speakers of a language due to their better executive functioning components. In this study, English monolingual speakers were compared with early and late nonnative speakers of English to understand speech in noise processing (SIN) and the underlying neurobiological features of this phenomenon. Auditory mismatch negativities (MMNs) were recorded using a double-oddball paradigm in response to a minimal pair that differed in their middle vowel (beat/bit) at Wilfrid Laurier University in Ontario, Canada. The results did not show any significant structural and electroneural differences across groups. However, vocabulary knowledge correlated positively with performance on tests that measured SIN processing in participants who learned English after age 6. Moreover, their performance on the test negatively correlated with the integral area amplitudes in the left superior temporal gyrus (STG). In addition, the STG was engaged before the inferior frontal gyrus (IFG) in noise-free and low-noise test conditions in all groups. We infer that the pre-attentive processing of words engages temporal lobes earlier than the fronto-central areas and that vocabulary knowledge helps the nonnative perception of degraded speech.Keywords: degraded speech perception, event-related brain potentials, mismatch negativities, brain regions
Procedia PDF Downloads 107146 Validation of the Formula for Air Attenuation Coefficient for Acoustic Scale Models
Authors: Katarzyna Baruch, Agata Szelag, Aleksandra Majchrzak, Tadeusz Kamisinski
Abstract:
Methodology of measurement of sound absorption coefficient in scaled models is based on the ISO 354 standard. The measurement is realised indirectly - the coefficient is calculated from the reverberation time of an empty chamber as well as a chamber with an inserted sample. It is crucial to maintain the atmospheric conditions stable during both measurements. Possible differences may be amended basing on the formulas for atmospheric attenuation coefficient α given in ISO 9613-1. Model studies require scaling particular factors in compliance with specified characteristic numbers. For absorption coefficient measurement, these are for example: frequency range or the value of attenuation coefficient m. Thanks to the possibilities of modern electroacoustic transducers, it is no longer a problem to scale the frequencies which have to be proportionally higher. However, it may be problematic to reduce values of the attenuation coefficient. It is practically obtained by drying the air down to a defined relative humidity. Despite the change of frequency range and relative humidity of the air, ISO 9613-1 standard still allows the calculation of the amendment for little differences of the atmospheric conditions in the chamber during measurements. The paper discusses a number of theoretical analyses and experimental measurements performed in order to obtain consistency between the values of attenuation coefficient calculated from the formulas given in the standard and by measurement. The authors performed measurements of reverberation time in a chamber made in a 1/8 scale in a corresponding frequency range, i.e. 800 Hz - 40 kHz and in different values of the relative air humidity (40% 5%). Based on the measurements, empirical values of attenuation coefficient were calculated and compared with theoretical ones. In general, the values correspond with each other, but for high frequencies and low values of relative air humidity the differences are significant. Those discrepancies may directly influence the values of measured sound absorption coefficient and cause errors. Therefore, the authors made an effort to determine an amendment minimizing described inaccuracy.Keywords: air absorption correction, attenuation coefficient, dimensional analysis, model study, scaled modelling
Procedia PDF Downloads 421145 Preparation and Characterization of Chitosan-Hydrocortisone Nanoshell for Drug Delivery Application
Authors: Suyeon Kwon, Ik Joong Kang, Wang Bingjie
Abstract:
Chitosan is a polymer that is usually produced from N-deacetylation of chitin. It is emerging as a promising biocompatible polymer that is harmless to humans. For the reason that many merits such as good adsorptive, biodegradability, many researches are being done on the chitosan for drug delivery system. Drug delivery system (DDS) has been developed for the control of drug. It makes the drug can be delivered effectively and safely into the targeted human body. The drug used in this work is hydrocortisone that is used in Rheumatism, skin diseases, allergy treatment. In this work, hydrocortisone was used to make allergic rhinitis medicine. Our study focuses on drug delivery through the nasal mucosa by using hydrocortisone impregnated chitosan nanoshells. This study has performed an investigation in order to establish the optimal conditions, changing concentration, quantity of hydrocortisone. DLS, SEM, TEM, FT-IR, UV spectrum were used to analyze the manufactured chitosan-hydrocortisone silver nanoshell and silver nanoshell, whose function as drug carriers. This study has performed an investigation on new drug carriers and delivery routes for hydrocortisone. Various methods of manufacturing chitosan-hydrocortisone nanoshells were attempted in order to establish the optimal condition. As a result, the average size of chitosan-hydrocortisone silver nanoshell is about 80 nm. So, chitosan-hydrocortisone silver nanoshell is suitable as drug carriers because optimal size of drug carrier in human body is less than 120 nm. UV spectrum of Chitosan-hydrocortisone silver nanoshell shows the characteristic peak of silver nanoshell at 420 nm. Likewise, the average size of chitosan-hydrocortisone silver nanoshell is about 100nm. It is also suitable for drug carrier in human body. Also, multi-layered silver shell over chitosan nanoshells induced the red-shift of absorption peak and increased the intensity of absorption peak. The resultant chitosan–silver nanocomposites (or nanoshells) exhibited the absorption peak around 430nm attributed to silvershell formation. i.e. the absorption peak was red-shifted by ca. 40 nm in reference to 390 nm of silver nanoshells.Keywords: chitosan, drug delivery, hydrocortisone, rhinitis, nanoshell
Procedia PDF Downloads 260144 From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure
Authors: Caroline Rocco, Feyza Karasu, Céline Croutxé-Barghorn, Xavier Allonas, Maxime Lecompère, Gérard Riess, Yujing Zhang, Catarina Esteves, Leendert van der Ven, Rolf van Benthem Gijsbertus de With
Abstract:
Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one.Keywords: investigation of properties and morphology, kinetics, phase separation, UV-cured IPNs
Procedia PDF Downloads 367143 Studies on Distribution of the Doped Pr3+ Ions in the LaF3 Based Transparent Oxyfluoride Glass-Ceramic
Authors: Biswajit Pal, Amit Mallik, Anil K. Barik
Abstract:
Current years have witnessed a phenomenal growth in the research on the rare earth-doped transparent host materials, the essential components in optoelectronics that meet up the increasing demand for fabrication of high quality optical devices especially in telecommunication system. The combination of low phonon energy (because of fluoride environment) and high chemical durability with superior mechanical stability (due to oxide environment) makes the oxyfluoride glass–ceramics the promising and useful materials in optoelectronics. The present work reports on the undoped and doped (1 mol% Pr2O3) glass ceramics of composition 16.52 Al2O3•1.5AlF3• 12.65LaF3•4.33Na2O•64.85 SiO2 (mol%), prepared by melting technique initially that follows annealation at 450 ºC for 1 h. The glass samples so obtained were heat treated at constant 600 ºC with a variation in heat treatment schedule (10- 80 h). TEM techniques were employed to structurally characterize the glass samples. Pr2O3 affects the phase separation in the glass and delays the onset of crystallization in the glass ceramic. The modified crystallization mechanism is established from the analysis of advanced STEM/EDXS results. The phase separated droplets after annealing turn into 10-20 nm of LaF3 nano crystals those upon scrutiny are found to be dotted with the doped Pr3+ ions within the crystals themselves. The EDXS results also suggest that the inner LaF3 crystal core is swallowed by an Al enriched layer that follows a Si enriched surrounding shell as the outer core. This greatly increases the viscosity in the periphery of the crystals that restricts further crystal growth to account for the formation of nano sized crystals.Keywords: advanced STEM/EDXS, crystallization mechanism, nano crystals, pr3+ ion doped glass and glass ceramic, structural characterization
Procedia PDF Downloads 185142 Experimental Research and Analyses of Yoruba Native Speakers’ Chinese Phonetic Errors
Authors: Obasa Joshua Ifeoluwa
Abstract:
Phonetics is the foundation and most important part of language learning. This article, through an acoustic experiment as well as using Praat software, uses Yoruba students’ Chinese consonants, vowels, and tones pronunciation to carry out a visual comparison with that of native Chinese speakers. This article is aimed at Yoruba native speakers learning Chinese phonetics; therefore, Yoruba students are selected. The students surveyed are required to be at an elementary level and have learned Chinese for less than six months. The students selected are all undergraduates majoring in Chinese Studies at the University of Lagos. These students have already learned Chinese Pinyin and are all familiar with the pinyin used in the provided questionnaire. The Chinese students selected are those that have passed the level two Mandarin proficiency examination, which serves as an assurance that their pronunciation is standard. It is discovered in this work that in terms of Mandarin’s consonants pronunciation, Yoruba students cannot distinguish between the voiced and voiceless as well as the aspirated and non-aspirated phonetics features. For instance, while pronouncing [ph] it is clearly shown in the spectrogram that the Voice Onset Time (VOT) of a Chinese speaker is higher than that of a Yoruba native speaker, which means that the Yoruba speaker is pronouncing the unaspirated counterpart [p]. Another difficulty is to pronounce some affricates like [tʂ]、[tʂʰ]、[ʂ]、[ʐ]、 [tɕ]、[tɕʰ]、[ɕ]. This is because these sounds are not in the phonetic system of the Yoruba language. In terms of vowels, some students find it difficult to pronounce some allophonic high vowels such as [ɿ] and [ʅ], therefore pronouncing them as their phoneme [i]; another pronunciation error is pronouncing [y] as [u], also as shown in the spectrogram, a student pronounced [y] as [iu]. In terms of tone, it is most difficult for students to differentiate between the second (rising) and third (falling and rising) tones because these tones’ emphasis is on the rising pitch. This work concludes that the major error made by Yoruba students while pronouncing Chinese sounds is caused by the interference of their first language (LI) and sometimes by their lingua franca.Keywords: Chinese, Yoruba, error analysis, experimental phonetics, consonant, vowel, tone
Procedia PDF Downloads 111141 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction
Procedia PDF Downloads 112140 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials
Authors: Sunita Kumawat, Sumit Kumar Vishwakarma
Abstract:
The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection
Procedia PDF Downloads 109139 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia
Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.
Abstract:
Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy
Procedia PDF Downloads 135138 The Effect of Restaurant Residuals on Performance of Japanese Quail
Authors: A. A. Saki, Y. Karimi, H. J. Najafabadi, P. Zamani, Z. Mostafaie
Abstract:
The restaurant residuals reasons such as competition between human and animal consumption of cereals, increasing environmental pollution and the high cost of production of livestock products is important. Therefore, in this restaurant residuals have a high nutritional value (protein and high energy) that it is possible can replace some of the poultry diets are especially Japanese quail. Today, the challenges of processing and consumption of these lesions occurring in modern industry would be confronting. Increasing costs, pressures, and problems associated with waste excretion, the need for re-evaluation and utilization of waste to livestock and poultry feed fortifies. This study aimed to investigate the effects of different levels of restaurant residuals on performance of 300 layer Japanese quails. This experiment included 5 treatments, 4 replicates, and 15 quails in each from 10 to 18 weeks age in a completely randomized design (CRD). The treatments consist of basal diet including corn and soybean meal (without residual restaurants), and treatments 2, 3, 4 and 5, includes a basal diet containing 5, 10, 15 and 20% of restaurant residuals, respectively. There were no significant effect of restaurant residuals levels on body weight (BW), feed conversion ratio (FCR), percentage of egg production (EP), egg mass (EM) between treatments (P > 0/05). However, feed intake (FI) of 5% restaurant residual was significantly higher than 20% treatment (P < 0/05). Egg weight (EW) was also higher by receiving 20% restaurant residuals compared with 10% in this respect (P < 0/05). Yolk weight (YW) of treatments containing 10 and 20% of the residual restaurant were significantly higher than control (P < 0/05). Eggs white weight (EWW) of 20 and 5% restaurants residual treatments were significantly increased compared by 10% (P < 0/05). Furthermore, EW, egg weight to shell surface area and egg surface area in 20% treatment were significantly higher than control and 10% treatment (P < 0/05). The overall results of this study have shown that restaurant residuals for laying quail diets in levels of 10 and 15 percent could be replaced with a part of the quail ration without any adverse effect.Keywords: by-product, laying quail, performance, restaurant residuals
Procedia PDF Downloads 165137 Properties Soft Cheese as Diversification of Dangke: A Natural Cheese of South Sulawesi Indonesia
Authors: Ratmawati Malaka, Effendi Abustam, Kusumandari Indah Prahesti, Sudirman Baco
Abstract:
Dangke is natural cheese from Enrekang South Sulawesi, Indonesia produced through aglutination buffalo milk, cow, goat or sheep using the sap of papaya (Carica papaya). Dangke has been widely known in South Sulawesi but this soft cheese product diversification by using passion fruit juice as milk clotting agents has not been used. Passion fruit juice has a high acidity with a pH of around 4 - 4.5 and has a proteolytic enzyme, so that it can be used to agglutinate milk. The purpose of this study was to investigate the nature Dangke using passion fruit juice as coagulate milk. Dangke made by 10 lt of raw milk by heating at a temperature of 73oC with coagulant passion fruit juice (7.5% and 10%), and added 1% salt. Curd clot and then be formed using a coconut shell, is then pressed until the cheese is compact. The cheese is then observed for 28 days ripening at a temperature of about 5 ° C. Dangke then studied to violence, pH, fat levels and microstructure. Hardness is determined using CD-shear Force, pH is measured using a pH meter Hanna, and fat concentrations were analyzed with methods of proximate. Microstructure viewed using a light microscope with magnification 1000 x. The results showed that the levels of clotting material very significant influence on hardness, pH, and lipid levels. Maturation increase the hardness but lower the pH, the level of fat soft cheese with an average Dangke respectively 21.4% and 30.5% on 7.5% addition of passion fruit juice and 10%. Dangke violence is increasing with the increasing maturation time (1.38 to 3.73 kg / cm), but Dangke pH was decreased by the increase in storage maturation (5.34 to 4.1). Microktrukture cheeses coagulated with 10% of the passion fruit are very firmer and compact with a full globular fat of 7.5%. But the sensory properties of the soft cheese similar in both treatment. The manufacturing process with the addition of coagulant passion fruit juice on making Dangke affect hardness, pH, fat content and microstructure during storage at 5 ° C for 1 d - 28 d.Keywords: dangke, passion fruits, microstructure, cheese
Procedia PDF Downloads 409136 Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies
Authors: Nadine Wiesmann, Melanie Viel, Christoph Buhr, Rachel Tanner, Wolfgang Tremel, Juergen Brieger
Abstract:
Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics.Keywords: metal oxide nanoparticles, nanomedicine, overcome resistances against classical treatment options, zinc oxide nanoparticles
Procedia PDF Downloads 128135 Formation of ZnS/ZnO Heterojunction for Photocatalytic Hydrogen Evolution Using Partial Oxidation and Chemical Precipitation Synthesis Methods
Authors: Saba Didarataee, Abbas Ali Khodadadi, Yadollah Mortazavi, Fatemeh Mousavi
Abstract:
Photocatalytic water splitting is one of the most attractive alternative methods for hydrogen evolution. A variety of nanoparticle engineering techniques were introduced to improve the activity of semiconductor photocatalysts. Among these methods, heterojunction formation is an appealing method due to its ability to effectively preventing electron-hole recombination and improving photocatalytic activity. Reaching an optimal ratio of the two target semiconductors for the formation of heterojunctions is still an open question. Considering environmental issues as well as the cost and availability, ZnS and ZnO are frequently studied as potential choices. In this study, first, the ZnS nanoparticle was synthesized in a hydrothermal process; the formation of ZnS nanorods with a diameter of 14-30 nm was confirmed by field emission scanning electron microscope (FESEM). Then two different methods, partial oxidation and chemical precipitation were employed to construct ZnS/ZnO core-shell heterojunction. X-ray diffraction (XRD), BET, and diffuse reflectance spectroscopy (DRS) analysis were carried out to determine crystallite phase, surface area, and bandgap of photocatalysts. Furthermore, the temperature of oxidation was specified by a temperature programmed oxidation (TPO) and was fixed at 510℃, at which mild oxidation occurred. The bandgap was calculated by the Kubelka-Munk method and decreased by increasing oxide content from 3.53 (pure ZnS) to 3.18 (pure ZnO). The optimal samples were determined by testing the photocatalytic activity of hydrogen evolution in a quartz photoreactor with side irradiation of UVC lamps with a wavelength of 254 nm. In both procedures, it was observed that the photocatalytic activity of the ZnS/ZnO composite was sensibly higher than the pure ZnS and ZnO, which is attributed to forming a type-II heterostructure. The best ratio of oxide to sulfide was 0.24 and 0.37 in partial oxidation and chemical precipitation, respectively. The highest hydrogen evolution was 1081 µmol/gr.h, gained from partial oxidizing of ZnS nanoparticles at 510℃ for 30 minutes.Keywords: heterostructure, hydrogen, partial oxidation, photocatalyst, water splitting, ZnS
Procedia PDF Downloads 128134 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle
Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh
Abstract:
Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.Keywords: aerodynamics, CFD, fuel efficiency, golf ball
Procedia PDF Downloads 334133 Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction
Authors: Flóra Pomázi, Sándor Baranya, Zoltán Szalai
Abstract:
A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings.Keywords: advanced particle characterisation, automated imaging, indirect methods, laser diffraction, mineral composition, suspended sediment
Procedia PDF Downloads 146132 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues
Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero
Abstract:
Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic
Procedia PDF Downloads 134131 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation
Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri
Abstract:
In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm² are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm²). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.Keywords: focused ultrasound therapy, histotripsy, inertial cavitation, mechanical tissue ablation
Procedia PDF Downloads 319130 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt
Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify
Abstract:
The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties. There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes. The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grain-stone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intra-particle pore spaces, which may produce lines of weakness within the rock.Keywords: compressive strength, anisotropy, calcarenites, Egypt
Procedia PDF Downloads 374129 Cup-Cage Construct for Treatment of Severe Acetabular Bone Loss in Revision Total Hip Arthroplasty: Midterm Clinical and Radiographic Outcomes
Authors: Faran Chaudhry, Anser Daud, Doris Braunstein, Oleg Safir, Allan Gross, Paul Kuzyk
Abstract:
Background: Acetabular reconstruction in the context of massive acetabular bone loss is challenging. In rare scenarios where the extent of bone loss precludes shell placement (cup-cage), reconstruction at our center consisted of a cage combined with highly porous metal augments. This study evaluates survivorship, complications, and functional outcomes using this technique. Methods: A total of 131 cup-cage implants (129 patients) were included in our retrospective review of revisions of total hip arthroplasty from January 2003 to January 2022. Among these cases, 100/131 (76.3%) were women, the mean age at surgery time was 68.7 years (range, 29.0 to 92.0; SD, 12.4), and the mean follow-up was 7.7 years (range, 0.02 to 20.3; SD, 5.1). Kaplan-Meier survivorship analysis was conducted with failure defined as revision surgery and/or failure of the cup-cage reconstruction. Results: A total of 30 implants (23%) reached the study endpoint involving all-cause revision. Overall survivorship was 74.8% at 10 years and 69.8% at 15 years. Reasons for revision included infection 12/131 (9.1%), dislocation 10/131 (7.6%), aseptic loosening of cup and/or cage 5/131 (3.8%), and aseptic loosening of the femoral stem 2/131 (1.5%). The mean LLD improved from 12.2 ± 15.9 mm to 3.9 ± 11.8 (p<0.05). The horizontal and vertical hip centres on plain film radiographs were significantly improved (p<0.05). Functionally, there was a decrease in the number of patients requiring the use of gait aids, with fewer patients (34, 25.9%) using a cane, walker, or wheelchair post-operatively compared to pre-operatively (58, 44%). There was a significant increase in the number of independent ambulators from 24 to 47 (36%). Conclusion: The cup-cage construct is a reliable treatment option for the treatment of various acetabular defects. There are favourable survivorship, clinical and radiographic outcomes, with a satisfactory complication rate.Keywords: revision total hip arthroplasty, acetabular defect, pelvic discontinuity, trabecular metal augment, cup-cage
Procedia PDF Downloads 67128 Perinatal Ethanol Exposure Modifies CART System in Rat Brain Anticipated for Development of Anxiety, Depression and Memory Deficits
Authors: M. P. Dandekar, A. P. Bharne, P. T. Borkar, D. M. Kokare, N. K. Subhedar
Abstract:
Ethanol ingestion by the mother ensue adverse consequences for her offspring. Herein, we examine the behavioral phenotype and neural substrate of the offspring of the mother on ethanol. Female rats were fed with ethanol-containing liquid diet from 8 days prior of conception and continued till 25 days post-parturition to coincide with weaning. Behavioral changes associated with anxiety, depression and learning and memory were assessed in the offspring, after they attained adulthood (day 85), using elevated plus maze (EPM), forced swim (FST) and novel object recognition tests (NORT), respectively. The offspring of the alcoholic mother, compared to those of the pair-fed mother, spent significantly more time in closed arms of EPM and showed more immobility time in FST. Offspring at the age of 25 and 85 days failed to discriminate between novel versus familiar object in NORT, thus reflecting anxiogenic, depressive and amnesic phenotypes. Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CART) is known to be involved in central effects of ethanol and hence selected for the current study. Twenty-five days old pups of the alcoholic mother showed significant augmentation in CART-immunoreactivity in the cells of Edinger-Westphal (EW) nucleus and lateral hypothalamus. However, a significant decrease in CART-immunoreactivity was seen in nucleus accumbens shell (AcbSh), lateral part of bed nucleus of the stria terminalis (BNSTl), locus coeruleus (LC), hippocampus (CA1, CA2 and CA3), and arcuate nucleus (ARC) of the pups and/or adults offspring. While no change in the CART-immunoreactive fibers of AcbSh and BNSTl, CA2 and CA3 was noticed in the 25 days old pups, the CART-immunoreactive cells in EW and paraventricular nucleus (PVN), and fibers in the central nucleus of amygdala of 85 days old offspring remained unaffected. We suggest that the endogenous CART system in these discrete areas, among other factors, may be a causal to the abnormalities in the next generation of an alcoholic mother.Keywords: anxiety, depression, CART, ethanol, immunocytochemistry
Procedia PDF Downloads 395127 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials
Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang
Abstract:
Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay
Procedia PDF Downloads 457126 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds
Authors: Zeina Merabi, Arij Dao
Abstract:
The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration
Procedia PDF Downloads 65125 The Onset of Ironing during Casing Expansion
Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers
Abstract:
Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.Keywords: casing expansion, cement, formation, metal forming, plasticity, well design
Procedia PDF Downloads 180124 A Review on Development of Pedicle Screws and Characterization of Biomaterials for Fixation in Lumbar Spine
Authors: Shri Dubey, Jamal Ghorieshi
Abstract:
Instability of the lumbar spine is caused by various factors that include degenerative disc, herniated disc, traumatic injuries, and other disorders. Pedicle screws are widely used as a main fixation device to construct rigid linkages of vertebrae to provide a fully functional and stable spine. Various technologies and methods have been used to restore the stabilization. However, loosening of pedicle screws is the main cause of concerns for neurosurgeons. This could happen due to poor bone quality with osteoporosis as well as types of pedicle screw used. Compatibilities and stabilities of pedicle screws with bone depend on design (thread design, length, and diameter) and material. Grip length and pullout strength affect the motion and stability of the spine when it goes through different phases such as extension, flexion, and rotation. Pullout strength of augmented pedicle screws is increased in both primary and salvage procedures by 119% (p = 0.001) and 162% (p = 0.01), respectively. Self-centering pedicle screws at different trajectories (0°, 10°, 20°, and 30°) show the same pullout strength as insertion in a straight-ahead trajectory. The outer cylindrical and inner conical shape of pedicle screws show the highest pullout strength in Grades 5 and 15 foams (synthetic bone). An outer cylindrical and inner conical shape with a V-shape thread exhibit the highest pullout strength in all foam grades. The maximum observed pullout strength is at axial pullout configuration at 0°. For Grade 15 (240 kg/m³) foam, there is a decline in pull out strength. The largest decrease in pullout strength is reported for Grade 10 (160 kg/m³) foam. The maximum pullout strength of 2176 N (0.32-g/cm³ Sawbones) on all densities. Type 1 Pedicle screw shows the best fixation due to smaller conical core diameter and smaller thread pitch (Screw 2 with 2 mm; Screws 1 and 3 with 3 mm).Keywords: polymethylmethacrylate, PMMA, classical pedicle screws, CPS, expandable poly-ether-ether-ketone shell, EPEEKS, includes translaminar facet screw, TLFS, poly-ether-ether-ketone, PEEK, transfacetopedicular screw, TFPS
Procedia PDF Downloads 155