Search results for: computer technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9393

Search results for: computer technology

963 Ozonation as an Effective Method to Remove Pharmaceuticals from Biologically Treated Wastewater of Different Origin

Authors: Agne Jucyte Cicine, Vytautas Abromaitis, Zita Rasuole Gasiunaite, Mindaugas Zilius

Abstract:

Pharmaceutical pollution in aquatic environments has become a growing concern. Various active pharmaceutical ingredient (API) residues: hormones, antibiotics, or/and psychiatric drugs, have already been discovered in different environmental compartments. Due to ineffective wastewater treatment technologies, an underestimated amount of APIs can enter the ecosystem by discharged treated wastewater. Especially, psychiatric compounds, such as carbamazepine (CBZ) and venlafaxine (VNX), persist in effluent even post-treatment. Therefore, these pharmaceuticals usually exceed safe environmental levels and pose risks to the aquatic environment, particularly, to sensitive ecosystems such as the Baltic Sea. CBZ, known for its chemical stability and long biodegradation time, accumulates in the environment, threatening aquatic life and human health through the food chain. As the use of medication rises, there is an urgent need for advanced wastewater treatment to reduce pharmaceutical contamination and meet future regulatory requirements. In this study, we tested advanced oxidation technology using ozone to remove two commonly used psychiatric drugs, carbamazepine, and venlafaxine, from biologically treated wastewater effluent. Additionally, general water quality parameters (SPM, DOC, COD) and bacterial contamination were analyzed. Three wastewater treatment plants (WWTPs) were selected to represent varying dominant anthropogenic activities: 1) resort, 2) resort and residential, and 3) residential, industrial, and resort. Wastewater samples for the experiment were collected during the summer season after mechanical and biological treatment and ozonated for 5, 10, and 15 minutes. Pharmaceutical levels in this study exceeded the predicted no-effect concentration (PNEC) of 500 and 90 ng L−1, for CBZ and VNX, respectively in all WWTPs, except CBZ in WWTP 1. Initial CBZ contamination was found to be lower in WWTP 1 (427.4 ng L-1), compared with WWTP 2 (1266.5 ng L-1) and 3 (119.2 ng L-1). VNX followed a similar trend with concentrations of 341.2 ng L-1, 361.4 ng L-1, and 390.0 ng L-1, respectively, for WWTPs 1, 2, and 3. It was determined that CBZ was not detected in the effluent after 5 minutes of ozonation in any of the WWTPs. Contrarily, VNX, was still detected after 5, 10, and 15 minutes of treatment with ozone, however under the limits of quantification (LOD) (<5ng L-1). Additionally, general pollution of SPM, DOC, COD, and bacterial contamination was reduced notably after 5 minutes of treatment with ozone. Although initial pharmaceutical levels exceeded PNECs, indicating ongoing environmental risks, ozonation demonstrated high efficiency in reducing pharmaceutical and general contamination in wastewater with different pollution matrices.

Keywords: Baltic Sea, ozonation, pharmaceuticals, wastewater treatment plants.

Procedia PDF Downloads 0
962 Predicting Photovoltaic Energy Profile of Birzeit University Campus Based on Weather Forecast

Authors: Muhammad Abu-Khaizaran, Ahmad Faza’, Tariq Othman, Yahia Yousef

Abstract:

This paper presents a study to provide sufficient and reliable information about constructing a Photovoltaic energy profile of the Birzeit University campus (BZU) based on the weather forecast. The developed Photovoltaic energy profile helps to predict the energy yield of the Photovoltaic systems based on the weather forecast and hence helps planning energy production and consumption. Two models will be developed in this paper; a Clear Sky Irradiance model and a Cloud-Cover Radiation model to predict the irradiance for a clear sky day and a cloudy day, respectively. The adopted procedure for developing such models takes into consideration two levels of abstraction. First, irradiance and weather data were acquired by a sensory (measurement) system installed on the rooftop of the Information Technology College building at Birzeit University campus. Second, power readings of a fully operational 51kW commercial Photovoltaic system installed in the University at the rooftop of the adjacent College of Pharmacy-Nursing and Health Professions building are used to validate the output of a simulation model and to help refine its structure. Based on a comparison between a mathematical model, which calculates Clear Sky Irradiance for the University location and two sets of accumulated measured data, it is found that the simulation system offers an accurate resemblance to the installed PV power station on clear sky days. However, these comparisons show a divergence between the expected energy yield and actual energy yield in extreme weather conditions, including clouding and soiling effects. Therefore, a more accurate prediction model for irradiance that takes into consideration weather factors, such as relative humidity and cloudiness, which affect irradiance, was developed; Cloud-Cover Radiation Model (CRM). The equivalent mathematical formulas implement corrections to provide more accurate inputs to the simulation system. The results of the CRM show a very good match with the actual measured irradiance during a cloudy day. The developed Photovoltaic profile helps in predicting the output energy yield of the Photovoltaic system installed at the University campus based on the predicted weather conditions. The simulation and practical results for both models are in a very good match.

Keywords: clear-sky irradiance model, cloud-cover radiation model, photovoltaic, weather forecast

Procedia PDF Downloads 125
961 Durham Region: How to Achieve Zero Waste in a Municipal Setting

Authors: Mirka Januszkiewicz

Abstract:

The Regional Municipality of Durham is the upper level of a two-tier municipal and regional structure comprised of eight lower-tier municipalities. With a population of 655,000 in both urban and rural settings, the Region is approximately 2,537 square kilometers neighboring the City of Toronto, Ontario Canada to the east. The Region has been focused on diverting waste from disposal since the development of its Long Term Waste Management Strategy Plan for 2000-2020. With a 54 percent solid waste diversion rate, the focus now is on achieving 70 percent diversion on the path to zero waste using local waste management options whenever feasible. The Region has an Integrated Waste Management System that consists of a weekly curbside collection of recyclable printed paper and packaging and source separated organics; a seasonal collection of leaf and yard waste; a bi-weekly collection of residual garbage; and twice annual collection of intact, sealed household batteries. The Region also maintains three Waste Management Facilities for residential drop-off of household hazardous waste, polystyrene, construction and demolition debris and electronics. Special collection events are scheduled in the spring, summer and fall months for reusable items, household hazardous waste, and electronics. The Region is in the final commissioning stages of an energy from the waste facility for residual waste disposal that will recover energy from non-recyclable wastes. This facility is state of the art and is equipped for installation of carbon capture technology in the future. Despite all of these diversion programs and efforts, there is still room for improvement. Recent residential waste studies revealed that over 50% of the residual waste placed at the curb that is destined for incineration could be recycled. To move towards a zero waste community, the Region is looking to more advanced technologies for extracting the maximum recycling value from residential waste. Plans are underway to develop a pre-sort facility to remove organics and recyclables from the residual waste stream, including the growing multi-residential sector. Organics would then be treated anaerobically to generate biogas and fertilizer products for beneficial use within the Region. This project could increase the Region’s diversion rate beyond 70 percent and enhance the Region’s climate change mitigation goals. Zero waste is an ambitious goal in a changing regulatory and economic environment. Decision makers must be willing to consider new and emerging technologies and embrace change to succeed.

Keywords: municipal waste, residential, waste diversion, zero waste

Procedia PDF Downloads 215
960 Intensive Neurophysiological Rehabilitation System: New Approach for Treatment of Children with Autism

Authors: V. I. Kozyavkin, L. F. Shestopalova, T. B. Voloshyn

Abstract:

Introduction: Rehabilitation of children with Autism is the issue of the day in psychiatry and neurology. It is attributed to constantly increasing quantity of autistic children - Autistic Spectrum Disorders (ASD) Existing rehabilitation approaches in treatment of children with Autism improve their medico- social and social- psychological adjustment. Experience of treatment for different kinds of Autistic disorders in International Clinic of Rehabilitation (ICR) reveals the necessity of complex intensive approach for healing this malady and wider implementation of a Kozyavkin method for treatment of children with ASD. Methods: 19 children aged from 3 to 14 years were examined. They were diagnosed ‘Autism’ (F84.0) with comorbid neurological pathology (from pyramidal insufficiency to para- and tetraplegia). All patients underwent rehabilitation in ICR during two weeks, where INRS approach was used. INRS included methods like biomechanical correction of the spine, massage, physical therapy, joint mobilization, wax-paraffin applications. They were supplemented by art- therapy, ergotherapy, rhythmical group exercises, computer game therapy, team Olympic games and other methods for improvement of motivation and social integration of the child. Estimation of efficacy was conducted using parent’s questioning and done twice- on the onset of INRS rehabilitation course and two weeks afterward. For efficacy assessment of rehabilitation of autistic children in ICR standardized tool was used, namely Autism Treatment Evaluation Checklist (ATEC). This scale was selected because any rehabilitation approaches for the child with Autism can be assessed using it. Results: Before the onset of INRS treatment mean score according to ATEC scale was 64,75±9,23, it reveals occurrence in examined children severe communication, speech, socialization and behavioral impairments. After the end of the rehabilitation course, the mean score was 56,5±6,7, what indicates positive dynamics in comparison to the onset of rehabilitation. Generally, improvement of psychoemotional state occurred in 90% of cases. Most significant changes occurred in the scope of speech (16,5 before and 14,5 after the treatment), socialization (15.1 before and 12,5 after) and behavior (20,1 before and 17.4 after). Conclusion: As a result of INRS rehabilitation course reduction of autistic symptoms was noted. Particularly improvements in speech were observed (children began to spell out new syllables, words), there was some decrease in signs of destructiveness, quality of contact with the surrounding people improved, new skills of self-service appeared. The prospect of the study is further, according to evidence- based medicine standards, deeper examination of INRS and assessment of its usefulness in treatment for Autism and ASD.

Keywords: intensive neurophysiological rehabilitation system (INRS), international clinic od rehabilitation, ASD, rehabilitation

Procedia PDF Downloads 166
959 Multiple Intelligences as Basis for Differentiated Classroom Instruction in Technology Livelihood Education: An Impact Analysis

Authors: Sheila S. Silang

Abstract:

This research seeks to make an impact analysis on multiple intelligence as the basis for differentiated classroom instruction in TLE. It will also address the felt need of how TLE subject could be taught effectively exhausting all the possible means.This study seek the effect of giving different instruction according to the ability of the students in the following objectives: 1. student’s technological skills enhancement, 2. learning potential improvements 3. having better linkage between school and community in a need for soliciting different learning devices and materials for the learner’s academic progress. General Luna, Quezon is composed of twenty seven barangays. There are only two public high schools. We are aware that K-12 curriculum is focused on providing sufficient time for mastery of concepts and skills, develop lifelong learners, and prepare graduates for tertiary education, middle-level skills development, employment, and entrepreneurship. The challenge is with TLE offerring a vast area of specializations, how would Multiple Intelligence play its vital role as basis in classroom instruction in acquiring the requirement of the said curriculum? 1.To what extent do the respondent students manifest the following types of intelligences: Visual-Spatial, Body-Kinesthetic, Musical, Interpersonal, Intrapersonal, Verbal-Linguistic, Logical-Mathematical and Naturalistic. What media should be used appropriate to the student’s learning style? Visual, Printed Words, Sound, Motion, Color or Realia 3. What is the impact of multiple intelligence as basis for differentiated instruction in T.L.E. based on the following student’s ability? Learning Characteristic and Reading Ability and Performance 3. To what extent do the intelligences of the student relate with their academic performance? The following were the findings derived from the study: In consideration of the vast areas of study of TLE, and the importance it plays in the school curriculum coinciding with the expectation of turning students to technologically competent contributing members of the society, either in the field of Technical/Vocational Expertise or Entrepreneurial based competencies, as well as the government’s concern for it, we visualize TLE classroom teachers making use of multiple intelligence as basis for differentiated classroom instruction in teaching the subject .Somehow, multiple intelligence sample such as Linguistic, Logical-Mathematical, Bodily-Kinesthetic, Interpersonal, Intrapersonal, and Spatial abilities that an individual student may have or may not have, can be a basis for a TLE teacher’s instructional method or design.

Keywords: education, multiple, differentiated classroom instruction, impact analysis

Procedia PDF Downloads 438
958 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours

Authors: Fikret Yalcinkaya, Hamza Unsal

Abstract:

To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.

Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models

Procedia PDF Downloads 174
957 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 50
956 Revealing the Sustainable Development Mechanism of Guilin Tourism Based on Driving Force/Pressure/State/Impact/Response Framework

Authors: Xiujing Chen, Thammananya Sakcharoen, Wilailuk Niyommaneerat

Abstract:

China's tourism industry is in a state of shock and recovery, although COVID-19 has brought great impact and challenges to the tourism industry. The theory of sustainable development originates from the contradiction of increasing awareness of environmental protection and the pursuit of economic interests. The sustainable development of tourism should consider social, economic, and environmental factors and develop tourism in a planned and targeted way from the overall situation. Guilin is one of the popular tourist cities in China. However, there exist several problems in Guilin tourism, such as low quality of scenic spot construction and low efficiency of tourism resource development. Due to its unwell-managed, Guilin's tourism industry is facing problems such as supply and demand crowding pressure for tourists. According to the data from 2009 to 2019, there is a change in the degree of sustainable development of Guilin tourism. This research aimed to evaluate the sustainable development state of Guilin tourism using the DPSIR (driving force/pressure/state/impact/response) framework and to provide suggestions and recommendations for sustainable development in Guilin. An improved TOPSIS (technology for order preference by similarity to an ideal solution) model based on the entropy weights relationship is applied to the quantitative analysis and to analyze the mechanisms of sustainable development of tourism in Guilin. The DPSIR framework organizes indicators into sub-five categories: of which twenty-eight indicators related to sustainable aspects of Guilin tourism are classified. The study analyzed and summarized the economic, social, and ecological effects generated by tourism development in Guilin from 2009-2019. The results show that the conversion rate of tourism development in Guilin into regional economic benefits is more efficient than that into social benefits. Thus, tourism development is an important driving force of Guilin's economic growth. In addition, the study also analyzed the static weights of 28 relevant indicators of sustainable development of tourism in Guilin and ranked them from largest to smallest. Then it was found that the economic and social factors related to tourism revenue occupy the highest weight, which means that the economic and social development of Guilin can influence the sustainable development of Guilin tourism to a greater extent. Therefore, there is a two-way causal relationship between tourism development and economic growth in Guilin. At the same time, ecological development-related indicators also have relatively large weights, so ecological and environmental resources also have a great influence on the sustainable development of Guilin tourism.

Keywords: DPSIR framework, entropy weights analysis, sustainable development of tourism, TOPSIS analysis

Procedia PDF Downloads 89
955 Invasive Asian Carp Fish Species: A Natural and Sustainable Source of Methionine for Organic Poultry Production

Authors: Komala Arsi, Ann M. Donoghue, Dan J. Donoghue

Abstract:

Methionine is an essential dietary amino acid necessary to promote growth and health of poultry. Synthetic methionine is commonly used as a supplement in conventional poultry diets and is temporarily allowed in organic poultry feed for lack of natural and organically approved sources of methionine. It has been a challenge to find a natural, sustainable and cost-effective source for methionine which reiterates the pressing need to explore potential alternatives of methionine for organic poultry production. Fish have high concentrations of methionine, but wild-caught fish are expensive and adversely impact wild fish populations. Asian carp (AC) is an invasive species and its utilization has the potential to be used as a natural methionine source. However, to our best knowledge, there is no proven technology to utilize this fish as a methionine source. In this study, we co-extruded Asian carp and soybean meal to form a dry-extruded, methionine-rich AC meal. In order to formulate rations with the novel extruded carp meal, the product was tested on cecectomized roosters for its amino acid digestibility and total metabolizable energy (TMEn). Excreta was collected and the gross energy, protein content of the feces was determined to calculate Total Metabolizable Energy (TME). The methionine content, digestibility and TME values were greater for the extruded AC meal than control diets. Carp meal was subsequently tested as a methionine source in feeds formulated for broilers, and production performance (body weight gain and feed conversion ratio) was assessed in comparison with broilers fed standard commercial diets supplemented with synthetic methionine. In this study, broiler chickens were fed either a control diet with synthetic methionine or a treatment diet with extruded AC meal (8 replicates/treatment; n=30 birds/replicate) from day 1 to 42 days of age. At the end of the trial, data for body weights, feed intake and feed conversion ratio (FCR) was analyzed using one-way ANOVA with Fisher LSD test for multiple comparisons. Results revealed that birds on AC diet had body weight gains and feed intake comparable to diets containing synthetic methionine (P > 0.05). Results from the study suggest that invasive AC-derived fish meal could potentially be an effective and inexpensive source of sustainable natural methionine for organic poultry farmers.

Keywords: Asian carp, methionine, organic, poultry

Procedia PDF Downloads 149
954 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model

Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer

Abstract:

Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.

Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy

Procedia PDF Downloads 175
953 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 47
952 The Effect of Applying the Electronic Supply System on the Performance of the Supply Chain in Health Organizations

Authors: Sameh S. Namnqani, Yaqoob Y. Abobakar, Ahmed M. Alsewehri, Khaled M. AlQethami

Abstract:

The main objective of this research is to know the impact of the application of the electronic supply system on the performance of the supply department of health organizations. To reach this goal, the study adopted independent variables to measure the dependent variable (performance of the supply department), namely: integration with suppliers, integration with intermediaries and distributors and knowledge of supply size, inventory, and demand. The study used the descriptive method and was aided by the questionnaire tool that was distributed to a sample of workers in the Supply Chain Management Department of King Abdullah Medical City. After the statistical analysis, the results showed that: The 70 sample members strongly agree with the (electronic integration with suppliers) axis with a p-value of 0.001, especially with regard to the following: Opening formal and informal communication channels between management and suppliers (Mean 4.59) and exchanging information with suppliers with transparency and clarity (Mean 4.50). It also clarified that the sample members agree on the axis of (electronic integration with brokers and distributors) with a p-value of 0.001 and this is represented in the following elements: Exchange of information between management, brokers and distributors with transparency, clarity (Mean 4.18) , and finding a close cooperation relationship between management, brokers and distributors (Mean 4.13). The results also indicated that the respondents agreed to some extent on the axis (knowledge of the size of supply, stock, and demand) with a p-value of 0.001. It also indicated that the respondents strongly agree with the existence of a relationship between electronic procurement and (the performance of the procurement department in health organizations) with a p-value of 0.001, which is represented in the following: transparency and clarity in dealing with suppliers and intermediaries to prevent fraud and manipulation (Mean 4.50) and reduce the costs of supplying the needs of the health organization (Mean 4.50). From the results, the study recommended several recommendations, the most important of which are: that health organizations work to increase the level of information sharing between them and suppliers in order to achieve the implementation of electronic procurement in the supply management of health organizations. Attention to using electronic data interchange methods and using modern programs that make supply management able to exchange information with brokers and distributors to find out the volume of supply, inventory, and demand. To know the volume of supply, inventory, and demand, it recommended the application of scientific methods of supply for storage. Take advantage of information technology, for example, electronic data exchange techniques and documents, where it can help in contact with suppliers, brokers, and distributors, and know the volume of supply, inventory, and demand, which contributes to improving the performance of the supply department in health organizations.

Keywords: healthcare supply chain, performance, electronic system, ERP

Procedia PDF Downloads 131
951 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR

Authors: Ivana Scidà, Francesco Alotto, Anna Osello

Abstract:

Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.

Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality

Procedia PDF Downloads 124
950 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework

Authors: Iulia E. Falcan

Abstract:

The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.

Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization

Procedia PDF Downloads 160
949 Examining Employee Social Intrapreneurial Behaviour (ESIB) in Kuwait: Pilot Study

Authors: Ardita Malaj, Ahmad R. Alsaber, Bedour Alboloushi, Anwaar Alkandari

Abstract:

Organizations worldwide, particularly in Kuwait, are concerned with implementing a progressive workplace culture and fostering social innovation behaviours. The main aim of this research is to examine and establish a thorough comprehension of the relationship between an inventive organizational culture, employee intrapreneurial behaviour, authentic leadership, employee job satisfaction, and employee job commitment in the manufacturing sector of Kuwait, which is a developed economy. Literature reviews analyse the core concepts and their related areas by scrutinizing their definitions, dimensions, and importance to uncover any deficiencies in existing research. The examination of relevant research uncovered major gaps in understanding. This study examines the reliability and validity of a newly developed questionnaire designed to identify the appropriate applications for a large-scale investigation. A preliminary investigation was carried out, determining a sample size of 36 respondents selected randomly from a pool of 223 samples. SPSS was utilized to calculate the percentages of the demographic characteristics for the participants, assess the credibility of the measurements, evaluate the internal consistency, validate all agreements, and determine Pearson's correlation. The study's results indicated that the majority of participants were male (66.7%), aged between 35 and 44 (38.9%), and possessed a bachelor's degree (58.3%). Approximately 94.4% of the participants were employed full-time. 72.2% of the participants are employed in the electrical, computer, and ICT sector, whilst 8.3% work in the metal industry. Out of all the departments, the human resource department had the highest level of engagement, making up 13.9% of the total. Most participants (36.1%) possessed intermediate or advanced levels of experience, whilst 21% were classified as entry-level. Furthermore, 8.3% of individuals were categorized as first-level management, 22.2% were categorized as middle management, and 16.7% were categorized as executive or senior management. Around 19.4% of the participants have over a decade of professional experience. The Pearson's correlation coefficient for all 5 components varies between 0.4009 to 0.7183. The results indicate that all elements of the questionnaire were effectively verified, with a Cronbach alpha factor predominantly exceeding 0.6, which is the criterion commonly accepted by researchers. Therefore, the work on the larger scope of testing and analysis could continue.

Keywords: pilot study, ESIB, innovative organizational culture, Kuwait, validation

Procedia PDF Downloads 27
948 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 148
947 Control for Fluid Flow Behaviours of Viscous Fluids and Heat Transfer in Mini-Channel: A Case Study Using Numerical Simulation Method

Authors: Emmanuel Ophel Gilbert, Williams Speret

Abstract:

The control for fluid flow behaviours of viscous fluids and heat transfer occurrences within heated mini-channel is considered. Heat transfer and flow characteristics of different viscous liquids, such as engine oil, automatic transmission fluid, one-half ethylene glycol, and deionized water were numerically analyzed. Some mathematical applications such as Fourier series and Laplace Z-Transforms were employed to ascertain the behaviour-wave like structure of these each viscous fluids. The steady, laminar flow and heat transfer equations are reckoned by the aid of numerical simulation technique. Further, this numerical simulation technique is endorsed by using the accessible practical values in comparison with the anticipated local thermal resistances. However, the roughness of this mini-channel that is one of the physical limitations was also predicted in this study. This affects the frictional factor. When an additive such as tetracycline was introduced in the fluid, the heat input was lowered, and this caused pro rata effect on the minor and major frictional losses, mostly at a very minute Reynolds number circa 60-80. At this ascertained lower value of Reynolds numbers, there exists decrease in the viscosity and minute frictional losses as a result of the temperature of these viscous liquids been increased. It is inferred that the three equations and models are identified which supported the numerical simulation via interpolation and integration of the variables extended to the walls of the mini-channel, yields the utmost reliance for engineering and technology calculations for turbulence impacting jets in the near imminent age. Out of reasoning with a true equation that could support this control for the fluid flow, Navier-stokes equations were found to tangential to this finding. Though, other physical factors with respect to these Navier-stokes equations are required to be checkmated to avoid uncertain turbulence of the fluid flow. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme via numerical simulation method that takes into account certain terms in the full Navier-Stokes equations. However, this resulted in dropping out in the approximation of certain assumptions. Concrete questions raised in the main body of the work are sightseen further in the appendices.

Keywords: frictional losses, heat transfer, laminar flow, mini-channel, number simulation, Reynolds number, turbulence, viscous fluids

Procedia PDF Downloads 169
946 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes

Procedia PDF Downloads 398
945 The Importance of Efficient and Sustainable Water Resources Management and the Role of Artificial Intelligence in Preventing Forced Migration

Authors: Fateme Aysin Anka, Farzad Kiani

Abstract:

Forced migration is a situation in which people are forced to leave their homes against their will due to political conflicts, wars and conflicts, natural disasters, climate change, economic crises, or other emergencies. This type of migration takes place under conditions where people cannot lead a sustainable life due to reasons such as security, shelter and meeting their basic needs. This type of migration may occur in connection with different factors that affect people's living conditions. In addition to these general and widespread reasons, water security and resources will be one that is starting now and will be encountered more and more in the future. Forced migration may occur due to insufficient or depleted water resources in the areas where people live. In this case, people's living conditions become unsustainable, and they may have to go elsewhere, as they cannot obtain their basic needs, such as drinking water, water used for agriculture and industry. To cope with these situations, it is important to minimize the causes, as international organizations and societies must provide assistance (for example, humanitarian aid, shelter, medical support and education) and protection to address (or mitigate) this problem. From the international perspective, plans such as the Green New Deal (GND) and the European Green Deal (EGD) draw attention to the need for people to live equally in a cleaner and greener world. Especially recently, with the advancement of technology, science and methods have become more efficient. In this regard, in this article, a multidisciplinary case model is presented by reinforcing the water problem with an engineering approach within the framework of the social dimension. It is worth emphasizing that this problem is largely linked to climate change and the lack of a sustainable water management perspective. As a matter of fact, the United Nations Development Agency (UNDA) draws attention to this problem in its universally accepted sustainable development goals. Therefore, an artificial intelligence-based approach has been applied to solve this problem by focusing on the water management problem. The most general but also important aspect in the management of water resources is its correct consumption. In this context, the artificial intelligence-based system undertakes tasks such as water demand forecasting and distribution management, emergency and crisis management, water pollution detection and prevention, and maintenance and repair control and forecasting.

Keywords: water resource management, forced migration, multidisciplinary studies, artificial intelligence

Procedia PDF Downloads 79
944 Virtual Reality in COVID-19 Stroke Rehabilitation: Preliminary Outcomes

Authors: Kasra Afsahi, Maryam Soheilifar, S. Hossein Hosseini

Abstract:

Background: There is growing evidence that Cerebral Vascular Accident (CVA) can be a consequence of Covid-19 infection. Understanding novel treatment approaches are important in optimizing patient outcomes. Case: This case explores the use of Virtual Reality (VR) in the treatment of a 23-year-old COVID-positive female presenting with left hemiparesis in August 2020. Imaging showed right globus pallidus, thalamus, and internal capsule ischemic stroke. Conventional rehabilitation was started two weeks later, with virtual reality (VR) included. This game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and functions for stroke. Physical examination showed left hemiparesis with muscle strength 3/5 in the upper extremity and 4/5 in the lower extremity. The range of motion of the shoulder was 90-100 degrees. The speech exam showed a mild decrease in fluency. Mild lower lip dynamic asymmetry was seen. Babinski was positive on the left. Gait speed was decreased (75 steps per minute). Intervention: Our game-based VR system was developed based on upper extremity physiotherapy exercises for post-stroke patients to increase the active, voluntary movement of the upper extremity joints and improve the function. The conventional program was initiated with active exercises, shoulder sanding for joint ROMs, walking shoulder, shoulder wheel, and combination movements of the shoulder, elbow, and wrist joints, alternative flexion-extension, pronation-supination movements, Pegboard and Purdo pegboard exercises. Also, fine movements included smart gloves, biofeedback, finger ladder, and writing. The difficulty of the game increased at each stage of the practice with progress in patient performances. Outcome: After 6 weeks of treatment, gait and speech were normal and upper extremity strength was improved to near normal status. No adverse effects were noted. Conclusion: This case suggests that VR is a useful tool in the treatment of a patient with covid-19 related CVA. The safety of newly developed instruments for such cases provides new approaches to improve the therapeutic outcomes and prognosis as well as increased satisfaction rate among patients.

Keywords: covid-19, stroke, virtual reality, rehabilitation

Procedia PDF Downloads 136
943 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 76
942 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization

Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade

Abstract:

The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.

Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy

Procedia PDF Downloads 112
941 Variability of the X-Ray Sun during Descending Period of Solar Cycle 23

Authors: Zavkiddin Mirtoshev, Mirabbos Mirkamalov

Abstract:

We have analyzed the time series of full disk integrated soft X-ray (SXR) and hard X-ray (HXR) emission from the solar corona during 2004 January 1 to 2009 December 31, covering the descending phase of solar cycle 23. We employed the daily X-ray index (DXI) derived from X-ray observations from the Solar X-ray Spectrometer (SOXS) mission in four different energy bands: 4-5.5; 5.5-7.5 keV (SXR) and 15-20; 20-25 keV (HXR). The application of Lomb-Scargle periodogram technique to the DXI time series observed by the Silicium detector in the energy bands reveals several short and intermediate periodicities of the X-ray corona. The DXI explicitly show the periods of 13.6 days, 26.7 days, 128.5 days, 151 days, 180 days, 220 days, 270 days, 1.24 year and 1.54 year periods in SXR as well as in HXR energy bands. Although all periods are above 70% confidence level in all energy bands, they show strong power in HXR emission in comparison to SXR emission. These periods are distinctly clear in three bands but somehow not unambiguously clear in 5.5-7.5 keV band. This might be due to the presence of Ferrum and Ferrum/Niccolum line features, which frequently vary with small scale flares like micro-flares. The regular 27-day rotation and 13.5 day period of sunspots from the invisible side of the Sun are found stronger in HXR band relative to SXR band. However, flare activity Rieger periods (150 and 180 days) and near Rieger period 220 days are very strong in HXR emission which is very much expected. On the other hand, our current study reveals strong 270 day periodicity in SXR emission which may be connected with tachocline, similar to a fundamental rotation period of the Sun. The 1.24 year and 1.54 year periodicities, represented from the present research work, are well observable in both SXR as well as in HXR channels. These long-term periodicities must also have connection with tachocline and should be regarded as a consequence of variation in rotational modulation over long time scales. The 1.24 year and 1.54 year periods are also found great importance and significance in the life formation and it evolution on the Earth, and therefore they also have great astro-biological importance. We gratefully acknowledge support by the Indian Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP, the Centre is affiliated to the United Nations), Physical Research Laboratory (PRL) at Ahmedabad, India. This work has done under the supervision of Prof. Rajmal Jain and paper consist materials of pilot project and research part of the M. Tech program which was made during Space and Atmospheric Science Course.

Keywords: corona, flares, solar activity, X-ray emission

Procedia PDF Downloads 339
940 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 485
939 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 91
938 Electronic Waste Analysis And Characterization Study: Management Input For Highly Urbanized Cities

Authors: Jilbert Novelero, Oliver Mariano

Abstract:

In a world where technological evolution and competition to create innovative products are at its peak, problems on Electronic Waste (E-Waste) are now becoming a global concern. E-waste is said to be any electrical or electronic devices that have reached the terminal of its useful life. The major issue are the volume and the raw materials used in crafting E-waste which is non-biodegradable and contains hazardous substances that are toxic to human health and the environment. The objective of this study is to gather baseline data in terms of the composition of E-waste in the solid waste stream and to determine the top 5 E-waste categories in a highly urbanized city. Recommendations in managing these wastes for its reduction were provided which may serve as a guide for acceptance and implementation in the locality. Pasig City was the chosen beneficiary of the research output and through the collaboration of the City Government of Pasig and its Solid Waste Management Office (SWMO); the researcher successfully conducted the Electronic Waste Analysis and Characterization Study (E-WACS) to achieve the objectives. E-WACS that was conducted on April 2019 showed that E-waste ranked 4th which comprises the 10.39% of the overall solid waste volume. Out of 345, 127.24kg which is the total daily domestic waste generation in the city, E-waste covers 35,858.72kg. Moreover, an average of 40 grams was determined to be the E-waste generation per person per day. The top 5 E-waste categories were then classified after the analysis. The category which ranked first is the office and telecommunications equipment that contained the 63.18% of the total generated E-waste. Second in ranking was the household appliances category with 21.13% composition. Third was the lighting devices category with 8.17%. Fourth on ranking was the consumer electronics and batteries category which was composed of 5.97% and fifth was the wires and cables category where it comprised the 1.41% of the average generated E-waste samples. One of the recommendations provided in this research is the implementation of the Pasig City Waste Advantage Card. The card can be used as a privilege card and earned points can be converted to avail of and enjoy services such as haircut, massage, dental services, medical check-up, and etc. Another recommendation raised is for the LGU to encourage a communication or dialogue with the technology and electronics manufacturers and distributors and international and local companies to plan the retrieval and disposal of the E-wastes in accordance with the Extended Producer Responsibility (EPR) policy where producers are given significant responsibilities for the treatment and disposal of post-consumer products.

Keywords: E-waste, E-WACS, E-waste characterization, electronic waste, electronic waste analysis

Procedia PDF Downloads 115
937 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Authors: Yanping Liao, Zenan Wu, Ruigang Zhao

Abstract:

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust

Procedia PDF Downloads 123
936 The Impact of Technology and Artificial Intelligence on Children in Autism

Authors: Dina Moheb Rashid Michael

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 51
935 Rapid Plasmonic Colorimetric Glucose Biosensor via Biocatalytic Enlargement of Gold Nanostars

Authors: Masauso Moses Phiri

Abstract:

Frequent glucose monitoring is essential to the management of diabetes. Plasmonic enzyme-based glucose biosensors have the advantages of greater specificity, simplicity and rapidity. The aim of this study was to develop a rapid plasmonic colorimetric glucose biosensor based on biocatalytic enlargement of AuNS guided by GOx. Gold nanoparticles of 18 nm in diameter were synthesized using the citrate method. Using these as seeds, a modified seeded method for the synthesis of monodispersed gold nanostars was followed. Both the spherical and star-shaped nanoparticles were characterized using ultra-violet visible spectroscopy, agarose gel electrophoresis, dynamic light scattering, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The feasibility of a plasmonic colorimetric assay through growth of AuNS by silver coating in the presence of hydrogen peroxide was investigated by several control and optimization experiments. Conditions for excellent sensing such as the concentration of the detection solution in the presence of 20 µL AuNS, 10 mM of 2-(N-morpholino) ethanesulfonic acid (MES), ammonia and hydrogen peroxide were optimized. Using the optimized conditions, the glucose assay was developed by adding 5mM of GOx to the solution and varying concentrations of glucose to it. Kinetic readings, as well as color changes, were observed. The results showed that the absorbance values of the AuNS were blue shifting and increasing as the concentration of glucose was elevated. Control experiments indicated no growth of AuNS in the absence of GOx, glucose or molecular O₂. Increased glucose concentration led to an enhanced growth of AuNS. The detection of glucose was also done by naked-eye. The color development was near complete in ± 10 minutes. The kinetic readings which were monitored at 450 and 560 nm showed that the assay could discriminate between different concentrations of glucose by ± 50 seconds and near complete at ± 120 seconds. A calibration curve for the qualitative measurement of glucose was derived. The magnitude of wavelength shifts and absorbance values increased concomitantly with glucose concentrations until 90 µg/mL. Beyond that, it leveled off. The lowest amount of glucose that could produce a blue shift in the localized surface plasmon resonance (LSPR) absorption maxima was found to be 10 – 90 µg/mL. The limit of detection was 0.12 µg/mL. This enabled the construction of a direct sensitivity plasmonic colorimetric detection of glucose using AuNS that was rapid, sensitive and cost-effective with naked-eye detection. It has great potential for transfer of technology for point-of-care devices.

Keywords: colorimetric, gold nanostars, glucose, glucose oxidase, plasmonic

Procedia PDF Downloads 148
934 Analysis of Determinants of Growth of Small and Medium Enterprises in Kwara State, Nigeria

Authors: Hussaini Tunde Subairu

Abstract:

Small and Medium Enterprises (SMEs) sectors serve as catalyst for employment generation, national growth, poverty reduction and economic development in developing and developed countries. However, in Nigeria despite copious and plethora of government policies and stimulus schemes directed at SMEs, the sector is still characterized by high rate of failure and discontinuities. This study therefore investigated owners/managers profile, firms characteristics and external factors as possible determinants of SMEs growth from selected SMEs in Kwara State. Primary data were sourced from 200 SMEs respondents registered with the National Association of Small and Medium Enterprises (NASMES) in Kwara State Central Senatorial District. Multiple Regressions Analysis (MRA) was used to analyze the relationship between dependent and independent variables, and pair wise correlation was employed to examine the relationship among independent variables. The Analysis of Variable (ANOVA) was employed to indicate the overall significant of the model The findings revealed that Analysis of variance (ANOVA) put the value of F-statistics at 420.45 and p-value at 0.000 was significant. The values of R2 and Adjusted R2 of 0.9643 and 0.9620 respectively suggested that 96 percent of variations in employment growth were explained by the explanatory variables. The level of technical and managerial education has t- value of 24.14 and p-value of 0.001, length of managers/owners experience in similar trade with t- value of 21.37 and p-value of 0.001, age of managers/owners with t- value of 42.98 and p-value of 0.001, firm age with t- value of 25.91 and p-value of 0.001, numbers of firms in a cluster with t- value of 7.20 and p-value of 0.001, access to formal finance with t-value of 5.56 and p-value of 0.001, firm technology innovation with t- value of 25.32 and p-value of 0.01, institutional support with t- value of 18.89 and p-value of 0.01, globalization with t- value of 9.78 and p-value of 0.01, and infrastructure with t-value of 10.75 and p-value of 0.01. The result also indicated that initial size has t-value of -1.71 and p-value of 0.090 which is consistent with Gibrat’s Law. The study concluded that owners/managers profile, firm specific characteristics and external factors substantially influenced employment growths of SMEs in the study area. Therefore, policy implication should enhance human capital development of SMEs owners/managers, and strengthen fiscal policy thrust through imposition on tariff regime to minimize effect of globalization. Governments at all level must support SMEs growth radically and enhance institutional support for SMEs growth and radically and significantly upgrading key infrastructure as rail/roads, rail, telecommunications, water and power.

Keywords: external factors, firm specific characteristics, owners / manager profile, small and medium enterprises

Procedia PDF Downloads 237