Search results for: video modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2753

Search results for: video modelling

1943 Gacha Games Economy: A Case Study of Arknights

Authors: Amirhossen Zare Rahvard

Abstract:

Freemium games based on the gacha mechanic have proven highly successful in recent years - games with simple graphics and simple gameplay systems but with a highly profitable market. Attempts at developing gacha games have even been made in Iran. Since gacha games are both profitable and easy to develop, they seem to be a suitable starting point for establishing a video game market in underdeveloped countries. This article aims to review the gacha games' approach to gaining revenue by studying the case of Arknights game in order to draw an outline of how simple games have led to great markets.

Keywords: gacha games, game’s economy, underdeveloped countries and games, arkngihts

Procedia PDF Downloads 115
1942 Biomechanical Perspectives on the Urinary Bladder: Insights from the Hydrostatic Skeleton Concept

Authors: Igor Vishnevskyi

Abstract:

Introduction: The urinary bladder undergoes repeated strain during its working cycle, suggesting the presence of an efficient support system, force transmission, and mechanical amplification. The concept of a "hydrostatic skeleton" (HS) could contribute to our understanding of the functional relationships among bladder constituents. Methods: A multidisciplinary literature review was conducted to identify key features of the HS and to gather evidence supporting its applicability in urinary bladder biomechanics. The collected evidence was synthesized to propose a framework for understanding the potential hydrostatic properties of the urinary bladder based on existing knowledge and HS principles. Results: Our analysis revealed similarities in biomechanical features between living fluid-filled structures and the urinary bladder. These similarities include the geodesic arrangement of fibres, the role of enclosed fluid (urine) in force transmission, prestress as a determinant of stiffness, and the ability to maintain shape integrity during various activities. From a biomechanical perspective, urine may be considered an essential component of the bladder. The hydrostatic skeleton, with its autonomy and flexibility, may provide insights for researchers involved in bladder engineering. Discussion: The concept of a hydrostatic skeleton offers a holistic perspective for understanding bladder function by considering multiple mechanical factors as a single structure with emergent properties. Incorporating viewpoints from various fields on HS can help identify how this concept applies to live fluid-filled structures or organs and reveal its broader relevance to biological systems, both natural and artificial. Conclusion: The hydrostatic skeleton (HS) design principle can be applied to the urinary bladder. Understanding the bladder as a structure with HS can be instrumental in biomechanical modelling and engineering. Further research is required to fully elucidate the cellular and molecular mechanisms underlying HS in the bladder.

Keywords: hydrostatic skeleton, urinary bladder morphology, shape integrity, prestress, biomechanical modelling

Procedia PDF Downloads 74
1941 Centrifuge Modelling Approach on Sysmic Loading Analysis of Clay: A Geotechnical Study

Authors: Anthony Quansah, Tresor Ntaryamira, Shula Mushota

Abstract:

Models for geotechnical centrifuge testing are usually made from re-formed soil, allowing for comparisons with naturally occurring soil deposits. However, there is a fundamental omission in this process because the natural soil is deposited in layers creating a unique structure. Nonlinear dynamics of clay material deposit is an essential part of changing the attributes of ground movements when subjected to solid seismic loading, particularly when diverse intensification conduct of speeding up and relocation are considered. The paper portrays a review of axis shaking table tests and numerical recreations to explore the offshore clay deposits subjected to seismic loadings. These perceptions are accurately reenacted by DEEPSOIL with appropriate soil models and parameters reviewed from noteworthy centrifuge modeling researches. At that point, precise 1-D site reaction investigations are performed on both time and recurrence spaces. The outcomes uncover that for profound delicate clay is subjected to expansive quakes, noteworthy increasing speed lessening may happen close to the highest point of store because of soil nonlinearity and even neighborhood shear disappointment; nonetheless, huge enhancement of removal at low frequencies are normal in any case the forces of base movements, which proposes that for dislodging touchy seaward establishments and structures, such intensified low-recurrence relocation reaction will assume an essential part in seismic outline. This research shows centrifuge as a tool for creating a layered sample important for modelling true soil behaviour (such as permeability) which is not identical in all directions. Currently, there are limited methods for creating layered soil samples.

Keywords: seismic analysis, layered modeling, terotechnology, finite element modeling

Procedia PDF Downloads 151
1940 The Impact of Client Leadership, Building Information Modelling (BIM) and Integrated Project Delivery (IPD) on Construction Project: A Case Study in UAE

Authors: C. W. F. Che Wan Putra, M. Alshawi, M. S. Al Ahbabi, M. Jabakhanji

Abstract:

The construction industry is a multi-disciplinary and multi-national industry, which has an important role to play within the overall economy of any country. There are major challenges to an improved performance within the industry. Particularly lacking is, the ability to capture the large amounts of information generated during the life-cycle of projects and to make these available, in the right format, so that professionals can then evaluate alternative solutions based on life-cycle analysis. The fragmented nature of the industry is the main reason behind the unavailability and ill utilisation of project information. The lack of adequately engaging clients and managing their requirements contributes adversely to construction budget and schedule overruns. This is a difficult task to achieve, particularly if clients are not continuously and formally involved in the design and construction process, which means that the design intent is left to designers that may not always satisfy clients’ requirements. Client lead is strongly recognised in bringing change through better collaboration between project stakeholders. However, one of the major challenges is that collaboration is operated under conventional procurement methods, which hugely limit the stakeholders’ roles and responsibilities to bring about the required level of collaboration. A research has been conducted with a typical project in the UAE. A qualitative research work was conducted including semi-structured interviews with project partners to discover the real reasons behind this delay. The case study also investigated the real causes of the problems and if they can be adequately addressed by BIM and IPD. Special focus was also placed on the Client leadership and the role the Client can play to eliminate/minimize these problems. It was found that part of the ‘key elements’ from which the problems exist can be attributed to the client leadership and the collaborative environment and BIM.

Keywords: client leadership, building information modelling (BIM), integrated project delivery (IPD), case study

Procedia PDF Downloads 321
1939 Spectrum of Dry Eye Disease in Computer Users of Manipur India

Authors: Somorjeet Sharma Shamurailatpam, Rabindra Das, A. Suchitra Devi

Abstract:

Computer and video display users might complain about Asthenopia, burning, dry eyes etc. The management of dry eyes is often not in the lines of severity. Following systematic evaluation and grading, dry eye disease is one condition that can be practiced at all levels of ophthalmic care. In the present study, different spectrum causing dry eye and prevalence of dry eye disease in computer users of Manipur, India are determined with 600 individuals (300 cases and 300 control). Individuals between 15 and 50 years who used computers for more than 3 hrs a day for 1 year or more were included. Tear break up time (TBUT) and Schirmer’s test were conducted. It shows that 33 (20.4%) out of 164 males and 47 (30.3%) out of 136 females have dry eye. Possible explanation for the observed result is discussed.

Keywords: asthenopia, computer vision syndrome, dry eyes, Schirmer's test, TBUT

Procedia PDF Downloads 369
1938 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses

Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer

Abstract:

The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.

Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation

Procedia PDF Downloads 169
1937 A Framework for Building Information Modelling Execution Plan in the Construction Industry, Lagos State, Nigeria

Authors: Tosin Deborah Akanbi

Abstract:

The Building Information Modeling Execution Plan (BEP) is a document that manifests the specifications for the adoption and execution of building information modeling in the construction sector in an organized manner so as to attain the listed goals. In this regard, the study examined the barriers to the adoption of building information modeling, evaluated the effect of building information modeling adoption characteristics on the key elements of a building information modeling execution plan and developed a strategic framework for a BEP in the Lagos State construction industry. Data were gathered through a questionnaire survey with 332 construction professionals in the study area. Three online structured interviews were conducted to support and validate the findings of the quantitative analysis. The results showed the significant relationships and connections between the variables in the framework: BIM usage and model quality control (aBIMskill -> dMQ, Beta = 0.121, T statistics = 1.829), BIM adoption characteristics and information exchange (bBIM_CH -> dIE, Beta = 0.128, T statistics = 1.727), BIM adoption characteristics and process design (bBIM_CH -> dPD, Beta = 0.170, T statistics = 2.754), BIM adoption characteristics and roles and responsibilities (bBIM_CH -> dRR, Beta = 0.131, T statistics = 2.181), interest BIM barriers and BIM adoption characteristics (cBBIM_INT -> bBIM_CH, Beta = 0.137, T statistics = 2.309), legal BIM barriers and BIM adoption characteristics (cBBIM_LEG -> bBIM_CH, Beta = 0.168, T statistics = 2.818), professional BIM barriers and BIM adoption characteristics (cBBIM_PRO -> bBIM_CH, Beta = 0.152, T statistics = 2.645). The results also revealed that seven final themes were generated, namely: model structure and process design, BIM information exchange and collaboration procedures, project goals and deliverables, project model quality control, roles and responsibilities, reflect Lagos state construction industry and validity of the BEP framework. Thus, there is a need for the policy makers to direct interventions to promote, encourage and support the understanding and adoption of BIM by emphasizing the various benefits of using the technology in the Lagos state construction industry.

Keywords: building information modelling execution plan, BIM adoption characteristics, BEP framework, construction industry

Procedia PDF Downloads 11
1936 Polymer Mixing in the Cavity Transfer Mixer

Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson

Abstract:

In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.

Keywords: Mixing, non-Newtonian fluids, polymers, rheology.

Procedia PDF Downloads 375
1935 Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus

Authors: Kita R. Ashman, Anthony R. Rendall, Matthew R. E. Symonds, Desley A. Whisson

Abstract:

Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest.

Keywords: abundance modelling, arboreal mammals plantations, wildlife conservation

Procedia PDF Downloads 114
1934 Bioclimatic Niches of Endangered Garcinia indica Species on the Western Ghats: Predicting Habitat Suitability under Current and Future Climate

Authors: Malay K. Pramanik

Abstract:

In recent years, climate change has become a major threat and has been widely documented in the geographic distribution of many plant species. However, the impacts of climate change on the distribution of ecologically vulnerable medicinal species remain largely unknown. The identification of a suitable habitat for a species under climate change scenario is a significant step towards the mitigation of biodiversity decline. The study, therefore, aims to predict the impact of current, and future climatic scenarios on the distribution of the threatened Garcinia indica across the northern Western Ghats using Maximum Entropy (MaxEnt) modelling. The future projections were made for the year 2050 and 2070 with all Representative Concentration Pathways (RCPs) scenario (2.6, 4.5, 6.0, and 8.5) using 56 species occurrence data, and 19 bioclimatic predictors from the BCC-CSM1.1 model of the Intergovernmental Panel for Climate Change’s (IPCC) 5th assessment. The bioclimatic variables were minimised to a smaller number of variables after a multicollinearity test, and their contributions were assessed using jackknife test. The AUC value of 0.956 ± 0.023 indicates that the model performs with excellent accuracy. The study identified that temperature seasonality (39.5 ± 3.1%), isothermality (19.2 ± 1.6%), and annual precipitation (12.7 ± 1.7%) would be the major influencing variables in the current and future distribution. The model predicted 10.5% (19318.7 sq. km) of the study area as moderately to very highly suitable, while 82.60% (151904 sq. km) of the study area was identified as ‘unsuitable’ or ‘very low suitable’. Our predictions of climate change impact on habitat suitability suggest that there will be a drastic reduction in the suitability by 5.29% and 5.69% under RCP 8.5 for 2050 and 2070, respectively. Finally, the results signify that the model might be an effective tool for biodiversity protection, ecosystem management, and species re-habitation planning under future climate change scenarios.

Keywords: Garcinia Indica, maximum entropy modelling, climate change, MaxEnt, Western Ghats, medicinal plants

Procedia PDF Downloads 153
1933 An Experiment of Three-Dimensional Point Clouds Using GoPro

Authors: Jong-Hwa Kim, Mu-Wook Pyeon, Yang-dam Eo, Ill-Woong Jang

Abstract:

Construction of geo-spatial information recently tends to develop as multi-dimensional geo-spatial information. People constructing spatial information is also expanding its area to the general public from some experts. As well as, studies are in progress using a variety of devices, with the aim of near real-time update. In this paper, getting the stereo images using GoPro device used widely also to the general public as well as experts. And correcting the distortion of the images, then by using SIFT, DLT, is acquired the point clouds. It presented a possibility that on the basis of this experiment, using a video device that is readily available in real life, to create a real-time digital map.

Keywords: GoPro, SIFT, DLT, point clouds

Procedia PDF Downloads 464
1932 Urdu Text Extraction Method from Images

Authors: Samabia Tehsin, Sumaira Kausar

Abstract:

Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.

Keywords: caption text, content-based image retrieval, document analysis, text extraction

Procedia PDF Downloads 510
1931 Application of Building Information Modelling In Analysing IGBC® Ratings (Sustainability Analyses)

Authors: Lokesh Harshe

Abstract:

The building construction sector is using 36% of global energy consumption with 39% of CO₂ emission. Professionals in the Built Environment Sector have long been aware of the industry’s contribution towards CO₂ emissions and are now moving towards more sustainable practices. As a result of this, many organizations have introduced rating systems to address the issue of global warming in the construction sector by ranking construction projects based on sustainability parameters. The pre-construction phase of any building project is the most essential time to make decisions for addressing the sustainability aspects. Traditionally, it is very difficult to collect data from different stakeholders and bring it together to form a decision based on factual data to perform sustainability analyses in the pre-construction phase. Building Information Modelling (BIM) is the solution where one single model is the result of the collaborative approach of BIM processes where all the information is shared, extracted, communicated, and stored on a single platform that everyone can access and make decisions based on real-time data. The focus of this research is on the Indian Green Rating System IGBC® with the objective of understanding IGBC® requirements and developing a framework to create the relationship between the rating processes and BIM. A Hypothetical (Architectural) model of a hostel building is developed using AutoCAD 2019 & Revit Arch. 2019, where the framework is applied to generate results on sustainability analysis using Green Building Studio (GBS) and Revit Add-ins. The results of any sustainability analysis are generated within a fraction of a minute, which is very quick in comparison with traditional sustainability analysis. This may save a considerable amount of time as well as cost. The future scope is to integrate Architectural, Structural, and MEP Models to perform accurate sustainability analyses with inputs from industry professionals working on real-life Green BIM projects.

Keywords: sustainability analyses, BIM, green rating systems, IGBC®, LEED

Procedia PDF Downloads 49
1930 Comparative Study of Scheduling Algorithms for LTE Networks

Authors: Samia Dardouri, Ridha Bouallegue

Abstract:

Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.

Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing

Procedia PDF Downloads 381
1929 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 148
1928 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments

Authors: Xiaoqin Wang, Li Yin

Abstract:

Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.

Keywords: causal effect, point effect, statistical modelling, sequential causal inference

Procedia PDF Downloads 202
1927 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 306
1926 On the Mathematical Modelling of Aggregative Stability of Disperse Systems

Authors: Arnold M. Brener, Lesbek Tashimov, Ablakim S. Muratov

Abstract:

The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained.

Keywords: aggregative stability, coagulation kernels, disperse systems, mathematical model

Procedia PDF Downloads 305
1925 3d Property Modelling of the Lower Acacus Reservoir, Ghadames Basin, Libya

Authors: Aimen Saleh

Abstract:

The Silurian Lower Acacus sandstone is one of the main reservoirs in North West Libya. Our aim in this study is to grasp a robust understanding of the hydrocarbon potential and distribution in the area. To date, the depositional environment of the Lower Acacus reservoir still open to discussion and contradiction. Henceforth, building three dimensional (3D) property modelling is one way to support the analysis and description of the reservoir, its properties and characterizations, so this will be of great value in this project. The 3D model integrates different data set, these incorporates well logs data, petrophysical reservoir properties and seismic data as well. The finalized depositional environment model of the Lower Acacus concludes that the area is located in a deltaic transitional depositional setting, which ranges from a wave dominated delta into tide dominated delta type. This interpretation carried out through a series of steps of model generation, core description and Formation Microresistivity Image tool (FMI) interpretation. After the analysis of the core data, the Lower Acacus layers shows a strong effect of tidal energy. Whereas these traces found imprinted in different types of sedimentary structures, for examples; presence of some crossbedding, such as herringbones structures, wavy and flaser cross beddings. In spite of recognition of some minor marine transgression events in the area, on the contrary, the coarsening upward cycles of sand and shale layers in the Lower Acacus demonstrate presence of a major regressive phase of the sea level. However, consequently, we produced a final package of this model in a complemented set of facies distribution, porosity and oil presence. And also it shows the record of the petroleum system, and the procedure of Hydrocarbon migration and accumulation. Finally, this model suggests that the area can be outlined into three main segments of hydrocarbon potential, which can be a textbook guide for future exploration and production strategies in the area.

Keywords: Acacus, Ghadames , Libya, Silurian

Procedia PDF Downloads 138
1924 Strategies by a Teaching Assistant to Support the Classroom Talk of a Child with Communication and Interaction Difficulties in Italy: A Case for Promoting Social Scaffolding Training

Authors: Lorenzo Ciletti, Ed Baines, Matt Somerville

Abstract:

Internationally, supporting staff with limited training (Teaching Assistants (TA)) has played a critical role in the education of children with special educational needs and/or disabilities (SEND). Researchers have notably illustrated that TAs support the children’s classroom tasks while teachers manage the whole class. Rarely have researchers investigated the TAs’ support for children’s participation in whole-class or peer-group talk, despite this type of “social support” playing a significant role in children’s whole-class integration and engagement with the classroom curriculum and learning. Social support seems particularly crucial for a large proportion of children with SEND, namely those with communication and interaction difficulties (e.g., autism spectrum conditions and speech impairments). This study explored TA practice and, particularly, TA social support in a rarely examined context (Italy). The Italian case was also selected as it provides TAs, known nationally as “support teachers,” with the most comprehensive training worldwide, thus potentially echoing (effective) nuanced practice internationally. Twelve hours of video recordings of a single TA and a child with communication and interaction difficulties (CID) were made. Video data was converted into frequencies of TA multidimensional support strategies, including TA social support and pedagogical assistance. TA-pupil talk oriented to children’s participation in classroom talk was also analysed into thematic patterns. These multi-method analyses were informed by social scaffolding principles: in particular, the extent to which the TA designs instruction contingently to the child’s communication and interaction difficulties and how their social support fosters the child’s highest responsibility in dealing with whole-class or peer-group talk by supplying the least help. The findings showed that the TA rarely supported the group or whole class participation of the child with CID. When doing so, the TA seemed to highly control the content and the timing of the child’s contributions to the classroom talk by a) interrupting the teacher’s whole class or group conversation to start an interaction between themselves and the child and b) reassuring the child about the correctness of their talk in private conversations and prompting them to raise their hand and intervene in the whole-class talk or c) stopping the child from contributing to the whole-class or peer-group talk when incorrect. The findings are interpreted in terms of their theoretical relation to scaffolding. They have significant implications for promoting social scaffolding in TA training in Italy and elsewhere.

Keywords: children with communication and interaction difficulties, children with special educational needs and/or disabilities, social scaffolding, teaching assistants, teaching practice, whole-class talk participation

Procedia PDF Downloads 90
1923 From Prince to Vampire: The Image of Vlad Tepeș Dracula in Popular Culture. Case Study: Castlevania, From Video Game to Netflix Production

Authors: Claudia Horeanu

Abstract:

Ever since the first horror films, Count Dracula, the image inspired mainly by the novel written by Bram Stoker, is an almost indispensable character in popular culture. In the shadow of his vampire image is a Romanian ruler, Vlad Țepeș, from Wallachia, a ruler who was also nicknamed Drăculea. The purpose of this research is to analyze the evolution of the image of Vlad Tepeș/Dracula in popular culture, identifying the reasons and themes associated with this character, and to explore how the figure of Vlad Tepeș/Dracula evolved according to social and political changes in different historical periods. It is also believed that there are elements that have remained constant in the depictions of Vlad the Impaler/Dracula.

Keywords: popular culture, dracula, vlad tepes, castlevania, vampire

Procedia PDF Downloads 57
1922 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 312
1921 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling

Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather

Abstract:

New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.

Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling

Procedia PDF Downloads 188
1920 Good Practices for Model Structure Development and Managing Structural Uncertainty in Decision Making

Authors: Hossein Afzali

Abstract:

Increasingly, decision analytic models are used to inform decisions about whether or not to publicly fund new health technologies. It is well noted that the accuracy of model predictions is strongly influenced by the appropriateness of model structuring. However, there is relatively inadequate methodological guidance surrounding this issue in guidelines developed by national funding bodies such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC) and The National Institute for Health and Care Excellence (NICE) in the UK. This presentation aims to discuss issues around model structuring within decision making with a focus on (1) the need for a transparent and evidence-based model structuring process to inform the most appropriate set of structural aspects as the base case analysis; (2) the need to characterise structural uncertainty (If there exist alternative plausible structural assumptions (or judgements), there is a need to appropriately characterise the related structural uncertainty). The presentation will provide an opportunity to share ideas and experiences on how the guidelines developed by national funding bodies address the above issues and identify areas for further improvements. First, a review and analysis of the literature and guidelines developed by PBAC and NICE will be provided. Then, it will be discussed how the issues around model structuring (including structural uncertainty) are not handled and justified in a systematic way within the decision-making process, its potential impact on the quality of public funding decisions, and how it should be presented in submissions to national funding bodies. This presentation represents a contribution to the good modelling practice within the decision-making process. Although the presentation focuses on the PBAC and NICE guidelines, the discussion can be applied more widely to many other national funding bodies that use economic evaluation to inform funding decisions but do not transparently address model structuring issues e.g. the Medical Services Advisory Committee (MSAC) in Australia or the Canadian Agency for Drugs and Technologies in Health.

Keywords: decision-making process, economic evaluation, good modelling practice, structural uncertainty

Procedia PDF Downloads 180
1919 Fatigue of Multiscale Nanoreinforced Composites: 3D Modelling

Authors: Leon Mishnaevsky Jr., Gaoming Dai

Abstract:

3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro-micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement (localized in the fiber/matrix interface (fiber sizing) and distributed throughout the matrix) on the crack path, damage mechanisms and fatigue behavior is investigated in numerical experiments.

Keywords: computational mechanics, fatigue, nanocomposites, composites

Procedia PDF Downloads 602
1918 Anatomical Survey for Text Pattern Detection

Authors: S. Tehsin, S. Kausar

Abstract:

The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.

Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction

Procedia PDF Downloads 441
1917 Bringing German History to Tourists

Authors: Gudrun Görlitz, Christian Schölzel, Alexander Vollmar

Abstract:

Sites of Jewish Life in Berlin 1933-1945. Between Persecution and Self-assertion” was realized in a project funded by the European Regional Development Fund. A smartphone app, and a associated web site enable tourists and other participants of this educational offer to learn in a serious way more about the life of Jews in the German capital during the Nazi era. Texts, photos, video and audio recordings communicate the historical content. Interactive maps (both current and historical) make it possible to use predefined or self combined routes. One of the manifold challenges was to create a broad ranged guide, in which all detailed information are well linked with each other. This enables heterogeneous groups of potential users to find a wide range of specific information, corresponding with their particular wishes and interests. The multitude of potential ways to navigate through the diversified information causes (hopefully) the users to utilize app and web site for a second or third time and with a continued interest. Therefore 90 locations, a lot of them situated in Berlin’s city centre, have been chosen. For all of them text-, picture and/or audio/video material gives extensive information. Suggested combinations of several of these “site stories” are leading to the offer of detailed excursion routes. Events and biographies are also presented. A few of the implemented biographies are especially enriched with source material concerning the aspect of (forced) migration of these persons during the Nazi time. All this was done in a close and fruitful interdisciplinary cooperation of computer scientists and historians. The suggested conference paper aims to show the challenges shaping complex source material for practical use by different user-groups in a proper technical and didactic way. Based on the historical research in archives, museums, libraries and digital resources the quantitative dimension of the project can be sized as follows: The paper focuses on the following historiographical and technical aspects: - Shaping the text material didactically for the use in new media, especially a Smartphone-App running on differing platforms; - Geo-referencing of the sites on historical and current map material; - Overlay of old and new maps to present and find the sites; - Using Augmented Reality technologies to re-visualize destroyed buildings; - Visualization of black-/white-picture-material; - Presentation of historical footage and the resulting problems to need too much storage space; - Financial and juridical aspects in gaining copyrights to present archival material.

Keywords: smartphone app, history, tourists, German

Procedia PDF Downloads 371
1916 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects

Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang

Abstract:

As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.

Keywords: 4D, 5D, 6D, active BIM

Procedia PDF Downloads 274
1915 Dynamic Modelling and Assessment for Urban Growth and Transport in Riyadh City, Saudi Arabia

Authors: Majid Aldalbahi

Abstract:

In 2009, over 3.4 billion people in the world resided in urban areas as a result of rapid urban growth. This figure is estimated to increase to 6.5 billion by 2050. This urban growth phenomenon has raised challenges for many countries in both the developing and developed worlds. Urban growth is a complicated process involving the spatiotemporal changes of all socio-economic and physical components at different scales. The socio-economic components of urban growth are related to urban population growth and economic growth, while physical components of urban growth and economic growth are related to spatial expansion, land cover change and land use change which are the focus of this research. The interactions between these components are complex and no-linear. Several factors and forces cause these complex interactions including transportation and communication, internal and international migrations, public policies, high natural growth rates of urban populations and public policies. Urban growth has positive and negative consequences. The positive effects relates to planned and orderly urban growth, while negative effects relate to unplanned and scattered growth, which is called sprawl. Although urban growth is considered as necessary for sustainable urbanization, uncontrolled and rapid growth cause various problems including consumption of precious rural land resources at urban fringe, landscape alteration, traffic congestion, infrastructure pressure, and neighborhood conflicts. Traditional urban planning approaches in fast growing cities cannot accommodate the negative consequences of rapid urban growth. Microsimulation programme, and modelling techniques are effective means to provide new urban development, management and planning methods and approaches. This paper aims to use these techniques to understand and analyse the complex interactions for the case study of Riyadh city, a fast growing city in Saudi Arabia.

Keywords: policy implications, urban planning, traffic congestion, urban growth, Suadi Arabia, Riyadh

Procedia PDF Downloads 480
1914 Modelling Social Influence and Cultural Variation in Global Low-Carbon Vehicle Transitions

Authors: Hazel Pettifor, Charlie Wilson, David Mccollum, Oreane Edelenbosch

Abstract:

Vehicle purchase is a technology adoption decision that will strongly influence future energy and emission outcomes. Global integrated assessment models (IAMs) provide valuable insights into the medium and long terms effects of socio-economic development, technological change and climate policy. In this paper we present a unique and transparent approach for improving the behavioural representation of these models by incorporating social influence effects to more accurately represent consumer choice. This work draws together strong conceptual thinking and robust empirical evidence to introduce heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real-world processes.

Keywords: behavioural realism, electric vehicles, social influence, vehicle choice

Procedia PDF Downloads 185