Search results for: work integrated learning (WIL)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21803

Search results for: work integrated learning (WIL)

20993 The Acceptance of E-Assessment Considering Security Perspective: Work in Progress

Authors: Kavitha Thamadharan, Nurazean Maarop

Abstract:

The implementation of e-assessment as tool to support the process of teaching and learning in university has become a popular technological means in universities. E-Assessment provides many advantages to the users especially the flexibility in teaching and learning. The e-assessment system has the capability to improve its quality of delivering education. However, there still exists a drawback in terms of security which limits the user acceptance of the online learning system. Even though there are studies providing solutions for identified security threats in e-learning usage, there is no particular model which addresses the factors that influences the acceptance of e-assessment system by lecturers from security perspective. The aim of this study is to explore security aspects of e-assessment in regard to the acceptance of the technology. As a result a conceptual model of secure acceptance of e-assessment is proposed. Both human and security factors are considered in formulation of this conceptual model. In order to increase understanding of critical issues related to the subject of this study, interpretive approach involving convergent mixed method research method is proposed to be used to execute the research. This study will be useful in providing more insightful understanding regarding the factors that influence the user acceptance of e-assessment system from security perspective.

Keywords: secure technology acceptance, e-assessment security, e-assessment, education technology

Procedia PDF Downloads 460
20992 Cultural Understanding in Chinese Language Education for Foreigners: A Quest for Better Integration

Authors: Linhan Sun

Abstract:

With the gradual strengthening of China's economic development, more and more people around the world are learning Chinese due to economic and trade needs, which has also promoted the research related to Chinese language education for foreigners. Because the Chinese language system is different from the Western language system, learning Chinese is not easy for many learners. In addition, language learning cannot be separated from the learning and understanding of culture. How to integrate cultural learning into the curriculum of Chinese language education for foreigners is the focus of this study. Through a semi-structured in-depth interview method, 15 foreigners who have studied or are studying Chinese participated in this study. This study found that cultural learning and Chinese as a foreign language are relatively disconnected. In other words, learners were able to acquire a certain degree of knowledge of the Chinese language through textbooks or courses but did not gain a deeper understanding of Chinese culture.

Keywords: Chinese language education, Chinese culture, qualitative methods, intercultural communication

Procedia PDF Downloads 172
20991 Purpose-Driven Collaborative Strategic Learning

Authors: Mingyan Hong, Shuozhao Hou

Abstract:

Collaborative Strategic Learning (CSL) teaches students to use learning strategies while working cooperatively. Student strategies include the following steps: defining the learning task and purpose; conducting ongoing negotiation of the learning materials by deciding "click" (I get it and I can teach it – green card, I get it –yellow card) or "clunk" (I don't get it – red card) at the end of each learning unit; "getting the gist" of the most important parts of the learning materials; and "wrapping up" key ideas. Find out how to help students of mixed achievement levels apply learning strategies while learning content area in materials in small groups. The design of CSL is based on social-constructivism and Vygotsky’s best-known concept of the Zone of Proximal Development (ZPD). The definition of ZPD is the distance between the actual acquisition level as decided by individual problem solution case and the level of potential acquisition level, similar to Krashen (1980)’s i+1, as decided through the problem-solution case under the facilitator’s guidance, or in group work with other more capable members (Vygotsky, 1978). Vygotsky claimed that learners’ ideal learning environment is in the ZPD. An ideal teacher or more-knowledgable-other (MKO) should be able to recognize a learner’s ZPD and facilitates them to develop beyond it. Then the MKO is able to leave the support step by step until the learner can perform the task without aid. Steven Krashen (1980) proposed Input hypothesis including i+1 hypothesis. The input hypothesis models are the application of ZPD in second language acquisition and have been widely recognized until today. Krashen (2019)’s optimal language learning environment (2019) further developed the application of ZPD and added the component of strategic group learning. The strategic group learning is composed of desirable learning materials learners are motivated to learn and desirable group members who are more capable and are therefore able to offer meaningful input to the learners. Purpose-driven Collaborative Strategic Learning Model is a strategic integration of ZPD, i+1 hypothesis model, and Optimal Language Learning Environment Model. It is purpose driven to ensure group members are motivated. It is collaborative so that an optimal learning environment where meaningful input from meaningful conversation can be generated. It is strategic because facilitators in the model strategically assign each member a meaningful and collaborative role, e.g., team leader, technician, problem solver, appraiser, offer group learning instrument so that the learning process is structured, and integrate group learning and team building making sure holistic development of each participant. Using data collected from college year one and year two students’ English courses, this presentation will demonstrate how purpose-driven collaborative strategic learning model is implemented in the second/foreign language classroom, using the qualitative data from questionnaire and interview. Particular, this presentation will show how second/foreign language learners grow from functioning with facilitator or more capable peer’s aid to performing without aid. The implication of this research is that purpose-driven collaborative strategic learning model can be used not only in language learning, but also in any subject area.

Keywords: collaborative, strategic, optimal input, second language acquisition

Procedia PDF Downloads 128
20990 Development of an Integrated Reaction Design for the Enzymatic Production of Lactulose

Authors: Natan C. G. Silva, Carlos A. C. Girao Neto, Marcele M. S. Vasconcelos, Luciana R. B. Goncalves, Maria Valderez P. Rocha

Abstract:

Galactooligosaccharides (GOS) are sugars with prebiotic function that can be synthesized chemically or enzymatically, and this last one can be promoted by the action of β-galactosidases. In addition to favoring the transgalactosylation reaction to form GOS, these enzymes can also catalyze the hydrolysis of lactose. A highly studied type of GOS is lactulose because it presents therapeutic properties and is a health promoter. Among the different raw materials that can be used to produce lactulose, whey stands out as the main by-product of cheese manufacturing, and its discarded is harmful to the environment due to the residual lactose present. Therefore, its use is a promising alternative to solve this environmental problem. Thus, lactose from whey is hydrolyzed into glucose and galactose by β-galactosidases. However, in order to favor the transgalactosylation reaction, the medium must contain fructose, due this sugar reacts with galactose to produce lactulose. Then, the glucose-isomerase enzyme can be used for this purpose, since it promotes the isomerization of glucose into fructose. In this scenario, the aim of the present work was first to develop β-galactosidase biocatalysts of Kluyveromyces lactis and to apply it in the integrated reactions of hydrolysis, isomerization (with the glucose-isomerase from Streptomyces murinus) and transgalactosylation reaction, using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% glutaraldehyde was evaluated using different enzymatic loads (2, 5, 7, 10, and 12 mg/g). Subsequently, the hydrolysis and transgalactosylation reactions were studied and conducted at 50°C, 120 RPM for 20 minutes. In parallel, the isomerization of glucose into fructose was evaluated under conditions of 70°C, 750 RPM for 90 min. After, the integration of the three processes for the production of lactulose was investigated. Among the evaluated loads, 7 mg/g was chosen because the best activity of the derivative (44.3 U/g) was obtained, being this parameter determinant for the reaction stages. The other parameters of immobilization yield (87.58%) and recovered activity (46.47%) were also satisfactory compared to the other conditions. Regarding the integrated process, 94.96% of lactose was converted, achieving 37.56 g/L and 37.97 g/L of glucose and galactose, respectively. In the isomerization step, conversion of 38.40% of glucose was observed, obtaining a concentration of 12.47 g/L fructose. In the transgalactosylation reaction was produced 13.15 g/L lactulose after 5 min. However, in the integrated process, there was no formation of lactulose, but it was produced other GOS at the same time. The high galactose concentration in the medium probably favored the reaction of synthesis of these other GOS. Therefore, the integrated process proved feasible for possible production of prebiotics. In addition, this process can be economically viable due to the use of an industrial residue as a substrate, but it is necessary a more detailed investigation of the transgalactosilation reaction.

Keywords: beta-galactosidase, glucose-isomerase, galactooligosaccharides, lactulose, whey

Procedia PDF Downloads 142
20989 Customization of Moodle Open Source LMS for Tanzania Secondary Schools’ Use

Authors: Ellen A. Kalinga

Abstract:

Moodle is an open source learning management system that enables creation of a powerful and flexible learning environment. Many organizations, especially learning institutions have customized Moodle open source LMS for their own use. In general open source LMSs are of great interest due to many advantages they offer in terms of cost, usage and freedom to customize to fit a particular context. Tanzania Secondary School e-Learning (TanSSe-L) system is the learning management system for Tanzania secondary schools. TanSSe-L system was developed using a number of methods, one of them being customization of Moodle Open Source LMS. This paper presents few areas on the way Moodle OS LMS was customized to produce a functional TanSSe-L system fitted to the requirements and specifications of Tanzania secondary schools’ context.

Keywords: LMS, Moodle, e-learning, Tanzania, secondary school

Procedia PDF Downloads 394
20988 Improving Learning and Teaching of Software Packages among Engineering Students

Authors: Sara Moridpour

Abstract:

To meet emerging industry needs, engineering students must learn different software packages and enhance their computational skills. Traditionally, face-to-face is selected as the preferred approach to teaching software packages. Face-to-face tutorials and workshops provide an interactive environment for learning software packages where the students can communicate with the teacher and interact with other students, evaluate their skills, and receive feedback. However, COVID-19 significantly limited face-to-face learning and teaching activities at universities. Worldwide lockdowns and the shift to online and remote learning and teaching provided the opportunity to introduce different strategies to enhance the interaction among students and teachers in online and virtual environments and improve the learning and teaching of software packages in online and blended teaching methods. This paper introduces a blended strategy to teach engineering software packages to undergraduate students. This article evaluates the effectiveness of the proposed blended learning and teaching strategy in students’ learning by comparing the impact of face-to-face, online and the proposed blended environments on students’ software skills. The paper evaluates the students’ software skills and their software learning through an authentic assignment. According to the results, the proposed blended teaching strategy successfully improves the software learning experience among undergraduate engineering students.

Keywords: teaching software packages, undergraduate students, blended learning and teaching, authentic assessment

Procedia PDF Downloads 116
20987 Educational System in Developing Countries and E-learning Evaluation in the Face of COVID Pandemic

Authors: Timothy Wale Olaosebikan

Abstract:

The adverse effect of the Covid-19 outbreak and lock-downs on the world economy has coursed a major disrupt in mostly all sectors. The educational sector is not exempted from this disruption as it is one of the most affected sectors in the world. Similarly, most developing countries are still struggling to adopt/ adapt with the 21st-century advancement of technology, which includes e-learning/ e-education. Furthermore, one is left to wonder of the possibility of these countries surviving this disruption on their various educational systems that may no longer be business as usual after the Covid Pandemic era. This study evaluates the e-learning process of educational systems, especially in developing countries. The collection of data for the study was effected through the use of questionnaires with sampling drawn by stratified random sampling. The data was analyzed using descriptive and inferential statistics. The findings of the study show that about 30% of developing countries have fully adopted the e-learning system, about 45% of these countries are still struggling to upgrade while about 25% of these countries are yet to adopt the e-learning system of education. The study concludes that the sudden closure of educational institutions around the world during the Covid Pandemic period should facilitate a teaching pedagogy of e-learning and virtual delivery of courses and programmes in these developing countries. If this approach can be fully adopted, schools might have to grapple with the initial teething problems, given the sudden transition just in order to preserve the welfare of students. While progress should be made to transit as the case may be, lectures and seminars can be delivered through the web conferencing site-zoom. Interestingly, this can be done on a mobile phone. The demands of this approach would equally allow lecturers to make major changes to their work habits, uploading their teaching materials online, and get to grips with what online lecturing entails. Consequently, the study recommends that leaders of developing countries, regulatory authorities, and heads of educational institutions must adopt e-learning into their educational system. Also, e-learning should be adopted into the educational curriculum of students, especially from elementary school up to tertiary level. Total compliance to the e-learning system must be ensured on the part of both the institutions, stake holders, lecturers, tutors, and students. Finally, collaborations with developed countries and effective funding for e-learning integration must form the heart of their cardinal mission.

Keywords: Covid pandemic, developing countries, educational system, e-learning

Procedia PDF Downloads 103
20986 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning

Procedia PDF Downloads 214
20985 How To Get Students’ Attentions?: Little Tricks From 15 English Teachers In Labuan

Authors: Suriani Oxley

Abstract:

All teachers aim to conduct a successful and an effective teaching. Teacher will use a variety of teaching techniques and methods to ensure that students achieve the learning objectives but often the teaching and learning processes are interrupted by a number of things such as noisy students, students not paying attention, the students play and so on. Such disturbances must be addressed to ensure that students can concentrate on their learning activities. This qualitative study observed and captured a video of numerous tricks that teachers in Labuan have implemented in helping the students to pay attentions in the classroom. The tricks are such as Name Calling, Non-Verbal Clues, Body Language, Ask Question, Offer Assistance, Echo Clapping, Call and Response & Cues and Clues. All of these tricks are simple but yet interesting language learning strategies that helped students to focus on their learning activities.

Keywords: paying attention, observation, tricks, learning strategies, classroom

Procedia PDF Downloads 567
20984 'English in Tourism' in the Project 'English for Community'

Authors: Nguyen Duc An

Abstract:

To the movement towards learning community, creating friendly, positive and appropriate learning environments which best suit the local features is the most salient and decisive factor of the development and success of that learning society. With the aim at building such an English language learning community for the inhabitants in Moc Chau - the national tourist zone, Tay Bac University has successfully designed and deployed the program ‘English in Tourism’ in the project ‘English for Community’. With the strong attachment to the local reality and close knit to the certain communicative situations, this program which was carefully designed and compiled with interesting and practical activities, has greatly helped the locals confidently introduce and popularize the natural beauty, unique culture and specific characteristics of Moc Chau to the foreign tourists; in addition, reinforce awareness of the native culture of the local people as well as improve the professional development in tourism and service.

Keywords: English for community, learning society, learning community, English in tourism

Procedia PDF Downloads 371
20983 A Study on Pre-Service English Language Teacher's Language Self-Efficacy and Goal Orientation

Authors: Ertekin Kotbas

Abstract:

Teaching English as a Foreign Language (EFL) is on the front burner of many countries in the world, in particular for English Language Teaching departments that train EFL teachers. Under the head of motivational theories in foreign language education, there are numerous researches in literature. However; researches comprising English Language Self-Efficacy and Teachers’ Learning Goal Orientation which has a positive impact on learning teachings skills are scarce. Examination of these English Language self-efficacy beliefs and Learning Goal Orientations of Pre-Service EFL Teachers may broaden the horizons, in consideration the importance of self-efficacy and goal orientation on learning and teaching activities. At this juncture, the present study aims to investigate the relationship between English Language Self-Efficacy and Teachers’ Learning Goal Orientation from Turkish context.

Keywords: English language, learning goal orientation, self-efficacy, pre-service teachers

Procedia PDF Downloads 493
20982 Revisiting High School Students’ Learning Styles in English Subject

Authors: Aroona Hashmi

Abstract:

The prime motive for this endeavor was to explore the tenth grade English class students’ preferred learning styles studying in government secondary school so that English subject teachers could tailor their pedagogical strategies in relation to their students learning needs. The further aim of this study was to identify any significance difference among the students on a gender basis, area basis and different categories of school basis. The population of this study consisting of all the secondary level schools working in the government sector and positioned in the province of Punjab. The multi-stage cluster sampling method was employed while selecting the study sample from the population. The scale used for the identification of students’ learning styles in this study was developed by Grasha-Riechmann. The data collected through learning style scale was analyzed by employing descriptive statistics technique. The results from data analysis depict that learning styles of the majority of students found to be Collaborative and Competitive. Overall, no considerable difference was surfaced between male-female, urban-rural, general-other categories of 10th grade English class students learning styles.

Keywords: learning style, learning style scale, grade, government sector

Procedia PDF Downloads 341
20981 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 66
20980 Gamification Teacher Professional Development: Engaging Language Learners in STEMS through Game-Based Learning

Authors: Karen Guerrero

Abstract:

Kindergarten-12th grade teachers engaged in teacher professional development (PD) on game-based learning techniques and strategies to support teaching STEMSS (STEM + Social Studies with an emphasis on geography across the curriculum) to language learners. Ten effective strategies have supported teaching content and language in tandem. To provide exiting teacher PD on summer and spring breaks, gamification has integrated these strategies to engage linguistically diverse student populations to provide informal language practice while students engage in the content. Teachers brought a STEMSS lesson to the PD, engaged in a wide variety of games (dice, cards, board, physical, digital, etc.), critiqued the games based on gaming elements, then developed, brainstormed, presented, piloted, and published their game-based STEMSS lessons to share with their colleagues. Pre and post-surveys and focus groups were conducted to demonstrate an increase in knowledge, skills, and self-efficacy in using gamification to teach content in the classroom. Provide an engaging strategy (gamification) to support teaching content and language to linguistically diverse students in the K-12 classroom. Game-based learning supports informal language practice while developing academic vocabulary utilized in the game elements/content focus, building both content knowledge through play and language development through practice. The study also investigated teacher's increase in knowledge, skills, and self-efficacy in using games to teach language learners. Mixed methods were used to investigate knowledge, skills, and self-efficacy prior to and after the gamification teacher training (pre/post) and to understand the content and application of developing and utilizing game-based learning to teach. This study will contribute to the body of knowledge in applying game-based learning theories to the K-12 classroom to support English learners in developing English skills and STEMSS content knowledge.

Keywords: gamification, teacher professional development, STEM, English learners, game-based learning

Procedia PDF Downloads 93
20979 Fuzzy Neuro Approach for Integrated Water Management System

Authors: Stuti Modi, Aditi Kambli

Abstract:

This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.

Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution

Procedia PDF Downloads 187
20978 University Students' Perceptions of Effective Teaching

Authors: Christine K. Ormsbee, Jeremy S. Robinson

Abstract:

Teacher quality is important for United States universities. It impacts student achievement, program and degree progress, and even retention. While course instructors are still the primary designers and deliverers of instruction in U.S. higher education classrooms, students have become better and more vocal consumers of instruction. They are capable of identifying what instructors do that facilitates their learning or, conversely, what instructors do that makes learning more difficult. Instructors can use students as resources as they design and implement their courses. Students have become more aware of their own learning preferences and processes and can articulate those. While it is not necessarily possible or likely that an instructor can address the widely varying differences in learning preferences represented by a large class of students, it is possible for them to employ general instructional supports that help students understand clearly the instructor's study expectations, identify critical content, efficiently commit content to memory, and develop new skills. Those learning supports include reading guides, test study guides, and other instructor-developed tasks that organize learning for students, hold them accountable for the content, and prepare them to use that material in simulated and real situations. When U.S. university teaching and learning support staff work with instructors to help them identify areas of their teaching to improve, a key part of that assistance includes talking to the instructor member's students. Students are asked to explain what the instructor does that helps them learn, what the instructor does that impedes their learning, and what they wish the instructor would do. Not surprisingly, students are very specific in what they see as helpful learning supports for them. Moreover, they also identify impediments to their success, viewing those as the instructor creating unnecessary barriers to learning. A qualitative survey was developed to provide undergraduate students the opportunity to identify instructor behaviors and/or practices that they thought helped students learn and those behaviors and practices that were perceived as hindrances to student success. That information is used to help instructors implement more student-focused learning supports that facilitate student achievement. In this session, data shared from the survey will focus on supportive instructor behaviors identified by undergraduate students in an institution located in the southwest United States and those behaviors that students perceive as creating unnecessary barriers to their academic success.

Keywords: effective teaching, pedagogy, student engagement, instructional design

Procedia PDF Downloads 88
20977 Social Skills for Students with and without Learning Disabilities in Primary Education in Saudi Arabia

Authors: Omer Agail

Abstract:

The purpose of this study was to assess the social skills of students with and without learning disabilities in primary education in Saudi Arabia. A Social Skills Rating Scale for Teachers Form (SSRS-TF) was used to evaluate students' social skills as perceived by teachers. A randomly-selected sample was chosen from students with and without learning disabilities. Descriptive statistics were used to describe the demographic characteristics of participants. Analysis indicated that there were statistically significant differences in SSRS-TF by academic status, i.e. students with learning disabilities exhibit less social skills compared to students without learning disabilities. In addition, analysis indicated that there were no statistically significant differences in SSRS-TF by gender. A conclusion and recommendations are presented.

Keywords: primary education, students with learning disabilities, social skills, social competence

Procedia PDF Downloads 392
20976 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 68
20975 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data

Authors: M. Lghoul, N. El Goumi, M. Guernouche

Abstract:

In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.

Keywords: magnetic, gravity, structural trend, depth to basement

Procedia PDF Downloads 133
20974 Automatic Extraction of Water Bodies Using Whole-R Method

Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao

Abstract:

Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.

Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method

Procedia PDF Downloads 386
20973 Is There a Group of "Digital Natives" at Secondary Schools?

Authors: L. Janská, J. Kubrický

Abstract:

The article describes a research focused on the influence of the information and communication technology (ICT) on the pupils' learning. The investigation deals with the influences that distinguish between the group of pupils influenced by ICT and the group of pupils not influenced by ICT. The group influenced by ICT should evince a different approach in number of areas (in managing of two and more activities at once, in a quick orientation and searching for information on the Internet, in an ability to quickly and effectively assess the data sources, in the assessment of attitudes and opinions of the other users of the network, in critical thinking, in the preference to work in teams, in the sharing of information and personal data via the virtual social networking, in insisting on the immediate reaction on their every action etc.).

Keywords: ICT influence, digital natives, pupil´s learning

Procedia PDF Downloads 294
20972 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 118
20971 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School

Authors: Diriba Gemechu, Lamessa Abebe

Abstract:

The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.

Keywords: academic achievement, comparison group, cooperative learning, experimental group

Procedia PDF Downloads 248
20970 Integrated Optimization of Vehicle Microscopic Behavior and Signal Control for Mixed Traffic Based on a Distributed Strategy

Authors: Siliang Luan

Abstract:

In this paper, an integrated-decentralized bi-level optimization framework is developed to coordinate intersection signal operations and vehicle driving behavior at an isolated signalized intersection in a mixed traffic environment. The framework takes advantage of both signal control and conflict elimination by incorporating an integrated level and a decentralized level. Two distinct signal control methods are introduced: the classical green phase control strategy and the white phase control strategy. The latter allows certain vehicles to pass through the intersection during a red phase, thereby reducing idle time. Besides, various vehicle trajectory optimization strategies are tailored to different vehicle-following types, leveraging the capabilities of CAV technology. Enhanced microscopic behavior control strategies, such as car-following and lane-changing controls, are also developed for CAVs to improve their performance in mixed traffic. These strategies are integrated into the proposed framework. The effectiveness of the framework is validated through numerical experiments and sensitivity analysis, demonstrating its advantages in terms of traffic effectiveness, stability, and energy economy.

Keywords: traffic signal optimization, connected and automated vehicles, vehicle microscopic control, traffic control and information technology

Procedia PDF Downloads 7
20969 Artificial Intelligence for Cloud Computing

Authors: Sandesh Achar

Abstract:

Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things

Procedia PDF Downloads 110
20968 Living or Surviving in an Intercultural Context: A Study on Transformative Learning of UK Students in China and Chinese Students in the UK

Authors: Yiran Wang

Abstract:

As international education continues to expand countries providing such opportunities not only benefit but also face challenges. For traditional destinations, including the United States and the United Kingdom, the number of international students has been falling. At the same time emerging economies, such as China, are witnessing a rapid increase in the number of international students enrolled in their universities. China is, therefore, beginning to play an important role in the competitive global market for higher education. This study analyses and compares the experiences of international students in the UK and China using Transformative Learning theory. While there is an extensive literature on both international higher education and also Transformative Learning theory there are currently three contributions this study makes. First, this research applies the theory to two international student groups: UK students in Chinese universities and Chinese students in UK universities.Second, this study includes a focus on the intercultural learning of Chinese doctoral students in the UK filling a gap in current research. Finally, this investigation has extended the very limited number of current research projects on UK students in China. It is generally acknowledged that international students will experience various challenges when they are in a culturally different context. Little research has focused on how, why, and why not learners are transformed through exposure to their new environment. This study applies Transformative Learning theory to address two research questions: first, do UK international students in Chinese universities and Chinese international students in UK universities experience transformational learning in/during their overseas studies? Second, what factors foster or impede international students’ experience of transformative learning? To answer the above questions, semi-structured interviews were used to investigate international students’ academic and social experiences. Based on the insights provided by Mezirow,Taylor,and previous studies on international students, this study argues that international students’ intercultural experience is a complex process.Transformation can occur in various ways and social and personal perspectives underpin the transformative learning of the students studied. Contributing factors include culture shock, educational conventions,the student’s motivation, expectations, personality, gender and previous work experience.The results reflect the significance of differences in teaching styles in the UK and China and the impact this can have on the student teaching and learning process when they move to a new university.

Keywords: intercultural learning, international higher education, transformative learning, UK and Chinese international students

Procedia PDF Downloads 411
20967 Understanding Trauma Informed Pedagogy in On-Line Education during Turbulent Times: A Mixed Methods Study in a Canadian Social Work Context

Authors: Colleen McMillan, Alice Schmidt-Hanbidge, Beth Archer-Kuhn, Heather Boynton, Judith Hughes

Abstract:

It is well known that social work students enter the profession with higher scores of adverse childhood experiences (ACE). Add to that the fact that COVID-19 has forced higher education institutions to shift to online teaching and learning, where students, faculty and field educators in social work education have reported increased stressors as well as posing challenges in developing relationships with students and being able to identify mental health challenges including those related to trauma. This multi-institutional project included three Canadian post-secondary institutions at five sites (the University of Waterloo, the University of Calgary and the University of Manitoba) and partners; Desire To Learn (D2L), The Centre for Teaching Excellence at the University of Waterloo and the Taylor Institute for Teaching and Learning. A sequential mixed method research design was used. Survey data was collected from students, faculty and field education staff from the 3 universities using the Qualtrics Insight Platform, followed by virtual focus group data with students to provide greater clarity to the quantitative data. Survey data was analyzed using SPSS software, while focus group data was transcribed verbatim and organized with N-Vivo 12. Thematic analysis used line-by-line coding and constant comparative methods within and across focus groups. The following three objectives of the study were achieved: 1) Establish a Canadian baseline on trauma informed pedagogy and student experiences of trauma informed teaching in the online higher education environment during a pandemic; 2) Identify and document educator and student experiences of online learning regarding the ability to process trauma experiences; and, 3) Transfer the findings into a trauma informed pedagogical model for Social Work as a first step toward developing a universal trauma informed teaching model. The trauma informed pedagogy model would be presented in relation to the study findings.

Keywords: trauma informed pedagogy, higher education, social work, mental health

Procedia PDF Downloads 92
20966 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 127
20965 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 64
20964 Explaining Motivation in Language Learning: A Framework for Evaluation and Research

Authors: Kim Bower

Abstract:

Evaluating and researching motivation in language learning is a complex and multi-faceted activity. Various models for investigating learner motivation have been proposed in the literature, but no one model supplies a complex and coherent model for investigating a range of motivational characteristics. Here, such a methodological framework, which includes exemplification of sources of evidence and potential methods of investigation, is proposed. The process model for the investigation of motivation within language learning settings proposed is based on a complex dynamic systems perspective that takes account of cognition and affects. It focuses on three overarching aspects of motivation: the learning environment, learner engagement and learner identities. Within these categories subsets are defined: the learning environment incorporates teacher, course and group specific aspects of motivation; learner engagement addresses the principal characteristics of learners' perceived value of activities, their attitudes towards language learning, their perceptions of their learning and engagement in learning tasks; and within learner identities, principal characteristics of self-concept and mastery of the language are explored. Exemplifications of potential sources of evidence in the model reflect the multiple influences within and between learner and environmental factors and the possible changes in both that may emerge over time. The model was initially developed as a framework for investigating different models of Content and Language Integrated Learning (CLIL) in contrasting contexts in secondary schools in England. The study, from which examples are drawn to exemplify the model, aimed to address the following three research questions: (1) in what ways does CLIL impact on learner motivation? (2) what are the main elements of CLIL that enhance motivation? and (3) to what extent might these be transferable to other contexts? This new model has been tried and tested in three locations in England and reported as case studies. Following an initial visit to each institution to discuss the qualitative research, instruments were developed according to the proposed model. A questionnaire was drawn up and completed by one group prior to a 3-day data collection visit to each institution, during which interviews were held with academic leaders, the head of the department, the CLIL teacher(s), and two learner focus groups of six-eight learners. Interviews were recorded and transcribed verbatim. 2-4 naturalistic observations of lessons were undertaken in each setting, as appropriate to the context, to provide colour and thereby a richer picture. Findings were subjected to an interpretive analysis by the themes derived from the process model and are reported elsewhere. The model proved to be an effective and coherent framework for planning the research, instrument design, data collection and interpretive analysis of data in these three contrasting settings, in which different models of language learning were in place. It is hoped that the proposed model, reported here together with exemplification and commentary, will enable teachers and researchers in a wide range of language learning contexts to investigate learner motivation in a systematic and in-depth manner.

Keywords: investigate, language-learning, learner motivation model, dynamic systems perspective

Procedia PDF Downloads 271