Search results for: Paul Wang
990 Longan Tree Flowering and Bearing Induction Based on Chemicals and Growing Degree-Days Models
Authors: Hong Li, Tingxian Li, Xudong Wang, Fengliang Zhao
Abstract:
Unreliable flowering of chilling-required longan (Dimocarpus longan) due to increased air-temperatures have been the common concerns in the tropical areas. Our objectives were to assess the efficiency of chemicals in longan tree flowering and bearing using Growing Degree Days (GDD). The 2-year study was contacted in the tropical Haihan Island during 2012-2013. At pruning (August) the GDD values were started to count. The KClO3 treatments were applied to the root zones under the canopies at GDD 1300ºC while KH2PO4 rates were applied to the leaves at fruit setting at GDD 3000ºC and GDD 4000ºC. The results showed that total cumulative GDD was 6050ºC for longan. The GDD-guided KClO3 applications induced significant tree budding and flowering. The GDD-guided KH2PO4 applications stimulated higher leaf photosynthesis, carbonxylation efficiency, marketable fruit yield and quality (K+ and sugar) (P<0.05). It was concluded that the GDD-based model could efficiently support longan reliable flowering and bearing.Keywords: canopy nutrition, flowering induction, growing degree days, longan, oxidant KClO3, tree physiology
Procedia PDF Downloads 305989 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing
Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup
Abstract:
In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety
Procedia PDF Downloads 78988 The Construction of the Residential Landscape in the Mountain Environment: Taking the Eling Peak, 'Mirror of the Sky', in Chongqing, China as an Example
Authors: Yuhang Zou, Zhu Wang
Abstract:
Most of the western part of China is mountainous and hilly region, with abundant resources of mountainous space. However, the resources are complex, and the ecological factors are diverse. As urbanization expands rapidly today, the landscape of the mountain residence needs to be changed. This paper, starting with the ecological environment and visual landscape of the mountain living space, analyzes the basic conditions of the Eling Peak, ‘Mirror of the Sky’, in Chongqing, China before its landscape renovation. Then, it analyzes some parts of the project, including the overall planning, ecological coordination, space expansion and local conditions in mountain environment. After that, this paper concludes the intention of designer and 4 methods, appropriate demolition, space reconstruction, landscape modeling and reasonable road system, to transform the master’s mountain residential works. Finally, through the analysis and understanding of the project, it sums up that the most beautiful landscape is not only the outdoor space, but also borrowing scene from the city and the sky, making them a part of the mountainous residential buildings. Only in this way can people, landscape, building, sky, and city become integrated and coexist harmoniously.Keywords: landscape design, mountainous architecture, renovation, residence
Procedia PDF Downloads 157987 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters
Authors: Renkai Wang, Tingcun Wei
Abstract:
In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.Keywords: digitally-controlled DC-DC switching converter, digital voltage compensator, delta-operator, finite word length, stability
Procedia PDF Downloads 413986 Epstein, Barr Virus Alters ATM-Dependent DNA Damage Responses in Germinal Centre B-Cells during Early Infection
Authors: Esther N. Maina, Anna Skowronska, Sridhar Chaganti, Malcolm A. Taylor, Paul G. Murray, Tatjana Stankovic
Abstract:
Epstein-Barr virus (EBV) has been implicated in the pathogenesis of human tumours of B-cell origin. The demonstration that a proportion of Hodgkin lymphomas and all Burkitt’s lymphomas harbour EBV suggests that the virus contributes to the development of these malignancies. However, the mechanisms of lymphomagenesis remain largely unknown. To determine whether EBV causes DNA damage and alters DNA damage response in cells of EBV-driven lymphoma origin, Germinal Centre (GC) B cells were infected with EBV and DNA damage responses to gamma ionising radiation (IR) assessed at early time points (12hr – 72hr) after infection and prior to establishment of lymphoblastoid (LCL) cell lines. In the presence of EBV, we observed induction of spontaneous DNA DSBs and downregulation of ATM-dependent phosphorylation in response to IR. This downregulation coincided with reduced ability of infected cells to repair IR-induced DNA double-strand breaks, as measured by the kinetics of gamma H2AX, a marker of double-strand breaks, and by the tail moment of the comet assay. Furthermore, we found that alteration of DNA damage responses coincided with the expression of LMP-1 protein. The presence of the EBV virus did not affect the localization of the ATM-dependent DNA repair proteins to sites of damage but instead lead to an increased expression of PP5, a phosphatase that regulates ATM function. The impact of the virus on DNA repair was most prominent 24h after infection, suggesting that this time point is crucial for the viral establishment in B cells. Our results suggest that during an early infection EBV virus dampens crucial cellular responses to DNA double-strand breaks which facilitate successful viral infection, but at the same time might provide the mechanism for tumor development.Keywords: EBV, ATM, DNA damage, germinal center cells
Procedia PDF Downloads 351985 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System
Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan
Abstract:
With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.Keywords: dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation, pressure drop
Procedia PDF Downloads 171984 Research on Traditional Rammed Earth Houses in Southern Zhejiang, China: Based on the perspective of "Geographical Embeddedness"
Abstract:
Zhejiang’s special geographical environment has created characteristic mountain dwellings with climate adaptability. Among them, the terrain of southern Zhejiang is dominated by mountainous and hilly landforms, and its traditional dwellings have distinctive characteristics. They are often adapted to local conditions and laid out in accordance with the mountains. In order to block the severe winter weather conditions, local traditional building materials such as rammed earth are mostly used. However, with the development of urbanization, traditional villages have undergone large-scale changes, gradually losing their original uniqueness. In order to solve this problem, this paper takes traditional villages around Baishanzu National Park in Zhejiang as an example and selects nine typical villages in Jingning County and Longquan, respectively. Based on field investigations, extracting the environmental adaptability of local traditional rammed earth houses from the perspective of “geographical embeddedness”. And then combined with case analysis, discussing the translation and development of its traditional architectural methods in contemporary rammed earth buildings in southern Zhejiang.Keywords: geographical embeddedness , lighting, modernization translation, rammed earth building, ventilation
Procedia PDF Downloads 109983 System Identification in Presence of Outliers
Authors: Chao Yu, Qing-Guo Wang, Dan Zhang
Abstract:
The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising
Procedia PDF Downloads 308982 Toward a Methodology of Visual Rhetoric with Constant Reference to Mikhail Bakhtin’s Concept of “Chronotope”: A Theoretical Proposal and Taiwan Case Study
Authors: Hsiao-Yung Wang
Abstract:
This paper aims to elaborate methodology of visual rhetoric with constant reference to Mikhail Bakhtin’s concept of “chronotope”. First, it attempts to outline Ronald Barthes, the most representative scholar of visual rhetoric and structuralism, perspective on visual rhetoric and its time-space category by referring to the concurrent word-image, the symbolic systematicity, the outer dialogicity. Second, an alternative approach is explored for grasping the dynamics and functions of visual rhetoric by articulating Mikhail Bakhtin’s concept of “chronotope.” Furthermore, that visual rhetorical consciousness could be identified as “the meaning parabola which projects from word to image,” “the symbolic system which proceeds from sequence to disorder,” “the ideological environment which struggles from the local to the global.” Last but not least, primary vision of the 2014 Taipei LGBT parade would be analyzed preliminarily to evaluate the effectiveness and persuasiveness embodied by specific visual rhetorical strategies. How Bakhtin’s concept of “chronotope” to explain the potential or possible ideological struggle deployed by visual rhetoric might be interpreted empirically and extensively.Keywords: barthes, chronotope, Mikhail Bakhtin, Taipei LGBT parade, visual rhetoric
Procedia PDF Downloads 480981 Energy System Analysis Using Data-Driven Modelling and Bayesian Methods
Authors: Paul Rowley, Adam Thirkill, Nick Doylend, Philip Leicester, Becky Gough
Abstract:
The dynamic performance of all energy generation technologies is impacted to varying degrees by the stochastic properties of the wider system within which the generation technology is located. This stochasticity can include the varying nature of ambient renewable energy resources such as wind or solar radiation, or unpredicted changes in energy demand which impact upon the operational behaviour of thermal generation technologies. An understanding of these stochastic impacts are especially important in contexts such as highly distributed (or embedded) generation, where an understanding of issues affecting the individual or aggregated performance of high numbers of relatively small generators is especially important, such as in ESCO projects. Probabilistic evaluation of monitored or simulated performance data is one technique which can provide an insight into the dynamic performance characteristics of generating systems, both in a prognostic sense (such as the prediction of future performance at the project’s design stage) as well as in a diagnostic sense (such as in the real-time analysis of underperforming systems). In this work, we describe the development, application and outcomes of a new approach to the acquisition of datasets suitable for use in the subsequent performance and impact analysis (including the use of Bayesian approaches) for a number of distributed generation technologies. The application of the approach is illustrated using a number of case studies involving domestic and small commercial scale photovoltaic, solar thermal and natural gas boiler installations, and the results as presented show that the methodology offers significant advantages in terms of plant efficiency prediction or diagnosis, along with allied environmental and social impacts such as greenhouse gas emission reduction or fuel affordability.Keywords: renewable energy, dynamic performance simulation, Bayesian analysis, distributed generation
Procedia PDF Downloads 495980 An Internet of Things-Based Weight Monitoring System for Honey
Authors: Zheng-Yan Ruan, Chien-Hao Wang, Hong-Jen Lin, Chien-Peng Huang, Ying-Hao Chen, En-Cheng Yang, Chwan-Lu Tseng, Joe-Air Jiang
Abstract:
Bees play a vital role in pollination. This paper focuses on the weighing process of honey. Honey is usually stored at the comb in a hive. Bee farmers brush bees away from the comb and then collect honey, and the collected honey is weighed afterward. However, such a process brings strong negative influences on bees and even leads to the death of bees. This paper therefore presents an Internet of Things-based weight monitoring system which uses weight sensors to measure the weight of honey and simplifies the whole weighing procedure. To verify the system, the weight measured by the system is compared to the weight of standard weights used for calibration by employing a linear regression model. The R2 of the regression model is 0.9788, which suggests that the weighing system is highly reliable and is able to be applied to obtain actual weight of honey. In the future, the weight data of honey can be used to find the relationship between honey production and different ecological parameters, such as bees’ foraging behavior and weather conditions. It is expected that the findings can serve as critical information for honey production improvement.Keywords: internet of things, weight, honey, bee
Procedia PDF Downloads 459979 An Early Attempt of Artificial Intelligence-Assisted Language Oral Practice and Assessment
Authors: Paul Lam, Kevin Wong, Chi Him Chan
Abstract:
Constant practicing and accurate, immediate feedback are the keys to improving students’ speaking skills. However, traditional oral examination often fails to provide such opportunities to students. The traditional, face-to-face oral assessment is often time consuming – attending the oral needs of one student often leads to the negligence of others. Hence, teachers can only provide limited opportunities and feedback to students. Moreover, students’ incentive to practice is also reduced by their anxiety and shyness in speaking the new language. A mobile app was developed to use artificial intelligence (AI) to provide immediate feedback to students’ speaking performance as an attempt to solve the above-mentioned problems. Firstly, it was thought that online exercises would greatly increase the learning opportunities of students as they can now practice more without the needs of teachers’ presence. Secondly, the automatic feedback provided by the AI would enhance students’ motivation to practice as there is an instant evaluation of their performance. Lastly, students should feel less anxious and shy compared to directly practicing oral in front of teachers. Technically, the program made use of speech-to-text functions to generate feedback to students. To be specific, the software analyzes students’ oral input through certain speech-to-text AI engine and then cleans up the results further to the point that can be compared with the targeted text. The mobile app has invited English teachers for the pilot use and asked for their feedback. Preliminary trials indicated that the approach has limitations. Many of the users’ pronunciation were automatically corrected by the speech recognition function as wise guessing is already integrated into many of such systems. Nevertheless, teachers have confidence that the app can be further improved for accuracy. It has the potential to significantly improve oral drilling by giving students more chances to practice. Moreover, they believe that the success of this mobile app confirms the potential to extend the AI-assisted assessment to other language skills, such as writing, reading, and listening.Keywords: artificial Intelligence, mobile learning, oral assessment, oral practice, speech-to-text function
Procedia PDF Downloads 104978 Evaluation and Fault Classification for Healthcare Robot during Sit-To-Stand Performance through Center of Pressure
Authors: Tianyi Wang, Hieyong Jeong, An Guo, Yuko Ohno
Abstract:
Healthcare robot for assisting sit-to-stand (STS) performance had aroused numerous research interests. To author’s best knowledge, knowledge about how evaluating healthcare robot is still unknown. Robot should be labeled as fault if users feel demanding during STS when they are assisted by robot. In this research, we aim to propose a method to evaluate sit-to-stand assist robot through center of pressure (CoP), then classify different STS performance. Experiments were executed five times with ten healthy subjects under four conditions: two self-performed STSs with chair heights of 62 cm and 43 cm, and two robot-assisted STSs with chair heights of 43 cm and robot end-effect speed of 2 s and 5 s. CoP was measured using a Wii Balance Board (WBB). Bayesian classification was utilized to classify STS performance. The results showed that faults occurred when decreased the chair height and slowed robot assist speed. Proposed method for fault classification showed high probability of classifying fault classes form others. It was concluded that faults for STS assist robot could be detected by inspecting center of pressure and be classified through proposed classification algorithm.Keywords: center of pressure, fault classification, healthcare robot, sit-to-stand movement
Procedia PDF Downloads 197977 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 203976 Carbon Coated Yarn Supercapacitors: Parametric Study of Performance Output
Authors: Imtiaz Ahmed Khan, Sabu John, Sania Waqar, Lijing Wang, Mac Fergusson, Ilija Najdovski
Abstract:
Evolution of textiles, from its orthodox to more interactive role has stirred the researchers to uncover its application in numerous arenas. The idea of using textile based materials for wearable energy harvesting and storage devices have gained immense popularity. This is mainly due to textile comfort and flexibility features. In this work, nano-carbonous materials were infused on cellulosic fibers using caustic soda treatment. This paper presents the complete procedure of yarn supercapacitors fabrication process through dip coating technique and its characterization method. The main objective is to study, the effect of varying caustic soda concentration on mass loading of activated carbon on yarns and the related capacitance output of the designed yarn supercapacitor. Polyvinyl alcohol and Phosphoric acid were used as electrolyte in a two-electrode cell assembly to measure device electrochemical performance. The results show a promising increase in capacitance value using this technique.Keywords: yarn supercapacitors, activated carbon, dip coating, caustic soda, electrolyte, electrochemical characterization
Procedia PDF Downloads 464975 Electrospinning in situ Synthesis of Graphene-Doped Copper Indium Disulfide Composite Nanofibers for Efficient Counter Electrode in Dye-Sensitized Solar Cells
Authors: Lidan Wang, Shuyuan Zhao, Jianxin He
Abstract:
In this paper, graphene-doped copper indium disulfide (rGO+CuInS2) composite nanofibers were fabricated via electrospinning, in situ synthesis, and carbonization, using polyvinyl pyrrolidone (PVP), copper dichloride (CuCl2), indium trichloride (InCl3), thiourea (C2H5NS) and graphene oxide nanosheets (Go) as the precursor solution for electrospinning. The average diameter of rGO+CuInS2 nanofibers were about 100 nm, and graphene nanosheets anchored with chalcopyrite CuInS2 nanocrystals 8-15 nm in diameter were overlapped and embedded, aligning along the fiber axial direction. The DSSC with a rGO+CuInS2 counter electrode exhibits a power conversion efficiency of 5.93%; better than the corresponding values for a DSSC with a CuInS2 counter electrode, and comparable to that of a reference DSSC with a Pt counter electrode. The excellent photoelectric performance of the rGO+CuInS2 counter electrode was attributed to its high specific surface area, which facilitated permeation of the liquid electrolytes, promoted electron and ion transfer and provided numerous catalytically active sites for the oxidation reaction of the electrolytic (I- /I3-).Keywords: dye-sensitized solar cells, counter electrode, electrospinning, graphene
Procedia PDF Downloads 458974 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 20973 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 145972 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved
Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben
Abstract:
Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons
Procedia PDF Downloads 398971 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development
Procedia PDF Downloads 84970 Review of Student-Staff Agreements in Higher Education: Creating a Framework
Authors: Luke Power, Paul O'Leary
Abstract:
Research has long described the enhancement of student engagement as a fundamental aim of delivering a consistent, lifelong benefit to student success across the multitude of dimensions a quality HE (higher education) experience offers. Engagement may take many forms, with Universities and Institutes across the world attempting to define the parameters which constitutes a successful student engagement framework and implementation strategy. These efforts broadly include empowering students, encouraging involvement, and the transfer of decision-making power through a variety of methods with the goal of obtaining a meaningful partnership between students and staff. As the Republic of Ireland continues to observe an increasing population transferring directly from secondary education to HE institutions, it falls on these institutions to research and develop effective strategies which insures the growing student population have every opportunity to engage with their education, research community, and staff. This research systematically reviews SPAs (student partnership agreements) which are currently in the process of being defined, and/or have been adopted at HE institutions, worldwide. Despite the demonstrated importance of a student-staff partnership to the overall student engagement experience, there is no obvious framework or model by which to begin this process. This work will therefore provide a novel analysis of student-staff agreements which will focus on examining the factors of success common to each and builds towards a workable and applicable framework using critical review, analysis of the key words, phraseology, student involvement, and the broadly applicable HE traits and values. Following the analysis, this work proposes SPA ‘toolkit’ with input from key stakeholders such as students, staff, faculty, and alumni. The resulting implications for future research and the lessons learned from the development and implementation of the SPA will aid the systematic implementation of student-staff agreements in Ireland and beyond.Keywords: student engagement, student partnership agreements, student-staff partnerships, higher education, systematic review, democratising students, empowering students, student unions
Procedia PDF Downloads 183969 A QoE-driven Cross-layer Resource Allocation Scheme for High Traffic Service over Open Wireless Network Downlink
Authors: Liya Shan, Qing Liao, Qinyue Hu, Shantao Jiang, Tao Wang
Abstract:
In this paper, a Quality of Experience (QoE)-driven cross-layer resource allocation scheme for high traffic service over Open Wireless Network (OWN) downlink is proposed, and the related problem about the users in the whole cell including the users in overlap region of different cells has been solved.A method, in which assess models of the BestEffort service and the no-reference assess algorithm for video service are adopted, to calculate the Mean Opinion Score (MOS) value for high traffic service has been introduced. The cross-layer architecture considers the parameters in application layer, media access control layer and physical layer jointly. Based on this architecture and the MOS value, the Binary Constrained Particle Swarm Optimization (B_CPSO) algorithm is used to solve the cross-layer resource allocation problem. In addition,simulationresults show that the proposed scheme significantly outperforms other schemes in terms of maximizing average users’ MOS value for the whole system as well as maintaining fairness among users.Keywords: high traffic service, cross-layer resource allocation, QoE, B_CPSO, OWN
Procedia PDF Downloads 541968 The Fabrication and Characterization of Hierarchical Carbon Nanotube/Carbon Fiber/High-Density Polyethylene Composites via Twin-Screw Extrusion
Authors: Chao Hu, Xinwen Liao, Qing-Hua Qin, Gang Wang
Abstract:
The hierarchical carbon nanotube (CNT)/carbon fiber (CF)/high density polyethylene (HDPE) was fabricated via compound extrusion and injection molding, in which to author’s best knowledge CNT was employed as a nano-coatings on the surface of CF for the first time by spray coating technique. The CNT coatings relative to CF was set at 1 wt% and the CF content relative to the composites varied from 0 to 25 wt% to study the influence of CNT coatings and CF contents on the mechanical, thermal and morphological performance of this hierarchical composites. The results showed that with the rise of CF contents, the mechanical properties, including the tensile properties, flexural properties, and hardness of CNT/CF/HDPE composites, were effectively improved. Furthermore, the CNT-coated composites showed overall higher mechanical performance than the uncoated counterparts. It can be ascribed to the enhancement of interfacial bonding between the CF and HDPE via the incorporation of CNT, which was demonstrated by the scanning electron microscopy observation. Meanwhile, the differential scanning calorimetry data indicated that by the introduction of CNT and CF, the crystallization temperature and crystallinity of HDPE were affected while the melting temperature did not have an obvious alteration.Keywords: carbon fibers, carbon nanotubes, extrusion, high density polyethylene
Procedia PDF Downloads 138967 A Neural Network for the Prediction of Contraction after Burn Injuries
Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen
Abstract:
A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound
Procedia PDF Downloads 56966 Exploring the Visual Roots of Classical Rhetoric and Its Implication for Gender Politics: Reflection upon Roman Rhetoric from a Bakhtin's Perspective
Authors: Hsiao-Yung Wang
Abstract:
This study aims to explore the visual roots of classical rhetoric and its implication for gender politics by the constant reference to Mikhail Bakhtin’s theory of novelist time. First, it attempts to clarify the argument that “visuality always has been integral to rhetorical consciousness” by critically re-reading the rhetorical theories of roman rhetorician such as Cicero and Quintilian. Thereby, the vague clues of visuality would be realized from the so-called ‘five canons of rhetoric’ (invention, arrangement, style, memory, and delivery), which originally deriving from verbal and spoken rhetorical tradition. Drawing on Mikhail Bakhtin’s elaboration of novelist time in contrast to epic time, it addresses the specific timeline inherent in the dynamics of visual rhetoric involves the refusing the ‘absolute past’, the focusing on unfinalized contemporary reality, and the expecting for open future. Taking the primary visions of Taipei LGBT parade over the past 13 years as research cases, it mentions that visuality could not only activate the rhetorical functions of classical rhetoric, but also inspire gender politics in the contemporary era.Keywords: classical rhetoric, gender politics, Mikhail Bakhtin, visuality
Procedia PDF Downloads 381965 The Renewal Strategy for Ancient Residential Area in Small and Medium-Sized Cities Based on Field Research of Changshu City in China
Abstract:
Renewing ancient residential areas is an integral part of the sustainable development of modern cities. Compared with a metropolis, the old areas of small and medium-sized cities is more complicated to update, as the spatial form is more fragmented. In this context, the author takes as the research object, the ancient town of Changshu City, which is a small city representative in China with a history of more than 1,200 years. Through the analysis of urban research and update projects, the spatial evolution characteristics and renewal strategies of small ancient urban settlements are studied. On this basis, it is proposed to protect the residential area from the perspective of integrity and sustainability, strengthen the core public part, control the district building, and reshape the important interface. Renewing small and medium-sized urban areas should respect the rhythm of their own urban development and gradually complete the update, not blindly copying the experience of large cities.Keywords: ancient residential area, Changshu, city renewal strategy, small and medium-sized cities
Procedia PDF Downloads 118964 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules
Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju
Abstract:
As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis
Procedia PDF Downloads 642963 Climate Change Impacts on Oyster Aquaculture - Part I: Identification of Key Factors
Authors: Emmanuel Okine Neokye, Xiuquan Wang, Krishna K. Thakur, Pedro Quijon, Rana Ali Nawaz, , Sana Basheer
Abstract:
Oysters are enriched with high-quality protein and are widely known for their exquisite taste. The production of oysters plays an important role in the local economies of coastal communities in many countries, including Atlantic Canada, because of their high economic value. However, because of the changing climatic conditions in recent years, oyster aquaculture faces potentially negative impacts, such as increasing water acidification, rising water temperatures, high salinity, invasive species, algal blooms, and other environmental factors. Although a few isolated effects of climate change on oyster aquaculture have been reported in recent years, it is not well understood how climate change will affect oyster aquaculture from a systematic perspective. In the first part of this study, we present a systematic review of the impacts of climate change and some key environmental factors affecting oyster production on a global scale. The study also identifies knowledge gaps and challenges. In addition, we present key research directions that will facilitate future investigations.Keywords: climate change, oyster production, oyster aquaculture, greenhouse gases
Procedia PDF Downloads 18962 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise
Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang
Abstract:
Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.Keywords: electromyographic feature extraction, muscle status, pedaling exercise, relaxation segment
Procedia PDF Downloads 303961 A Middle Way Approach for the Conflicts between Death, Impermanence and Non-Self in Buddhist Philosophy
Authors: Ruotian Wang
Abstract:
Since the birth of the Buddha himself more than 2000 years ago, Buddhism has continued to lead many people’s lives. Scholars and Buddhists have contributed to give detailed explanations to all kinds of issues within the structure of Buddhist philosophy to make Buddhism more complete. Different schools have developed, therefore leading to a lot of different branches within Buddhism. Although they all follow what the Buddha himself taught, they still have various explanations to even fundamental issues. As one of the fundamental problems regarding our lives, death is widely discussed in Buddhism. The controversy regarding death is its seemly incompatibility with the idea of non-self and impermanence, which is what I will discuss in this essay. The idea of rebirth is the basic structure of birth and death, which suggests a connection between this life and the next. Therefore, according to common logic, we should tell that there is something that connects each life, an agent that receives the process of rebirth, which is normally known as a soul. In Buddhism, non-self is also an important concept which speaks to the illusion of a self or soul. The idea of rebirth and non-self seems contradicted. Many different schools of Buddhism attempt to resolve such conflicts, but there are logical flaws within the arguments they made. Thus, I raise a better solution: Different from the annihilationist view, non-self in Buddhism speaks only to the illusion of a self in each moment. There is a self that exists as a sum of all our karmas which we can achieve after Nirvana. However, the nature of such a self is still emptiness. There are no agents needed as one rebirth since the whole cycle of rebirth is the self. Then, the contradiction between rebirth and non-self can be resolved.Keywords: Buddhism, impermanence, non-self, reincarnation
Procedia PDF Downloads 123