Search results for: sampling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4990

Search results for: sampling algorithms

4180 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 290
4179 Comparison Ileal and Excreta Digestibility of Protein Poultry by-Product Meal in 21 to 28 Days of Age Broiler Chicken

Authors: N. Mahmoudnia, M. Khormali

Abstract:

This experiment was conducted to determine the apparent protein digestibility of poultry by- product meal (PBPM) from two industrial poultry slaughter houses on Ross 308 male broiler chickens in independed comparisons. The experiment consisted of seven dietary treatments and three replicates per treatment with three broiler chickens per replicate in a completely randomized design. Dietary treatments consisted of a control corn- soybean diet, and levels 3, 6 and 9% PBPM produced by slaughter house 1 and levels 3, 6 and 9% PBPM produced by slaughter house 2. Chromic oxide was added to the experimental diets as indigestible marker. The apparent protein digestibility of each diet were determined with two methods of sample collection of ileum and excreta in 21-28 d of age. The results this experiment showed that use of PBPM had no significantly effect on performance of broiler chicks during period of experiments. The apparent protein digestibility of PBPM groups was significantly higher than control group by excreta sampling procedure (P<0.05). Using of PBPM 2 significantly (P<0.05) decreased the apparent protein digestibility values based on ileum sampling procedure vs control ( 85.21 vs 90.14).Based results of this experiment,it is possible to use of PBPM 1 in broiler chicken.

Keywords: poultry by-product meal, apparent protein digestibility, independed comparison, broiler chicken

Procedia PDF Downloads 602
4178 Empowering Nigerian Rural Women through Ownership of Productive Resources

Authors: Sidiqat A. Aderinoye-Abdulwahab, Lateef L. Adefalu, Rashid S. Adisa, Felix O. Oladipo, Tawakalitu A. Dolapo

Abstract:

This study investigates whether the rural women in Nigeria have access to productive resources such as land, livestock, and capital in order to determine their level of socio-economic empowerment. The study adopted a case study design while employing qualitative and quantitative methods of data collection. A multi-stage sampling technique was used to identify 7 locations, where 88 women were selected based on simple random sampling technique. Focus group discussions and questionnaire were used to elicit information. Gender analysis framework was used to explore and analyse the data generated for the study. The study found that the rural women desire to engage in gainful economic activities. However, cultural barriers prevent them from adequately exploring livelihood-improving opportunities. It was established that ownership of productive resources such as land and livestock can enhance their livelihoods provided cultural and governance issues do not deter them from accessing the services. It was therefore recommended that appropriate policies that will favour the access and ownership of assets by women so as to empower them need to be in place. The study provides a nuanced perspective on the influence and relevance of possession of physical assets in enhancing women’s livelihood diversification and overall development of rural livelihoods.

Keywords: livelihoods, productivity, development, economic activities, socio-economic empowerment

Procedia PDF Downloads 260
4177 Factors Associated with Increase of Diabetic Foot Ulcers in Diabetic Patients in Nyahururu County Hospital

Authors: Daniel Wachira

Abstract:

The study aims to determine factors contributing to increasing rates of DFU among DM patients attending clinics in Nyahururu County referral hospital, Lakipia County. The study objectives include;- To determine the demographic factors contributing to increased rates of DFU among DM patients, determining the sociocultural factors that contribute to increased rates of DFU among DM patients and determining the health facility factors contributing to increased rates of DFU among DM patients attending DM clinic at Nyahururu county referral hospital, Laikipia County. This study will adopt a descriptive cross-sectional study design. It involves the collection of data at a one-time point without follow-up. This method is fast and inexpensive, there is no loss to follow up as the data is collected at one time point and associations between variables can be determined. The study population includes all DM patients with or without DFU. The sampling technique that will be used is the probability sampling method, a simple random method of sampling will be used. The study will employ the use of questionnaires to collect the required information. Questionnaires will be a research administered questionnaires. The questionnaire developed was done in consultation with other research experts (supervisor) to ensure reliability. The questionnaire designed will be pre-tested by hand delivering them to a sample 10% of the sample size at J.M Kariuki Memorial hospital, Nyandarua county and thereafter collecting them dully filled followed by refining of errors to ensure it is valid for collection of data relevant for this study. Refining of errors on the questionnaires to ensure it was valid for collection of data relevant for this study. Data collection will begin after the approval of the project. Questionnaires will be administered only to the participants who met the selection criteria by the researcher and those who agreed to participate in the study to collect key information with regard to the objectives of the study. The study's authority will be obtained from the National Commission of Science and Technology and Innovation. Permission will also be obtained from the Nyahururu County referral hospital administration staff. The purpose of the study will be explained to the respondents in order to secure informed consent, and no names will be written on the questionnaires. All the information will be treated with maximum confidentiality by not disclosing who the respondent was and the information.

Keywords: diabetes, foot ulcer, social factors, hospital factors

Procedia PDF Downloads 23
4176 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 247
4175 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 40
4174 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 58
4173 The Aquatic Plants Community in the Owena-Idanre Section of the Owena River of Ondo State

Authors: Rafiu O. Sanni, Abayomi O. Olajuyigbe, Nelson R. Osungbemiro, Rotimi F. Olaniyan

Abstract:

The Owena River lies within the drainage basins of the Oni, Siluko, and Ogbesse rivers. The river’s immediate surroundings are covered by dense forests, interspersed by plantations of cocoa, oil palm, kolanut, bananas, and other crops. The objectives were to identify the aquatic plants community, comprising the algae and aquatic macrophytes, observe their population dynamics in relation to the two seasons and identify their economic importance, especially to the neighbouring community. The study sites were determined using a stratified sampling method. Three strata were marked out for sampling namely strata I (upstream)–5 stations, strata II (reservoir) –2 stations, and strata III (outflow) 2 stations. These nine stations were tagged st1, st2, st3…st9. The aquatic macrophytes were collected using standard methods and identified at the University of Ibadan herbarium while the algal samples were collected using standard methods for microalgae. The periphytonic species were scraped from surfaces of rocks (perilithic), sucked with large syringe from mud (epipellic), scraped from suspended logs, washed from roots of aquatic angiosperms (epiphytic), as well as shaken from other particles such as suspended plant parts. Some were collected physically by scooping floating thallus of non-microscopic multicellular forms. The specimens were taken to the laboratory and observed under a microscope with mounted digital camera for photomicrography. Identification was done using Prescott.

Keywords: aquatic plants, aquatic macrophytes, algae, Owena river

Procedia PDF Downloads 559
4172 Shape Evolution of CdSe Quantum Dots during the Synthesis in the Presence of Silver Halides

Authors: Pavel Kotin, Sergey Dotofeev, Daniil Kozlov, Alexey Garshev

Abstract:

We propose the investigation of CdSe quantum dots which were synthesized in the presence of silver halides. To understand a process of nanoparticle formation in more detail, we varied the silver halide amount in the synthesis and proposed a sampling during colloidal growth. The attempts were focused on the investigation of shape, structure and optical properties of nanoparticles. We used the colloidal method of synthesis. Cadmium oleate, tri-n-octylphosphine selenide (TOPSe) and AgHal in TOP were precursors of cadmium, selenium and silver halides correspondingly. The molar Ag/Cd ratio in synthesis was varied from 1/16 to 1/1. The sampling was basically realized in 20 sec, 5 min, and 30 min after the beginning of quantum dots nucleation. To investigate nanoparticles we used transmission electron microscopy (including high resolution one), X-ray diffraction, and optical spectroscopy. It was established that silver halides lead to obtaining tetrapods with different leg length and large ellipsoidal nanoparticles possessing an intensive near IR photoluminescence. The change of the amount of silver halide in synthesis and the selection of an optimal growth time allows controlling the shape and the share of tetrapods or ellipsoidal nanoparticles in the product. Our main attempts were focused on a detailed investigation of the quantum dots structure and shape evolution and, finally, on mechanisms of such nanoparticle formation.

Keywords: colloidal quantum dots, shape evolution, silver doping, tetrapods

Procedia PDF Downloads 290
4171 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 138
4170 Exploration of Bullying Perceptions in Adolescents in Sekolah Menengah Kejuruan Negeri 1 Manado

Authors: Madjid Nancy, Rakinaung Natalia, Lumowa Fresy

Abstract:

Background: Bullying becomes one of the problems that concern the world of education, especially in adolescents, which has a negative impact on learning achievement, psychology, and physical health. The psychological impact is shame, depression, distress, fear, sadness, and anxiety, so that if prolonged leave can lead to depression in the victim. While the impact on physical health in the form of bruises on the hit area, blisters, swelling and in more severe cases will lead to death. Objectives: This study aims to explore the perception of bullying in adolescent students Sekolah Menengah Kejuruan (SMK) Negeri 1 Manado and the people associated with that adolescent students. Methods: This research uses descriptive qualitative research design and using thematic analysis, and supported by Urie Bronfenbrenner Ecological Framework. The data collection that will be used is by in-depth interview. Sampling using purposive sampling and snowball techniques. This research was conducted at SMK Negeri 1 Manado. Result: From the analysis obtained three themes with the categories: 1) the perception of bullying with categories are: Understanding of Bullying and The Impact of Bullying, 2) the originator of bullying with categories are: Fulfillment of Youth Development Tasks and Needs, Peers Influence, and Family Communication; 3) the effort to handle bullying with categories are: the Individual Coping and Teacher Role. Conclusion: This research get three themes, those are perception of bullying, bullying’s originator and the effort of handling bullying.

Keywords: adolscent, students, bullying, perception

Procedia PDF Downloads 140
4169 An Exploration of Athlete Tattoos

Authors: Chen-Yu Chien, Shiow-Fang Shieh

Abstract:

Tattoos are the most intimate form of body art. Unlike other art forms, tattoos emphasize breaking through tradition, innovation, and creativity. The designs created by tattoo artists are often regarded as true works of art. In recent years, there has been a notable increase in athletes with tattoos, thereby amplifying the beliefs and psychological expressions conveyed by tattoos on athletes compared to the past. The primary objectives of this study are 1. to explore and understand the presence and significance of tattoos for athletes and 2. to examine the impact of tattoos on athletes' performance. This study employs a semi-structured, in-depth interview method utilizing purposive sampling. The participants are athletes who have engaged in regular exercise for more than three years and have tattoos. A total of 10 athletes were interviewed, including 9 males and 1 female, aged between 24 and 43 years, each with different sports specializations. The sample was collected using snowball sampling. Results and Discussion: 1. For athletes, tattoos are not merely body decorations but serve to reinforce their inner beliefs, thereby enhancing their athletic performance. 2. Tattoos have a positive impact on the appearance of athletes. 3. The influence of tattoos on athletic performance extends beyond physical appearance, serving as a psychological motivation and support. 4. Individuals with tattoos tend to be more outgoing and extroverted, with higher impulsivity and adventurousness in their athletic endeavors. Conclusion: I. For athletes, tattoos not only have a positive impact on their appearance but also strengthen their internal beliefs. II. Athletes with tattoos exhibit not only greater extroversion and openness but also heightened impulsivity and adventurousness in their athletic performance.

Keywords: tattoo, athletes, athletic performance, psychological impact, body art

Procedia PDF Downloads 64
4168 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 213
4167 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry

Authors: Harneet Walia, Morteza Zihayat

Abstract:

Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.

Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis

Procedia PDF Downloads 125
4166 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 527
4165 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 25
4164 The Effect of Training and Development Practice on Employees’ Performance

Authors: Sifen Abreham

Abstract:

Employees are resources in organizations; as such, they need to be trained and developed properly to achieve an organization's goals and expectations. The initial development of the human resource management concept is based on the effective utilization of people to treat them as resources, leading to the realization of business strategies and organizational objectives. The study aimed to assess the effect of training and development practices on employee performance. The researcher used an explanatory research design, which helps to explain, understand, and predict the relationship between variables. To collect the data from the respondents, the study used probability sampling. From the probability, the researcher used stratified random sampling, which can branch off the entire population into homogenous groups. The result was analyzed and presented by using the statistical package for the social science (SPSS) version 26. The major finding of the study was that the training has an impact on employees' job performance to achieve organizational objectives. The district has a policy and procedure for training and development, but it doesn’t apply actively, and it’s not suitable for district-advised reform this policy and procedure and applied actively; the district gives training for the majority of its employees, but most of the time, the training is theoretical the district advised to use practical training method to see positive change, the district gives evaluation after the employees take training and development, but the result is not encouraging the district advised to assess employees skill gap and feel that gap, the district has a budget, but it’s not adequate the district advised to strengthen its financial ground.

Keywords: training, development, employees, performance, policy

Procedia PDF Downloads 62
4163 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo

Abstract:

Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 141
4162 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades

Authors: E. Tandis, E. Assareh

Abstract:

Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed

Keywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine

Procedia PDF Downloads 317
4161 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis

Authors: Elcin Timur Cakmak, Ayse Oguzlar

Abstract:

This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.

Keywords: classification algorithms, machine learning, sentiment analysis, Twitter

Procedia PDF Downloads 75
4160 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 106
4159 Comparative Study and Parallel Implementation of Stochastic Models for Pricing of European Options Portfolios using Monte Carlo Methods

Authors: Vinayak Bassi, Rajpreet Singh

Abstract:

Over the years, with the emergence of sophisticated computers and algorithms, finance has been quantified using computational prowess. Asset valuation has been one of the key components of quantitative finance. In fact, it has become one of the embryonic steps in determining risk related to a portfolio, the main goal of quantitative finance. This study comprises a drawing comparison between valuation output generated by two stochastic dynamic models, namely Black-Scholes and Dupire’s bi-dimensionality model. Both of these models are formulated for computing the valuation function for a portfolio of European options using Monte Carlo simulation methods. Although Monte Carlo algorithms have a slower convergence rate than calculus-based simulation techniques (like FDM), they work quite effectively over high-dimensional dynamic models. A fidelity gap is analyzed between the static (historical) and stochastic inputs for a sample portfolio of underlying assets. In order to enhance the performance efficiency of the model, the study emphasized the use of variable reduction methods and customizing random number generators to implement parallelization. An attempt has been made to further implement the Dupire’s model on a GPU to achieve higher computational performance. Furthermore, ideas have been discussed around the performance enhancement and bottleneck identification related to the implementation of options-pricing models on GPUs.

Keywords: monte carlo, stochastic models, computational finance, parallel programming, scientific computing

Procedia PDF Downloads 165
4158 Assessment of Politeness Behavior on Communicating: Validation of Scale through Exploratory Factor Analysis and Confirmatory Factor Analysis

Authors: Abdullah Pandang, Mantasiah Rivai, Nur Fadhilah Umar, Azam Arifyadi

Abstract:

This study aims to measure the validity of the politeness behaviour scale and obtain a model that fits the scale. The researcher developed the Politeness Behavior on Communicating (PBC) scale. The research method uses descriptive quantitative by developing the PBC scale. The population in this study were students in three provinces, namely South Sulawesi, West Sulawesi, and Central Sulawesi, recorded in the 2022/2023 academic year. The sampling technique used stratified random sampling by determining the number of samples using the Slovin formula. The sample of this research is 1200 students. This research instrument uses the PBC scale, which consists of 5 (five) indicators: self-regulation of compensation behaviour, self-efficacy of compensation behaviour, fulfilment of social expectations, positive feedback, and no strings attached. The PBC scale consists of 34 statement items. The data analysis technique is divided into two types: the validity test on the correlated item values and the item reliability test referring to Cronbach's and McDonald's alpha standards using the JASP application. Furthermore, the data were analyzed using confirmatory factor analysis (CFA) and exploratory factor analysis (EFA). The results showed that the adaptation of the Politeness Behavior on Communicating (PBC) scale was on the Fit Index with a chi-square value (711,800/375), RMSEA (0.53), GFI (0.990), CFI (0.987), GFI (0.985).

Keywords: polite behavior in communicating, positive communication, exploration factor analysis, confirmatory factor analysis

Procedia PDF Downloads 124
4157 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 246
4156 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 128
4155 Investigating the Indoor Air Quality of the Respiratory Care Wards

Authors: Yu-Wen Lin, Chin-Sheng Tang, Wan-Yi Chen

Abstract:

Various biological specimens, drugs, and chemicals exist in the hospital. The medical staffs and hypersensitive inpatients expose might expose to multiple hazards while they work or stay in the hospital. Therefore, the indoor air quality (IAQ) of the hospital should be paid more attention. Respiratory care wards (RCW) are responsible for caring the patients who cannot spontaneously breathe without the ventilators. The patients in RCW are easy to be infected. Compared to the bacteria concentrations of other hospital units, RCW came with higher values in other studies. This research monitored the IAQ of the RCW and checked the compliances of the indoor air quality standards of Taiwan Indoor Air Quality Act. Meanwhile, the influential factors of IAQ and the impacts of ventilator modules, with humidifier or with filter, were investigated. The IAQ of two five-bed wards and one nurse station of a RCW in a regional hospital were monitored. The monitoring was proceeded for 16 hours or 24 hours during the sampling days with a sampling frequency of 20 minutes per hour. The monitoring was performed for two days in a row and the AIQ of the RCW were measured for eight days in total. The concentrations of carbon dioxide (CO₂), carbon monoxide (CO), particulate matter (PM), nitrogen oxide (NOₓ), total volatile organic compounds (TVOCs), relative humidity (RH) and temperature were measured by direct reading instruments. The bioaerosol samples were taken hourly. The hourly air change rate (ACH) was calculated by measuring the air ventilation volume. Human activities were recorded during the sampling period. The linear mixed model (LMM) was applied to illustrate the impact factors of IAQ. The concentrations of CO, CO₂, PM, bacterial and fungi exceeded the Taiwan IAQ standards. The major factors affecting the concentrations of CO, PM₁ and PM₂.₅ were location and the number of inpatients. The significant factors to alter the CO₂ and TVOC concentrations were location and the numbers of in-and-out staff and inpatients. The number of in-and-out staff and the level of activity affected the PM₁₀ concentrations statistically. The level of activity and the numbers of in-and-out staff and inpatients are the significant factors in changing the bacteria and fungi concentrations. Different models of the patients’ ventilators did not affect the IAQ significantly. The results of LMM can be utilized to predict the pollutant concentrations under various environmental conditions. The results of this study would be a valuable reference for air quality management of RCW.

Keywords: respiratory care ward, indoor air quality, linear mixed model, bioaerosol

Procedia PDF Downloads 109
4154 Climate Change and Migration from Ngala and Kala-Balge LGAs, North-Eastern Borno State, Nigeria

Authors: Adam Modu Abbas

Abstract:

Nigeria, due to its location, size and population is very vulnerable to the impact of climate change. Little effort is however made to address most of the problems, despite the fact that sufficient understanding is made on the impact of climate change and problems emanating from it are also always being propagated. Migration, one of the resultant effects of climate change is however given less attention. This paper focuses on the climate change impact and one of resulting effects, migration and its associated problems. Purposive sampling technique was adopted in sampling 250 respondents who were mainly family members of out-migrants from Ngala and Kala-Balge LGAs of North-eastern Borno State, Nigeria. Available literatures were consulted for the types of climate change impacts. The results revealed that, climate change leads to climatic variation over the space with numerous effects on the environment such as intermittent droughts, desertification/deforestation, low water table and establishment of dams across the courses of the main sources of water supply to the Lake Chad. Many people in the study area either migrated to Cameroon’s Darrak, Lake Doi and Mayo Mbund, Lagos, Nigeria, leaving some members of their families at home. More than half of respondents indicated that the heads of the households migrated as a result of poor harvest due to diminishing or fluctuating rains/drought and/or drying of river Surbewel. It is recommended that; inter-basin water transfers should be embarked upon.

Keywords: climate, change, migration, dam, intermittent

Procedia PDF Downloads 444
4153 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 53
4152 Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image

Authors: Salah Abdul Hameed Saleh, Ghada Hasan

Abstract:

The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy.

Keywords: air pollution, PM10 concentration, Lansat8 OLI image, reflectance, multispectral algorithms, Kirkuk area

Procedia PDF Downloads 442
4151 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 429