Search results for: empirical marker method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21239

Search results for: empirical marker method

12689 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps

Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev

Abstract:

The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.

Keywords: computing experiment, hydroelasticity, physical experiment, vibration

Procedia PDF Downloads 243
12688 Fuzzy Logic-Based Approach to Predict Fault in Transformer Oil Based on Health Index Using Dissolved Gas Analysis

Authors: Kharisma Utomo Mulyodinoto, Suwarno, Ahmed Abu-Siada

Abstract:

Transformer insulating oil is a key component that can be utilized to detect incipient faults within operating transformers without taking them out of service. Dissolved gas-in-oil analysis has been widely accepted as a powerful technique to detect such incipient faults. While the measurement of dissolved gases within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straightforward as it depends on personnel expertise more than mathematical formulas. In analyzing such data, the generation rate of each dissolved gas is of more concern than the absolute value of the gas. As such, history of dissolved gases within a particular transformer should be archived for future comparison. Lack of such history may lead to misinterpretation of the obtained results. IEEE C57.104-2008 standards have classified the health condition of the transformer based on the absolute value of individual dissolved gases along with the total dissolved combustible gas (TDCG) within transformer oil into 4 conditions. While the technique is easy to implement, it is considered as a very conservative technique and is not widely accepted as a reliable interpretation tool. Moreover, measured gases for the same oil sample can be within various conditions limits and hence, misinterpretation of the data is expected. To overcome this limitation, this paper introduces a fuzzy logic approach to predict the health condition of the transformer oil based on IEEE C57.104-2008 standards along with Roger ratio and IEC ratio-based methods. DGA results of 31 chosen oil samples from 469 transformer oil samples of normal transformers and pre-known fault-type transformers that were collected from Indonesia Electrical Utility Company, PT. PLN (Persero), from different voltage rating: 500/150 kV, 150/20 kV, and 70/20 kV; different capacity: 500 MVA, 60 MVA, 50 MVA, 30 MVA, 20 MVA, 15 MVA, and 10 MVA; and different lifespan, are used to test and establish the fuzzy logic model. Results show that the proposed approach is of good accuracy and can be considered as a platform toward the standardization of the dissolved gas interpretation process.

Keywords: dissolved gas analysis, fuzzy logic, health index, IEEE C57.104-2008, IEC ratio method, Roger ratio method

Procedia PDF Downloads 153
12687 Preliminary Composite Overwrapped Pressure Vessel Design for Hydrogen Storage Using Netting Analysis and American Society of Mechanical Engineers Section X

Authors: Natasha Botha, Gary Corderely, Helen M. Inglis

Abstract:

With the move to cleaner energy applications the transport industry is working towards on-board hydrogen, or compressed natural gas-fuelled vehicles. A popular method for storage is to use composite overwrapped pressure vessels (COPV) because of their high strength to weight ratios. The proper design of these COPVs are according to international standards; this study aims to provide a preliminary design for a 350 Bar Type IV COPV (i.e. a polymer liner with a composite overwrap). Netting analysis, a popular analytical approach, is used as a first step to generate an initial design concept for the composite winding. This design is further improved upon by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel standards, Section X: Fibre-reinforced composite pressure vessels. A design program based on these two approaches is developed using Python. A numerical model of a burst test simulation is developed based on the two approaches and compared. The results indicate that the netting analysis provides a good preliminary design, while the ASME-based design is more robust and accurate as it includes a better approximation of the material behaviour. Netting analysis is an easy method to follow when considering an initial concept design for the composite winding when not all the material characteristics are known. Once these characteristics have been fully defined with experimental testing, an ASME-based design should always be followed to ensure that all designs conform to international standards and practices. Future work entails more detailed numerical testing of the design for improvement, this will include the boss design. Once finalised prototype manufacturing and experimental testing will be conducted, and the results used to improve on the COPV design.

Keywords: composite overwrapped pressure vessel, netting analysis, design, American Society of Mechanical Engineers section x, fiber-reinforced, hydrogen storage

Procedia PDF Downloads 245
12686 Propagation of Cos-Gaussian Beam in Photorefractive Crystal

Authors: A. Keshavarz

Abstract:

A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed.

Keywords: beam propagation, cos-Gaussian beam, numerical simulation, photorefractive crystal

Procedia PDF Downloads 496
12685 Comparison of Medical Students Evaluation by Serious Games and Clinical Case-Multiple Choice Questions

Authors: Chamtouri I., Kechida M.

Abstract:

Background: Evaluation has a prominent role in medical education and graduation. This evaluation has usually done in face-to-face, by written or oral questions. Simulation is increasingly taking a part as a method of evaluation. Due to the Covid-19 pandemic, which disrupted face-to-face evaluation, simulation using serious games (SG) is emerging in the field of training and assessment of medical students. The aim of our study is to compare the results of the evaluation of medical students by virtual simulation by online serious games versus clinical case-multiple choice questions (MCQ) and to assess the degree of satisfaction from these two evaluation methods. Methods: Medical students from the same study level were voluntarily participated in this study. Groupe 1 had an evaluation by SG dealing with “diagnosis and management of ST-segment elevationmyocardialinfarction (STEMI)alreadyprepared on the website www.Mediactiv.com. Groupe 2 were evaluated by clinical case-MCQ having thes same topic as SG. Results of the two groups were compared. Satisfaction questionnaire was filled by the two groups. Satisfaction degree was compared between the two groups. Results. In this study, 64 medical students (G1:31 and G2: 33) were enrolled. Obtaining complete notes in the "questioning" and "clinical examination" parts is significantly more important in-group 1 compared to group 2. No significant difference detected between the two groups in terms of “ECG interpretation” and “diagnosis of STEMI” parts. A greater number of students of group 1 obtained the full note compared to group 2 in “the initial treatment part” (54.8% vs. 39.4%; p = 0.04). Thirty learners (96.8%) in-group 1 obtained a total score ≥ 50% versus 69.7% in-group 2 (p = 0.004). The full score of 100% was obtained in three learners in-group1, while no student scored 100% in-group2 (p = 0.027). Medical evaluation using SG was reported as more innovative, fun, and realistic compared to evaluation by clinical case-MCQ. No significant difference detected between the two methods in terms of stress. Conclusion: Simulation by SG can be considered as an innovative and effective method in evaluating medical students with a higher degree of satisfaction.

Keywords: evaluation, serious games, medical students, satisfaction

Procedia PDF Downloads 138
12684 Multi-Agent System Based Distributed Voltage Control in Distribution Systems

Authors: A. Arshad, M. Lehtonen. M. Humayun

Abstract:

With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.

Keywords: distributed voltage control, distribution system, multi-agent systems, smart grids

Procedia PDF Downloads 308
12683 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 119
12682 Structure Modification of Leonurine to Improve Its Potency as Aphrodisiac

Authors: Ruslin, R. E. Kartasasmita, M. S. Wibowo, S. Ibrahim

Abstract:

An aphrodisiac is a substance contained in food or drug that can arouse sexual instinct and increase pleasure while working, these substances derived from plants, animals, and minerals. When consuming substances that have aphrodisiac activity and duration can improve the sexual instinct. The natural aphrodisiac effect can be obtained through plants, animals, and minerals. Leonurine compound has aphrodisiac activity, these compounds can be isolated from plants of Leonurus Sp, Sundanese people is known as deundereman, this plant is empirical has aphrodisiac activity and based on the isolation of active compounds from plants known to contain compounds leonurine, so that the compound is expected to have activity aphrodisiac. Leonurine compound can be isolated from plants or synthesized chemically with material dasa siringat acid. Leonurine compound can be obtained commercial and derivatives of these compounds can be synthesized in an effort to increase its activity. This study aims to obtain derivatives leonurine better aphrodisiac activity compared with the parent compound, modified the structure of the compounds in the form leonurin guanidino butyl ester group with butyl amin and bromoetanol. ArgusLab program version 4.0.1 is used to determine the binding energy, hydrogen bonds and amino acids involved in the interaction of the compound PDE5 receptor. The in vivo test leonurine compounds and derivatives as an aphrodisiac ingredients and hormone testosterone levels using 27 male rats Wistar strain and 9 female mice of the same species, ages ranged from 12 weeks rats weighing + 200 g / tail. The test animal is divided into 9 groups according to the type of compounds and the dose given. Each treatment group was orally administered 2 ml per day for 5 days. On the sixth day was observed male rat sexual behavior and taking blood from the heart to measure testosterone levels using ELISA technique. Statistical analysis was performed in this study is the ANOVA test Least Square Differences (LSD) using the program Statistical Product and Service Solutions (SPSS). Aphrodisiac efficacy of the leonurine compound and its derivatives have proven in silico and in vivo test, the in silico testing leonurine derivatives have smaller binding energy derivatives leonurine so that activity better than leonurine compounds. Testing in vivo using rats of wistar strain that better leonurine derivative of this compound shows leonurine that in silico studies in parallel with in vivo tests. Modification of the structure in the form of guanidine butyl ester group with butyl amin and bromoethanol increase compared leonurine compound for aphrodisiac activity, testosterone derivatives of compounds leonurine experienced a significant improvement especial is 1RD compounds especially at doses of 100 and 150 mg/bb. The results showed that the compound leonurine and its compounds contain aphrodisiac activity and increase the amount of testosterone in the blood. The compound test used in this study acts as a steroid precursor resulting in increased testosterone.

Keywords: aphrodisiac dysfunction erectile leonurine 1-RD 2-RD, dysfunction, erectile leonurine, 1-RD 2-RD

Procedia PDF Downloads 274
12681 Pulse Generator with Constant Pulse Width

Authors: Rozita Borhan, Hanif Che Lah, Wee Leong Son

Abstract:

This paper is about method to produce a stable and accurate constant output pulse width regardless of the amplitude, period and pulse width variation of the input signal source. The pulse generated is usually being used in numerous applications as the reference input source to other circuits in the system. Therefore, it is crucial to produce a clean and constant pulse width to make sure the system is working accurately as expected.

Keywords: amplitude, Constant Pulse Width, frequency divider, pulse generator

Procedia PDF Downloads 390
12680 Supply Chain of Energy Resources and Its Alternatives Due to the Arab Spring: The Case of Egyptian Natural Gas Flow to Jordan

Authors: Moh’d Anwer Al-Shboul

Abstract:

The year 2011 was a challenging year for Jordanian economy, which felt a variety of effects from the Arab Spring which took place in neighboring countries. Since February, 5th 2012, the Arab Gas Supply Pipeline, which carries natural gas from Egypt through the Sinai Peninsula and to Jordan and Israel, has been attacked more than 39 times. Jordan imported about 80 percent of its necessity of natural gas (about 250 million cubic feet of natural gas per day) from Egypt to generate particularly electricity, with the reminder of being produced locally. Jordan has utilized multiple alternatives to address the interruption of available natural gas supply from Egypt. The Jordanian distributed power plants now rely on the use of heavy fuel oil and diesel for electricity generation, in this case, it costs Jordan about four times than natural gas. The substitution of Egyptian natural gas supplies by fuel oil and diesel, coupled with the 32 percent rise in global fuel prices, has increased Jordan’s energy import bill by over 50 percent in 2011, reaching more than 16 percent of the 2011 GDP. The increase in the cost of electricity generation pushed the Jordanian economy to borrow from multiple internal and external resource channels, thus increasing the public debt. The Jordanian government’s short-term solution to the reduced natural gas supply from Egypt was alternatively purchasing the necessary quantities from some Gulf countries such as Qatar and/or Saudi Arabia, which can be imported with two possible methods. The first method is to rent a ship equipped with a liquefied natural gas (LNG) terminal, which is currently operating. The second method requires equipping the Aqaba port with an LNG terminal, which also currently is operating. In the long-term, a viable solution to depending on importing expensive and often unreliable natural gas supplies from surrounding countries is to depend more heavily on renewable supply energy, including solar, wind, and water energy.

Keywords: energy supply resources, Arab spring, liquefied natural gas, pipeline, Jordan

Procedia PDF Downloads 137
12679 Geopolymerization Methods for Clay Soils Treatment

Authors: Baba Hassane Ahmed Hisseini, Abdelkrim Bennabi, Rabah Hamzaoui, Lamis Makki, Gaetan Blanck

Abstract:

Most of the clay soils are known as problematic soils due to their water content, which varies greatly over time. It is observed that they are used to be subject to shrinkage and swelling, thus causing a problem of stability on the structures of civil engineering construction work. They are often excavated and placed in a storage area giving rise to the opening of new quarries. This method has become obsolete today because to protect the environment, we are leading to think differently and opening the way to new research for the improvement of the performance of this type of clay soils to reuse them in the construction field. The solidification and stabilization technique is used to improve the properties of poor quality soils to transform them into materials with a suitable performance for a new use in the civil engineering field rather than to excavate them and store them in the discharge area. In our case, the polymerization method is used for bad clay soils classified as high plasticity soil class A4 according to the French standard NF P11-300, where classical treatment methods with cement or lime are not efficient. Our work concerns clay soil treatment study using raw materials as additives for solidification and stabilization. The geopolymers are synthesized by aluminosilicates materials like fly ash, metakaolin, or blast furnace slag and activated by alkaline solution based on sodium hydroxide (NaOH), sodium silicate (Na2SiO3) or a mixture of both of them. In this study, we present the mechanical properties of the soil clay (A4 type) evolution with geopolymerisation methods treatment. Various mix design of aluminosilicates materials and alkaline solutions were carried at different percentages and different curing times of 1, 7, and 28 days. The compressive strength of the untreated clayey soil could be increased from simple to triple. It is observed that the improvement of compressive strength is associated with a geopolymerization mechanism. The highest compressive strength was found with metakaolin at 28 days.

Keywords: treatment and valorization of clay-soil, solidification and stabilization, alkali-activation of co-product, geopolymerization

Procedia PDF Downloads 158
12678 Application of Hydrological Engineering Centre – River Analysis System (HEC-RAS) to Estuarine Hydraulics

Authors: Julia Zimmerman, Gaurav Savant

Abstract:

This study aims to evaluate the efficacy of the U.S. Army Corp of Engineers’ River Analysis System (HEC-RAS) application to modeling the hydraulics of estuaries. HEC-RAS has been broadly used for a variety of riverine applications. However, it has not been widely applied to the study of circulation in estuaries. This report details the model development and validation of a combined 1D/2D unsteady flow hydraulic model using HEC-RAS for estuaries and they are associated with tidally influenced rivers. Two estuaries, Galveston Bay and Delaware Bay, were used as case studies. Galveston Bay, a bar-built, vertically mixed estuary, was modeled for the 2005 calendar year. Delaware Bay, a drowned river valley estuary, was modeled from October 22, 2019, to November 5, 2019. Water surface elevation was used to validate both models by comparing simulation results to NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) gauge data. Simulations were run using the Diffusion Wave Equations (DW), the Shallow Water Equations, Eulerian-Lagrangian Method (SWE-ELM), and the Shallow Water Equations Eulerian Method (SWE-EM) and compared for both accuracy and computational resources required. In general, the Diffusion Wave Equations results were found to be comparable to the two Shallow Water equations sets while requiring less computational power. The 1D/2D combined approach was valid for study areas within the 2D flow area, with the 1D flow serving mainly as an inflow boundary condition. Within the Delaware Bay estuary, the HEC-RAS DW model ran in 22 minutes and had an average R² value of 0.94 within the 2-D mesh. The Galveston Bay HEC-RAS DW ran in 6 hours and 47 minutes and had an average R² value of 0.83 within the 2-D mesh. The longer run time and lower R² for Galveston Bay can be attributed to the increased length of the time frame modeled and the greater complexity of the estuarine system. The models did not accurately capture tidal effects within the 1D flow area.

Keywords: Delaware bay, estuarine hydraulics, Galveston bay, HEC-RAS, one-dimensional modeling, two-dimensional modeling

Procedia PDF Downloads 197
12677 Using 3-Glycidoxypropyltrimethoxysilane Functionalized Silica Nanoparticles to Improve Flexural Properties of E-Glass/Epoxy Grid-Stiffened Composite Panels

Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh

Abstract:

Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. Also, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.

Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties, energy absorption

Procedia PDF Downloads 244
12676 Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method

Authors: Nhan N. T. Ton, Anh T. N. Dao, Kouichirou Katou, Toshiaki Taniike

Abstract:

Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively.

Keywords: chemical exfoliation, photocatalyst, TiO₂/graphene, sol-gel reaction

Procedia PDF Downloads 155
12675 Relevance of Technology on Education

Authors: Felicia K. Oluwalola

Abstract:

This paper examines the relevance of technology on education. It identified the concept of technology on education, bringing real-world learning to the classroom situation, examples of where technology can be used. This study established the fact that technology facilitates students learning compared with traditional method of teaching. It was recommended that the teachers should use technology to supplement, not replace, other instructional modes. It should be used in conjunction with hands-on labs and activities that also address the concepts targeted by the technology. Also, technology should be students centered and not teachers centered.

Keywords: computer, simulation, classroom teaching, education

Procedia PDF Downloads 447
12674 Sorting Fish by Hu Moments

Authors: J. M. Hernández-Ontiveros, E. E. García-Guerrero, E. Inzunza-González, O. R. López-Bonilla

Abstract:

This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production.

Keywords: counting fish, digital image processing, invariant moments, pattern recognition

Procedia PDF Downloads 404
12673 Solid Lipid Nanoparticles of Levamisole Hydrochloride

Authors: Surendra Agrawal, Pravina Gurjar, Supriya Bhide, Ram Gaud

Abstract:

Levamisole hydrochloride is a prominent anticancer drug in the treatment of colon cancer but resulted in toxic effects due poor bioavailability and poor cellular uptake by tumor cells. Levamisole is an unstable drug. Incorporation of this molecule in solid lipids may minimize their exposure to the aqueous environment and partly immobilize the drug molecules within the lipid matrix-both of which may protect the encapsulated drugs against degradation. The objectives of the study were to enhance bioavailability by sustaining drug release and to reduce the toxicities associated with the therapy. Solubility of the drug was determined in different lipids to select the components of Solid Lipid Nanoparticles (SLN). Pseudoternary phase diagrams were created using aqueous titration method. Formulations were subjected to particle size and stability evaluation to select the final test formulations which were characterized for average particle size, zeta potential, and in-vitro drug release and percentage transmittance to optimize the final formulation. SLN of Levamisole hydrochloride was prepared by Nanoprecipitation method. Glyceryl behenate (Compritol 888 ATO) was used as core comprising of Tween 80 as surfactant and Lecithin as co-surfactant in (1:1) ratio. Entrapment efficiency (EE) was found to be 45.89%. Particle size was found in the range of 100-600 nm. Zeta potential of the formulation was -17.0 mV revealing the stability of the product. In-vitro release study showed that 66 % drug released in 24 hours in pH 7.2 which represent that formulation can give controlled action at the intestinal environment. In pH 5.0 it showed 64% release indicating that it can even release drug in acidic environment of tumor cells. In conclusion, results revealed SLN to be a promising approach to sustain the drug release so as to increase bioavailability and cellular uptake of the drug with reduction in toxic effects as dose has been reduced with controlled delivery.

Keywords: SLN, nanoparticulate delivery of levamisole, pharmacy, pharmaceutical sciences

Procedia PDF Downloads 428
12672 Delving into Market-Driving Behavior: A Conceptual Roadmap to Delineating Its Key Antecedents and Outcomes

Authors: Konstantinos Kottikas, Vlasis Stathakopoulos, Ioannis G. Theodorakis, Efthymia Kottika

Abstract:

Theorists have argued that Market Orientation is comprised of two facets, namely the Market Driven and the Market Driving components. The present theoretical paper centers on the latter, which to date has been notably under-investigated. The term Market Driving (MD) pertains to influencing the structure of the market, or the behavior of market players in a direction that enhances the competitive edge of the firm. Presently, the main objectives of the paper are the specification of key antecedents and outcomes of Market Driving behavior. Market Driving firms behave proactively, by leading their customers and changing the rules of the game rather than by responding passively to them. Leading scholars were the first to conceptually conceive the notion, followed by some qualitative studies and a limited number of quantitative publications. However, recently, academicians noted that research on the topic remains limited, expressing a strong necessity for further insights. Concerning the key antecedents, top management’s Transformational Leadership (i.e. the form of leadership which influences organizational members by aligning their values, goals and aspirations to facilitate value-consistent behaviors) is one of the key drivers of MD behavior. Moreover, scholars have linked the MD concept with Entrepreneurship. Finally, the role that Employee’s Creativity plays in the development of MD behavior has been theoretically exemplified by a stream of literature. With respect to the key outcomes, it has been demonstrated that MD Behavior positively triggers firm Performance, while theorists argue that it empowers the Competitive Advantage of the firm. Likewise, researchers explicate that MD Behavior produces Radical Innovation. In order to test the robustness of the proposed theoretical framework, a combination of qualitative and quantitative methods is proposed. In particular, the conduction of in-depth interviews with distinguished executives and academicians, accompanied with a large scale quantitative survey will be employed, in order to triangulate the empirical findings. Given that it triggers overall firm’s success, the MD concept is of high importance to managers. Managers can become aware that passively reacting to market conditions is no longer sufficient. On the contrary, behaving proactively, leading the market, and shaping its status quo are new innovative approaches that lead to a paramount competitive posture and Innovation outcomes. This study also exemplifies that managers can foster MD Behavior through Transformational Leadership, Entrepreneurship and recruitment of Creative Employees. To date, the majority of the publications on Market Orientation is unilaterally directed towards the responsive (i.e. the Market Driven) component. The present paper further builds on scholars’ exhortations, and investigates the Market Driving facet, ultimately aspiring to conceptually integrate the somehow fragmented scientific findings, in a holistic framework.

Keywords: entrepreneurial orientation, market driving behavior, market orientation

Procedia PDF Downloads 380
12671 Large-Scale Screening for Membrane Protein Interactions Involved in Platelet-Monocyte Interactions

Authors: Yi Sun, George Ed Rainger, Steve P. Watson

Abstract:

Background: Beyond the classical roles in haemostasis and thrombosis, platelets are important in the initiation and development of various thrombo-inflammatory diseases. In atherosclerosis and deep vein thrombosis, for example, platelets bridge monocytes with endothelium and form heterotypic aggregates with monocytes in the circulation. This can alter monocyte phenotype by inducing their activation, stimulating adhesion and migration. These interactions involve cell surface receptor-ligand pairs on both cells. This list is likely incomplete as new interactions of importance to platelet biology are continuing to be discovered as illustrated by our discovery of PEAR-1 binding to FcεR1α. Results: We have developed a highly sensitive avidity-based assay to identify novel extracellular interactions among 126 recombinantly-expressed platelet cell surface and secreted proteins involved in platelet aggregation. In this study, we will use this method to identify novel platelet-monocyte interactions. We aim to identify ligands for orphan receptors and novel partners of well-known proteins. Identified interactions will be studied in preliminary functional assays to demonstrate relevance to the inflammatory processes supporting atherogenesis. Conclusions: Platelet-monocyte interactions are essential for the development of thromboinflammatory disease. Up until relatively recently, technologies only allow us to limit our studies on each individual protein interaction at a single time. These studies propose for the first time to study the cell surface platelet-monocyte interactions in a systematic large-scale approach using a reliable screening method we have developed. If successful, this will likely to identify previously unknown ligands for important receptors that will be investigated in details and also provide a list of novel interactions for the field. This should stimulate studies on developing alternative therapeutic strategies to treat vascular inflammatory disorders such as atherosclerosis, DVT and sepsis and other clinically important inflammatory conditions.

Keywords: membrane proteins, large-scale screening, platelets, recombinant expression

Procedia PDF Downloads 148
12670 Evaluation of Reliability Flood Control System Based on Uncertainty of Flood Discharge, Case Study Wulan River, Central Java, Indonesia

Authors: Anik Sarminingsih, Krishna V. Pradana

Abstract:

The failure of flood control system can be caused by various factors, such as not considering the uncertainty of designed flood causing the capacity of the flood control system is exceeded. The presence of the uncertainty factor is recognized as a serious issue in hydrological studies. Uncertainty in hydrological analysis is influenced by many factors, starting from reading water elevation data, rainfall data, selection of method of analysis, etc. In hydrological modeling selection of models and parameters corresponding to the watershed conditions should be evaluated by the hydraulic model in the river as a drainage channel. River cross-section capacity is the first defense in knowing the reliability of the flood control system. Reliability of river capacity describes the potential magnitude of flood risk. Case study in this research is Wulan River in Central Java. This river occurring flood almost every year despite some efforts to control floods such as levee, floodway and diversion. The flood-affected areas include several sub-districts, mainly in Kabupaten Kudus and Kabupaten Demak. First step is analyze the frequency of discharge observation from Klambu weir which have time series data from 1951-2013. Frequency analysis is performed using several distribution frequency models such as Gumbel distribution, Normal, Normal Log, Pearson Type III and Log Pearson. The result of the model based on standard deviation overlaps, so the maximum flood discharge from the lower return periods may be worth more than the average discharge for larger return periods. The next step is to perform a hydraulic analysis to evaluate the reliability of river capacity based on the flood discharge resulted from several methods. The selection of the design flood discharge of flood control system is the result of the method closest to bankfull capacity of the river.

Keywords: design flood, hydrological model, reliability, uncertainty, Wulan river

Procedia PDF Downloads 292
12669 Rapid Algorithm for GPS Signal Acquisition

Authors: Fabricio Costa Silva, Samuel Xavier de Souza

Abstract:

A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.

Keywords: GPS, acquisition, complexity, parallelism

Procedia PDF Downloads 530
12668 Creation of S-Box in Blowfish Using AES

Authors: C. Rekha, G. N. Krishnamurthy

Abstract:

This paper attempts to develop a different approach for key scheduling algorithm which uses both Blowfish and AES algorithms. The main drawback of Blowfish algorithm is, it takes more time to create the S-box entries. To overcome this, we are replacing process of S-box creation in blowfish, by using key dependent S-box creation from AES without affecting the basic operation of blowfish. The method proposed in this paper uses good features of blowfish as well as AES and also this paper demonstrates the performance of blowfish and new algorithm by considering different aspects of security namely Encryption Quality, Key Sensitivity, and Correlation of horizontally adjacent pixels in an encrypted image.

Keywords: AES, blowfish, correlation coefficient, encryption quality, key sensitivity, s-box

Procedia PDF Downloads 218
12667 Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR

Authors: Ionut Vintu, Stefan Laible, Ruth Schulz

Abstract:

Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results.

Keywords: 3D LiDAR, agricultural robots, graph-based localization, row detection

Procedia PDF Downloads 135
12666 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.

Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI

Procedia PDF Downloads 343
12665 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin

Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng

Abstract:

The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.

Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin

Procedia PDF Downloads 72
12664 Analysis of Improved Household Solid Waste Management System in Minna Metropolis, Niger State, Nigeria

Authors: M. A. Ojo, E. O. Ogbole, A. O. Ojo

Abstract:

This study analysed improved household solid waste management system in Minna metropolis, Niger state. Multi-staged sampling technique was used to administer 155 questionnaires to respondents, where Minna was divided into two income groups A and B based on the quality of the respondent’s houses. Primary data was collected with the aid of structured questionnaires and analysed using descriptive statistics to obtain results for the socioeconomic characteristics of respondents, types of waste generated and methods of disposing solid waste, the level of awareness and reliability of waste disposal methods as well as the willingness of households to pay for solid waste management in the area. The results revealed that majority of the household heads in the study area were male, 94.20% of the household heads fell between the ages of 21 and 50 and also that 96.80% of them had one form of formal education or the other. The results also revealed that 47.10% and 43.20% of the households generated food wastes and polymers respectively as a major constituent of waste disposed. The results of this study went further to reveal that 81.90% of the household heads were aware of the use of collection cans as a method of waste disposal while only 32.90% of them considered the method highly reliable. Multiple regression was used to determine the factors affecting the willingness of households to pay for waste disposal in the study area. The results showed that 76.10% of the respondents were willing to pay for solid waste management which indicates that households in Minna are concerned and willing to cater for their immediate environment. The multiple regression results revealed that age, income, environmental awareness and household expenditure have a positive and statistically significant relationship with the willingness of households to pay for waste disposal in the area while household size has a negative and statistically significant relationship with households’ willingness to pay. Based on these findings, it was recommended that more waste management services be made readily available to residents of Minna, waste collection service should be privatised to increase their effectiveness through increased competition and also that community participatory approach be used to create more environmental awareness amongst residents.

Keywords: household, solid waste, management, WTP

Procedia PDF Downloads 295
12663 Cereal Bioproducts Conversion to Higher Value Feed by Using Pediococcus Strains Isolated from Spontaneous Fermented Cereal, and Its Influence on Milk Production of Dairy Cattle

Authors: Vita Krungleviciute, Rasa Zelvyte, Ingrida Monkeviciene, Jone Kantautaite, Rolandas Stankevicius, Modestas Ruzauskas, Elena Bartkiene

Abstract:

The environmental impact of agricultural bioproducts from the processing of food crops is an increasing concern worldwide. Currently, cereal bran has been used as a low-value ingredient for both human consumption and animal feed. The most popular bioprocessing technologies for cereal bran nutritional and technological functionality increasing are enzymatic processing and fermentation, and the most popular starters in fermented feed production are lactic acid bacteria (LAB) including pediococci. However, the ruminant digestive system is unique, there are billions of microorganisms which help the cow to digest and utilize nutrients in the feed. To achieve efficient feed utilization and high milk yield, the microorganisms must have optimal conditions, and the disbalance of this system is highly undesirable. Pediococcus strains Pediococcus acidilactici BaltBio01 and Pediococcus pentosaceus BaltBio02 from spontaneous fermented rye were isolated (by rep – PCR method), identified, and characterized by their growth (by Thermo Bioscreen C automatic turbidometer), acidification rate (2 hours in 2.5 pH), gas production (Durham method), and carbohydrate metabolism (by API 50 CH test ). Antimicrobial activities of isolated pediococcus against variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle, and their resistance to antibiotics were evaluated (EFSA-FEEDAP method). The isolated pediococcus strains were cultivated in barley/wheat bran (90 / 10, m / m) substrate, and developed supplements, with high content of valuable pediococcus, were used for Lithuanian black and white dairy cows feeding. In addition, the influence of supplements on milk production and composition was determined. Milk composition was evaluated by the LactoScope FTIR” FT1.0. 2001 (Delta Instruments, Holland). P. acidilactici BaltBio01 and P. pentosaceus BaltBio02 demonstrated versatile carbohydrate metabolism, grown at 30°C and 37°C temperatures, and acidic tolerance. Isolated pediococcus strains showed to be non resistant to antibiotics, and having antimicrobial activity against undesirable microorganisms. By barley/wheat bran utilisation using fermentation with selected pediococcus strains, it is possible to produce safer (reduced Enterobacteriaceae, total aerobic bacteria, yeast and mold count) feed stock with high content of pediococcus. Significantly higher milk yield (after 33 days) by using pediococcus supplements mix for dairy cows feeding could be obtained, while similar effect by using separate strains after 66 days of feeding could be achieved. It can be stated that barley/wheat bran could be used for higher value feed production in order to increase milk production. Therefore, further research is needed to identify what is the main mechanism of the positive action.

Keywords: barley/wheat bran, dairy cattle, fermented feed, milk, pediococcus

Procedia PDF Downloads 304
12662 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 133
12661 Personal Data Protection: A Legal Framework for Health Law in Turkey

Authors: Veli Durmus, Mert Uydaci

Abstract:

Every patient who needs to get a medical treatment should share health-related personal data with healthcare providers. Therefore, personal health data plays an important role to make health decisions and identify health threats during every encounter between a patient and caregivers. In other words, health data can be defined as privacy and sensitive information which is protected by various health laws and regulations. In many cases, the data are an outcome of the confidential relationship between patients and their healthcare providers. Globally, almost all nations have own laws, regulations or rules in order to protect personal data. There is a variety of instruments that allow authorities to use the health data or to set the barriers data sharing across international borders. For instance, Directive 95/46/EC of the European Union (EU) (also known as EU Data Protection Directive) establishes harmonized rules in European borders. In addition, the General Data Protection Regulation (GDPR) will set further common principles in 2018. Because of close policy relationship with EU, this study provides not only information on regulations, directives but also how they play a role during the legislative process in Turkey. Even if the decision is controversial, the Board has recently stated that private or public healthcare institutions are responsible for the patient call system, for doctors to call people waiting outside a consultation room, to prevent unlawful processing of personal data and unlawful access to personal data during the treatment. In Turkey, vast majority private and public health organizations provide a service that ensures personal data (i.e. patient’s name and ID number) to call the patient. According to the Board’s decision, hospital or other healthcare institutions are obliged to take all necessary administrative precautions and provide technical support to protect patient privacy. However, this application does not effectively and efficiently performing in most health services. For this reason, it is important to draw a legal framework of personal health data by stating what is the main purpose of this regulation and how to deal with complicated issues on personal health data in Turkey. The research is descriptive on data protection law for health care setting in Turkey. Primary as well as secondary data has been used for the study. The primary data includes the information collected under current national and international regulations or law. Secondary data include publications, books, journals, empirical legal studies. Consequently, privacy and data protection regimes in health law show there are some obligations, principles and procedures which shall be binding upon natural or legal persons who process health-related personal data. A comparative approach presents there are significant differences in some EU member states due to different legal competencies, policies, and cultural factors. This selected study provides theoretical and practitioner implications by highlighting the need to illustrate the relationship between privacy and confidentiality in Personal Data Protection in Health Law. Furthermore, this paper would help to define the legal framework for the health law case studies on data protection and privacy.

Keywords: data protection, personal data, privacy, healthcare, health law

Procedia PDF Downloads 218
12660 Preparation Nanocapsules of Chitosan Modified With Selenium Extracted From the Lactobacillus Acidophilus and Their Anticancer Properties

Authors: Akbar Esmaeili, Mahnoosh Aliahmadi

Abstract:

This study synthesized a modified imaging of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA). It contains Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Using the impregnation method, Se nanoparticles were then deposited on (Ga@DFA/FA/ CS/PANI/PVA). The modified contrast agents were mixed with M. nigra extract, and investigated their antibacterial activities by applying to L929 cell lines. The influence of variable factors, including 1. surfactant, 2. solvent, 3. aqueous phase, 4. pH, 5. buffer, 6. minimum Inhibitory concentration (MIC), 7. minimum bactericidal concentration (MBC), 8. cytotoxicity on cancer cells., 9. antibiotic, 10. antibiogram, 11. release and loading, 12. the emotional effect, 13. the concentration of nanoparticles, 14. olive oil, and 15. they have investigated thermotical methods. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), energy dispersive X-ray (EDX), ultraviolet–visible (UV–Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM), MTT, MIC, MBC, and cancer cytotoxic conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful and obtained MIC = 2 factors with less harmful effect. All experimental sections confirmed that our synthesized particles have potent antioxidant properties. Antibiogram testing revealed that NPS could kill P. aeruginosa and P. aeruginosa. A variety of synthetic conditions were done by diffusion emulsion method by varying parameters, the optimum state of DFA release Ga@DFA/FA/CS/PANI/PVA NPs (6 ml) with pH = 5.5, time = 3 h, NCs and DFA (3 mg), and achieved buffer (20 ml). DFA in Ga@DFA/FA/ CS/PANI/PVA was released and showed an absorption peak at 378 nm by applying a 300-rpm magnetic rate. In this report, Ga decreased the harmful effect on the human body.

Keywords: nanocapsules, technolgy, biology, nano

Procedia PDF Downloads 36