Search results for: rehydration ratio
3780 Ultradrawing and Ultimate Pensile Properties of Ultra-High Molecular Weight Polyethylene Nanocomposite Fibers Filled with Cellulose Nanofibers
Authors: Zhong-Dan Tu, Wang-Xi Fan, Yi-Chen Huang, Jen-Taut Yeh
Abstract:
Novel ultrahigh molecular weight polyethylene (UHMWPE)/cellulose nanofiber (CNF) (F100CNFy) and UHMWPE/modified cellulose nanofiber (MCNF) (F100MCNFxy) as-prepared nanocomposite fibers were prepared by spinning F100CNFy and F100MCNFxy gel solutions, respectively. Cellulose nanofibers were successfully prepared by proper acid treatment of cotton fibers using sulfuric acid solutions. The best prepared CNF is with specific surface areas around 120 m2/g and a nanofiber diameter of 20 nm. Modified cellulose nanofiber was prepared by grafting maleic anhydride grafted polyethylene (PE-g-MAH) onto cellulose nanofibers. The achievable draw ratio (Dra) values of each F100MCNFxy as-prepared fiber series specimens approached a maximal value as their MCNF contents reached the optimal value at 0.05 phr. In which, the maximum Dra value obtained for F100MCNFx0.05 as-prepared fiber specimen prepared at the optimal MCNF content reached another maximum value as the weight ratio of PE-g-MAH to CNF approach an optimal value at 6. Similar to those found for the achievable drawing properties of the as-prepared fibers, the orientation factor, tensile strength (σ f) and initial modulus (E) values of drawn F100MCNF6y fiber series specimens with a fixed draw ratio reach a maximal value as their MCNF contents approach the optimal value, wherein the σ f and E values of the drawn F100MCNFxy fiber specimens are significantly higher than those of the drawn F100 fiber specimens and corresponding drawn F100CNFy fiber specimens prepared at the same draw ratios and CNF contents but without modification. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F100CNFy and F100MCNFxy fiber specimens, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of the original and modified CNF nanofillers were performed in this study.Keywords: ultradrawing, cellulose nanofibers, ultrahigh molecular weight polyethylene, nanocomposite fibers
Procedia PDF Downloads 2103779 Comparative Settlement Analysis on the under of Embankment with Empirical Formulas and Settlement Plate Measurement for Reducing Building Crack around of Embankments
Authors: Safitri Nur Wulandari, M. Ivan Adi Perdana, Prathisto L. Panuntun Unggul, R. Dary Wira Mahadika
Abstract:
In road construction on the soft soil, we need a soil improvement method to improve the soil bearing capacity of the land base so that the soil can withstand the traffic loads. Most of the land in Indonesia has a soft soil, where soft soil is a type of clay that has the consistency of very soft to medium stiff, undrained shear strength, Cu <0:25 kg/cm2, or the estimated value of NSPT <5 blows/ft. This study focuses on the analysis of the effect on preloading load (embarkment) to the amount of settlement ratio on the under of embarkment that will impact on the building cracks around of embarkment. The method used in this research is a superposition method for embarkment distribution on 27 locations with undisturbed soil samples at some borehole point in Java and Kalimantan, Indonesia. Then correlating the results of settlement plate monitoring on the field with Asaoka method. The results of settlement plate monitoring taken from an embarkment of Ahmad Yani airport in Semarang on 32 points. Where the value of Cc (index compressible) soil data based on some laboratory test results, while the value of Cc is not tested obtained from empirical formula Ardhana and Mochtar, 1999. From this research, the results of the field monitoring showed almost the same results with an empirical formulation with the standard deviation of 4% where the formulation of the empirical results of this analysis obtained by linear formula. Value empirical linear formula is to determine the effect of compression heap area as high as 4,25 m is 3,1209x + y = 0.0026 for the slope of the embankment 1: 8 for the same analysis with an initial height of embankment on the field. Provided that at the edge of the embankment settlement worth is not equal to 0 but at a quarter of embankment has a settlement ratio average 0.951 and at the edge of embankment has a settlement ratio 0,049. The influence areas around of embankment are approximately 1 meter for slope 1:8 and 7 meters for slope 1:2. So, it can cause the building cracks, to build in sustainable development.Keywords: building cracks, influence area, settlement plate, soft soil, empirical formula, embankment
Procedia PDF Downloads 3443778 Treatment of Rice Industry Waste Water by Flotation-Flocculation Method
Authors: J. K. Kapoor, Shagufta Jabin, H. S. Bhatia
Abstract:
Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment.Keywords: coagulation, flocculation, air flotation technique, polyelectrolyte, turbidity
Procedia PDF Downloads 4803777 An Indispensable Parameter in Lipid Ratios to Discriminate between Morbid Obesity and Metabolic Syndrome in Children: High Density Lipoprotein Cholesterol
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity is a low-grade inflammatory disease and may lead to health problems such as hypertension, dyslipidemia, diabetes. It is also associated with important risk factors for cardiovascular diseases. This requires the detailed evaluation of obesity, particularly in children. The aim of this study is to enlighten the potential associations between lipid ratios and obesity indices and to introduce those with discriminating features among children with obesity and metabolic syndrome (MetS). A total of 408 children (aged between six and eighteen years) participated in the scope of the study. Informed consent forms were taken from the participants and their parents. Ethical Committee approval was obtained. Anthropometric measurements such as weight, height as well as waist, hip, head, neck circumferences and body fat mass were taken. Systolic and diastolic blood pressure values were recorded. Body mass index (BMI), diagnostic obesity notation model assessment index-II (D2 index), waist-to-hip, head-to-neck ratios were calculated. Total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDLChol), low-density lipoprotein cholesterol (LDLChol) analyses were performed in blood samples drawn from 110 children with normal body weight, 164 morbid obese (MO) children and 134 children with MetS. Age- and sex-adjusted BMI percentiles tabulated by World Health Organization were used to classify groups; normal body weight, MO and MetS. 15th-to-85th percentiles were used to define normal body weight children. Children, whose values were above the 99th percentile, were described as MO. MetS criteria were defined. Data were evaluated statistically by SPSS Version 20. The degree of statistical significance was accepted as p≤0.05. Mean±standard deviation values of BMI for normal body weight children, MO children and those with MetS were 15.7±1.1, 27.1±3.8 and 29.1±5.3 kg/m2, respectively. Corresponding values for the D2 index were calculated as 3.4±0.9, 14.3±4.9 and 16.4±6.7. Both BMI and D2 index were capable of discriminating the groups from one another (p≤0.01). As far as other obesity indices were considered, waist-to hip and head-to-neck ratios did not exhibit any statistically significant difference between MO and MetS groups (p≥0.05). Diagnostic obesity notation model assessment index-II was correlated with the triglycerides-to-HDL-C ratio in normal body weight and MO (r=0.413, p≤0.01 and r=0.261, (p≤0.05, respectively). Total cholesterol-to-HDL-C and LDL-C-to-HDL-C showed statistically significant differences between normal body weight and MO as well as MO and MetS (p≤0.05). The only group in which these two ratios were significantly correlated with waist-to-hip ratio was MetS group (r=0.332 and r=0.334, p≤0.01, respectively). Lack of correlation between the D2 index and the triglycerides-to-HDL-C ratio was another important finding in MetS group. In this study, parameters and ratios, whose associations were defined previously with increased cardiovascular risk or cardiac death have been evaluated along with obesity indices in children with morbid obesity and MetS. Their profiles during childhood have been investigated. Aside from the nature of the correlation between the D2 index and triglycerides-to-HDL-C ratio, total cholesterol-to-HDL-C as well as LDL-C-to- HDL-C ratios along with their correlations with waist-to-hip ratio showed that the combination of obesity-related parameters predicts better than one parameter and appears to be helpful for discriminating MO children from MetS group.Keywords: children, lipid ratios, metabolic syndrome, obesity indices
Procedia PDF Downloads 1583776 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins
Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying
Abstract:
Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.Keywords: light olefins, OX-ZEO, Syngas, ZnCrOₓ
Procedia PDF Downloads 1803775 Reliability Study of Steel Headed Stud Shear Connector Exposed to Fire
Authors: Idris Haruna Muhammad, Okorie Austine Uche
Abstract:
This paper presents a study on reliability of shear connector exposed to fire situation in accordance with Eurocode 4. The reliability analysis i reliability analysis is based on First Order Second Moment Integration Technique (FOSMIT) using FORM 5. Performance functions for shear connector are derived for normal and under fire condition and their implied safety levels are evaluated. Four (4) design variables which include ultimate tensile strength, diameter of the stud, temperature and span of the steel beam are treated as random variables with their statistical characteristic adopted from literature. Results show that for normal condition the β – value decrease from 7.95 to 5.43 which show it is conservative in safety level for normal condition. Under fire condition, β – value decrease from 2.88 to – 0.32 with corresponding load ratio of 0.2 to 1.2. It was also shown from sensitivity assessment, that the temperature and span of the beam decrease with increase in their β – values while ultimate tensile strength and diameter of the stud increase with increase in their β – values for a given load ratio of 0.2 to 1.2.Keywords: Composite steel beam, Fire condition, Shear stud, Sensitivity study
Procedia PDF Downloads 5213774 Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier
Authors: Dharminer Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation.Keywords: air bubbling fluidized bed gasifier, groundnut shell powder, equivalence ratio (ER), cold gas efficiency, carbon conversion efficiency (CCE), high heating value (HHV)
Procedia PDF Downloads 2803773 Behavior of Reinforced Soil by Polypropylene Fibers
Authors: M. Kamal Elbokl
Abstract:
The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system.Keywords: polypropylene fibers, CBR, static triaxial, cyclic triaxial, resilient strain, permanent strain
Procedia PDF Downloads 6233772 Mechanism Design and Dynamic Analysis of Active Independent Front Steering System
Authors: Cheng-Chi Yu, Yu-Shiue Wang, Kei-Lin Kuo
Abstract:
Active Independent Front Steering system is a steering system which can according to vehicle driving situation adjusts the relation of steering angle between inner wheel and outer wheel. In low-speed cornering, AIFS sets the steering angles of inner and outer wheel into Ackerman steering geometry to make vehicle has less cornering radius. Besides, AIFS changes the steering geometry to parallel or even anti-Ackerman steering geometry to keep vehicle stability in high-speed cornering. Therefore, based on the analysis of the vehicle steering behavior from different steering geometries, this study develops a new screw type of active independent front steering system to make vehicles best cornering performance at any speeds. The screw type of active independent front steering system keeps the pinion and separates the rack into main rack and second rack. Two racks connect by a screw. Extra screw rotated motion powered by assistant motor through coupler makes second rack move relative to main rack, which can adjust both steering ratio and steering geometry. First of all, this study distinguishes the steering geometry by using Ackerman percentage and utilizes the software of ADAMS/Car to construct diverse steering geometry models. The different steering geometries are compared at low-speed and high-speed cornering, and then control strategies of the active independent front steering systems could be formulated. Secondly, this study applies closed loop equation to analyze tire steering angles and carries out optimization calculations to make the steering geometry from traditional rack and pinion steering system near to Ackerman steering geometry. Steering characteristics of the optimum steering mechanism and motion characteristics of vehicle installed the steering mechanism are verified by ADAMS/Car models of front suspension and full vehicle respectively. By adding dual auxiliary rack and dual motor to the optimum steering mechanism, the active independent front steering system could be developed to achieve the functions of variable steering ratio and variable steering geometry. At last, this study uses ADAMS/Car and Matlab/Simulink to co-simulate the cornering motion of vehicles confirms the vehicle installed the Active Independent Front Steering (AIFS) system has better handling performance than that with Active Independent Steering (AFS) system or with Electric Power Steering (EPS) system. At low-speed cornering, the vehicles with AIFS system and with AFS system have better maneuverability, less cornering radius, than the traditional vehicle with EPS system because that AIFS and AFS systems both provide function of variable steering ratio. However, there is a slight penalty in the motor(s) power consumption. In addition, because of the capability of variable steering geometry, the vehicle with AIFS system has better high-speed cornering stability, trajectory keeping, and even less motor(s) power consumption than that with EPS system and also with AFS system.Keywords: active front steering system, active independent front steering system, steering geometry, steering ratio
Procedia PDF Downloads 1893771 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis
Authors: Haider M. Alsaeq
Abstract:
The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element
Procedia PDF Downloads 3913770 Weeds Density Affects Yield and Quality of Wheat Crop under Different Crop Densities
Authors: Ijaz Ahmad
Abstract:
Weed competition is one of the major biotic constraints in wheat crop productivity. Avena fatua L. and Silybum marianum (L.) Gaertn. are among the worst weeds of wheat, greatly deteriorating wheat quality subsequently reducing its market value. In this connection, two-year experiments were conducted in 2018 & 2019. Different seeding rate wheat viz; 80, 100, 120 and 140 kg ha-1 and different weeds ratio (A. fatua: S. marianum ) sown at the rate 1:8, 2:7, 3:6, 4:5, 5:4, 6:3, 7:2, 8:1 and 0:0 respectively. The weeds ratio and wheat densities are indirectly proportional. However, the wheat seed at the rate of 140 kg ha-1 has minimal weeds interference. Yield losses were 17.5% at weeds density 1:8 while 7.2% at 8:1. However, in wheat density, the highest percent losses were computed on 80 kg ha-1 while the lowest was recorded on 140 kg ha-1. Since due to the large leaf canopy of S. marianum other species can't sustain their growth. Hence, it has been concluded that S. marianum is the hotspot that causes reduction to the yield-related parameters, followed by A. fatua and the other weeds. Due to the morphological mimicry of A. fatua with wheat crop during the vegetative growth stage, it cannot be easily distinguished. Therefore, managing A. fatua and S. marianum before seed setting is recommended for reducing the future weed problem. Based on current studies, it is suggested that sowing wheat seed at the rate of 140 kg ha-1 is recommended to better compete with all the field weeds.Keywords: fat content, holly thistle, protein content, weed competition, wheat, wild oat
Procedia PDF Downloads 2073769 Optimization Of Biogas Production Using Co-digestion Feedstocks Via Anaerobic Technologhy
Authors: E Tolufase
Abstract:
The demand, high costs and health implications of using energy derived from hydrocarbon compound have necessitated the continuous search for alternative source of energy. The World energy market is facing some challenges viz: depletion of fossil fuel reserves, population explosion, lack of energy security, economic and urbanization growth and also, in Nigeria some rural areas still depend largely on wood, charcoal, kerosene, petrol among others, as the sources of their energy. To overcome these short falls in energy supply and demand, as well as taking into consideration the risks from global climate change due to effect of greenhouse gas emissions and other pollutants from fossil fuels’ combustion, brought a lot of attention on efficiently harnessing the renewable energy sources. A very promising among the renewable energy resources for a clean energy technology for power production, vehicle and domestic usage is biogas. Therefore, optimization of biogas yield and quality is imperative. Hence, this study investigated yield and quality of biogas using low cost bio-digester and combination of various feed stocks referred to as co-digestion. Batch/Discontinuous Bio-digester type was used because it was cheap, easy, plausible and appropriate for different substrates used to get the desired results. Three substrates were used; cow dung, chicken droppings and lemon grass digested in five separate 21 litre digesters, A, B, C, D, and E and the gas collection system was designed using locally available materials. For single digestion we had; cow dung, chicken droppings, lemon grass, in Bio-digesters A, B, and C respectively, the co-digested three substrates in different mixed ratio 7:1:2 in digester D and E in ratio 5:3:2. The respective feed-stocks materials were collected locally, digested and analyzed in accordance with standard procedures. They were pre-fermented for a period of 10 days before being introduced into the digesters. They were digested for a retention period of 28 days, the physiochemical parameters namely; pressure, temperature, pH, volume of the gas collector system and volume of biogas produced were all closely monitored and recorded daily. The values of pH and temperature ranged 6.0 - 8.0, and 220C- 350C respectively. For the single substrate, bio-digester A(Cow dung only) produced biogas of total volume 0.1607m3(average volume of 0.0054m3 daily),while B (Chicken droppings ) produced 0.1722m3 (average of 0.0057m3 daily) and C (lemon grass) produced 0.1035m3 (average of 0.0035m3 daily). For the co-digested substrates in bio-digester D the total biogas produced was 0.2007m³ (average volume of 0.0067m³ daily) and bio-digester E produced 0.1991m³ (average volume of 0.0066m³ daily) It’s obvious from the results, that combining different substrates gave higher yields than when a singular feed stock was used and also mixing ratio played some roles in the yield improvement. Bio-digesters D and E contained the same substrates but mixed with different ratios, but higher yield was noticed in D with mixing ratio of 7:1:2 than in E with ratio 5:3:2.Therefore, co-digestion of substrates and mixing proportions are important factors for biogas production optimization.Keywords: anaerobic, batch, biogas, biodigester, digestion, fermentation, optimization
Procedia PDF Downloads 273768 Studies on Optimizing the Level of Liquid Biofertilizers in Peanut and Maize and Their Economic Analysis
Authors: Chandragouda R. Patil, K. S. Jagadeesh, S. D. Kalolgi
Abstract:
Biofertilizers containing live microbial cells can mobilize one or more nutrients to plants when applied to either seed or rhizosphere. They form an integral part of nutrient management strategies for sustainable production of agricultural crops. Annually, about 22 tons of lignite-based biofertilizers are being produced and supplied to farmers at the Institute of Organic Farming, University of Agricultural Sciences, Dharwad, Karnataka state India. Although carrier based biofertilizers are common, they have shorter shelf life, poor quality, high contamination, unpredictable field performance and high cost of solid carriers. Hence, liquid formulations are being developed to increase their efficacy and broaden field applicability. An attempt was made to develop liquid formulation of strains of Rhizobium NC-92 (Groundnut), Azospirillum ACD15 both nitrogen-fixing biofertilizers and Pseudomonas striata an efficient P-solubilizing bacteria (PSB). Different concentration of amendments such as additives (glycerol and polyethylene glycol), adjuvants (carboxyl methyl cellulose), gum arabica (GA), surfactant (polysorbate) and trehalose specifically for Azospirillum were found essential. Combinations of formulations of Rhizobium and PSB for groundnut and Azospirillum and PSB for maize were evaluated under field conditions to determine the optimum level of inoculum required. Each biofertilizer strain was inoculated at the rate of 2, 4, 8 ml per kg of seeds and the efficacy of each formulation both individually and in combinations was evaluated against the lignite-based formulation at the rate of 20 g each per kg seeds and a un-inoculated set was included to compare the inoculation effect. The field experiment had 17 treatments in three replicates and the best level of inoculum was decided based on net returns and cost: benefit ratio. In peanut, the combination of 4 ml of Rhizobium and 2 ml of PSB resulted in the highest net returns and higher cost to benefit ratio of 1:2.98 followed by treatment with a combination of 2 ml per kg each of Rhizobium and PSB with a B;C ratio of 1:2.84. The benefits in terms of net returns were to the extent of 16 percent due to inoculation with lignite based formulations while it was up to 48 percent due to the best combination of liquid biofertilizers. In maize combination of liquid formulations consisting of 4 ml of Azospirillum and 2 ml of PSB resulted in the highest net returns; about 53 percent higher than the un-inoculated control and 20 percent higher than the treatment with lignite based formulation. In both the crops inoculation with lignite based formulations significantly increased the net returns over un-inoculated control while levels higher or lesser than 4 ml of Rhizobium and Azospirillum and higher or lesser than 2 ml of PSB were not economical and hence not optimal for these two crops.Keywords: Rhizobium, Azospirillum, phosphate solubilizing bacteria, liquid formulation, benefit-cost ratio
Procedia PDF Downloads 4933767 Impact of Hormone Replacement Therapy on Body Composition Analysis of Women during Perimenopause: A Framework for Action
Authors: Varsha Chorsiya, Pooja Aneja, Dhananjay Kaushik, Abhinav Yadav
Abstract:
Intoduction: Women’s Health Initiatives (WHI) focuses on defining the risks and benefits of strategies that could potentially reduce the incidence of obesity, heart disease, breast cancer and colorectal cancer, and fractures in menopause women. The utility of the present research work determines to find the role of Hormone Replacement Therapy (HRT) in changing the different component of body composition during perimenopause period. Methods: A comparative cross-sectional study included 30 subjects, aged between 40 and 50 years which were assigned into 2 groups i.e. 15 subjects in HRT (Group A) and 15 subjects in non-HRT (Group B). The subjects were taken from the hospitals and clinics of Faridabad undergoing HRT in supervision of the consultant gynecologist. The informed consents were signed before including the participants in the study. The body composition and lipid profile were evaluated for all the subjects. Result and Discussion: The BMI, body density, percent body fats and fat mass in both groups showed statistically significant differences i.e. p < 0.05. Our study did not reveal any statistically significant difference between non-HRT and HRT for lipid profile composition of HDL, LDL, VLDL, ratio, triglycerides and total cholesterol although these indicators (LDL, VLDL, ratio, triglycerides and total cholesterol) showed difference clinically with a higher mean values for non-HRT as compared to HRT group. The mean value for HDL was higher for HRT group in contrast to non-HRT group. The result clearly showed that HRT group has a good lipid profile composition. Conclusion: In conclusion, our data show that HRT has statistically significant role in determining BMI, fat percent mass and fat mass. The lipid profile including LDL, HDL, VLDL, ratio, triglycerides and total cholesterol found to be clinically better in HRT group as compared to the non-HRT group. The rationale for non-significant lipid profile probably lie in the fact that hormonal changes need a particular time period and might become significant in post-menopausal period.Keywords: body composition, hormone replacement therapy, perimenopause, women health
Procedia PDF Downloads 2933766 Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates
Authors: Hossein Shokouhmand, Seyyed Mostafa Saadat
Abstract:
In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased.Keywords: plate heat exchanger, optimal porosity, efficiency, aspect ratio
Procedia PDF Downloads 4053765 Single Cell Sorter Driven by Resonance Vibration of Cell Culture Substrate
Authors: Misa Nakao, Yuta Kurashina, Chikahiro Imashiro, Kenjiro Takemura
Abstract:
The Research Goal: With the growing demand for regenerative medicine, an effective mass cell culture process is required. In a repetitive subculture process for proliferating cells, preparing single cell suspension which does not contain any cell aggregates is highly required because cell aggregates often raise various undesirable phenomena, e.g., apoptosis and decrease of cell proliferation. Since cell aggregates often occur in cell suspension during conventional subculture processes, this study proposes a single cell sorter driven by a resonance vibration of a cell culture substrate. The Method and the Result: The single cell sorter is simply composed of a cell culture substrate and a glass pipe vertically placed against the cell culture substrate with a certain gap corresponding to a cell diameter. The cell culture substrate is made of biocompatible stainless steel with a piezoelectric ceramic disk glued to the bottom side. Applying AC voltage to the piezoelectric ceramic disk, an out-of-plane resonance vibration with a single nodal circle of the cell culture substrate can be excited at 5.5 kHz. By doing so, acoustic radiation force is emitted, and then cell suspension containing only single cells is pumped into the pipe and collected. This single cell sorter is effective to collect single cells selectively in spite of its quite simple structure. We collected C2C12 myoblast cell suspension by the single cell sorter with the vibration amplitude of 12 µmp-p and evaluated the ratio of single cells in number against the entire cells in the suspension. Additionally, we cultured the collected cells for 72 hrs and measured the number of cells after the cultivation in order to evaluate their proliferation. As a control sample, we also collected cell suspension by conventional pipetting, and evaluated the ratio of single cells and the number of cells after the 72-hour cultivation. The ratio of single cells in the cell suspension collected by the single cell sorter was 98.2%. This ratio was 9.6% higher than that collected by conventional pipetting (statistically significant). Moreover, the number of cells cultured for 72 hrs after the collection by the single cell sorter yielded statistically more cells than that collected by pipetting, resulting in a 13.6% increase in proliferated cells. These results suggest that the cell suspension collected by the single cell sorter driven by the resonance vibration hardly contains cell aggregates whose diameter is larger than the gap between the cell culture substrate and the pipe. Consequently, the cell suspension collected by the single cell sorter maintains high cell proliferation. Conclusions: In this study, we developed a single cell sorter capable of sorting and pumping single cells by a resonance vibration of a cell culture substrate. The experimental results show the single cell sorter collects single cell suspension which hardly contains cell aggregates. Furthermore, the collected cells show higher proliferation than that of cells collected by conventional pipetting. This means the resonance vibration of the cell culture substrate can benefit us with the increase in efficiency of mass cell culture process for clinical applications.Keywords: acoustic radiation force, cell proliferation, regenerative medicine, resonance vibration, single cell sorter
Procedia PDF Downloads 2633764 An Analysis of the Performances of Various Buoys as the Floats of Wave Energy Converters
Authors: İlkay Özer Erselcan, Abdi Kükner, Gökhan Ceylan
Abstract:
The power generated by eight point absorber type wave energy converters each having a different buoy are calculated in order to investigate the performances of buoys in this study. The calculations are carried out by modeling three different sea states observed in two different locations in the Black Sea. The floats analyzed in this study have two basic geometries and four different draft/radius (d/r) ratios. The buoys possess the shapes of a semi-ellipsoid and a semi-elliptic paraboloid. Additionally, the draft/radius ratios range from 0.25 to 1 by an increment of 0.25. The radiation forces acting on the buoys due to the oscillatory motions of these bodies are evaluated by employing a 3D panel method along with a distribution of 3D pulsating sources in frequency domain. On the other hand, the wave forces acting on the buoys which are taken as the sum of Froude-Krylov forces and diffraction forces are calculated by using linear wave theory. Furthermore, the wave energy converters are assumed to be taut-moored to the seabed so that the secondary body which houses a power take-off system oscillates with much smaller amplitudes compared to the buoy. As a result, it is assumed that there is not any significant contribution to the power generation from the motions of the housing body and the only contribution to power generation comes from the buoy. The power take-off systems of the wave energy converters are high pressure oil hydraulic systems which are identical in terms of their characteristic parameters. The results show that the power generated by wave energy converters which have semi-ellipsoid floats is higher than that of those which have semi elliptic paraboloid floats in both locations and in all sea states. It is also determined that the power generated by the wave energy converters follow an unsteady pattern such that they do not decrease or increase with changing draft/radius ratios of the floats. Although the highest power level is obtained with a semi-ellipsoid float which has a draft/radius ratio equal to 1, other floats of which the draft/radius ratio is 0.25 delivered higher power that the floats with a draft/radius ratio equal to 1 in some cases.Keywords: Black Sea, buoys, hydraulic power take-off system, wave energy converters
Procedia PDF Downloads 3513763 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage
Authors: P. Jayashree, S. Rajkumar
Abstract:
With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding
Procedia PDF Downloads 2943762 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement
Authors: Fatema-Tuz-Zahura, Raquib Ahsan
Abstract:
Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.Keywords: flat plate, finite element model, punching shear, reinforcement ratio
Procedia PDF Downloads 2573761 The Predicted Values of the California Bearing Ratio (CBR) by Using the Measurements of the Soil Resistivity Method (DC)
Authors: Fathi Ali Swaid
Abstract:
The CBR test is widely used in the assessment of granular materials in base, subbase and subgrade layers of road and airfield pavements. Despite the success of this method, but it depends on a limited numbers of soil samples. This limitation do not adequately account for the spatial variability of soil properties. Thus, assessment is derived using these cursory soil data are likely to contain errors and thus make interpretation and soil characterization difficult. On the other hand quantitative methods of soil inventory at the field scale involve the design and adoption of sampling regimes and laboratory analysis that are time consuming and costly. In the latter case new technologies are required to efficiently sample and observe the soil in the field. This is particularly the case where soil bearing capacity is prevalent, and detailed quantitative information for determining its cause is required. In this paper, an electrical resistivity method DC is described and its application in Elg'deem Dirt road, located in Gasser Ahmad - Misurata, Libya. Results from the DC instrument were found to be correlated with the CBR values (r2 = 0.89). Finally, it is noticed that, the correlation can be used with experience for determining CBR value using basic soil electrical resistivity measurements and checked by few CBR test representing a similar range of CBR.Keywords: California bearing ratio, basic soil electrical resistivity, CBR, soil, subgrade, new technologies
Procedia PDF Downloads 4483760 Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation
Authors: Suprabha Islam, Sifat Ullah Tanzil
Abstract:
During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further.Keywords: aeroacoustics, aerodynamic, biomimetics, serrations
Procedia PDF Downloads 1683759 A Comparative Study between Digital Mammography, B Mode Ultrasound, Shear-Wave and Strain Elastography to Distinguish Benign and Malignant Breast Masses
Authors: Arjun Prakash, Samanvitha H.
Abstract:
BACKGROUND: Breast cancer is the commonest malignancy among women globally, with an estimated incidence of 2.3 million new cases as of 2020, representing 11.7% of all malignancies. As per Globocan data 2020, it accounted for 13.5% of all cancers and 10.6% of all cancer deaths in India. Early diagnosis and treatment can improve the overall morbidity and mortality, which necessitates the importance of differentiating benign from malignant breast masses. OBJECTIVE: The objective of the present study was to evaluate and compare the role of Digital Mammography (DM), B mode Ultrasound (USG), Shear Wave Elastography (SWE) and Strain Elastography (SE) in differentiating benign and malignant breast masses (ACR BI-RADS 3 - 5). Histo-Pathological Examination (HPE) was considered the Gold standard. MATERIALS & METHODS: We conducted a cross-sectional study on 53 patients with 64 breast masses over a period of 10 months. All patients underwent DM, USG, SWE and SE. These modalities were individually assessed to know their accuracy in differentiating benign and malignant masses. All Digital Mammograms were done using the Fujifilm AMULET Innovality Digital Mammography system and all Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound system equipped with 2 to 9 MHz and 3 – 16 MHz linear transducers. All masses were subjected to HPE. Independent t-test and Chi-square or Fisher’s exact test were used to assess continuous and categorical variables, respectively. ROC analysis was done to assess the accuracy of diagnostic tests. RESULTS: Of 64 lesions, 51 (79.68%) were malignant and 13 (20.31%) (p < 0.0001) were benign. SE was the most specific (100%) (p < 0.0001) and USG (98%) (p < 0.0001) was the most sensitive of all the modalities. E max, E mean, E max ratio, E mean ratio and Strain Ratio of the malignant masses significantly differed from those of the benign masses. Maximum SWE value showed the highest sensitivity (88.2%) (p < 0.0001) among the elastography parameters. A combination of USG, SE and SWE had good sensitivity (86%) (p < 0.0001). CONCLUSION: A combination of USG, SE and SWE improves overall diagnostic yield in differentiating benign and malignant breast masses. Early diagnosis and treatment of breast carcinoma will reduce patient mortality and morbidity.Keywords: digital mammography, breast cancer, ultrasound, elastography
Procedia PDF Downloads 1063758 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems
Authors: Mohammad Mohammadzadeh, Alireza Ghasempour
Abstract:
In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm
Procedia PDF Downloads 2993757 Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate
Authors: Syfur Rahman, Mohammad J. Khattak
Abstract:
Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures.Keywords: roller compacted concrete, geopolymer concrete, recycled concrete aggregate, concrete pavement, fly ash
Procedia PDF Downloads 1373756 Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering
Authors: P. Shrivastava, S. Vijayalakshmi, A. K. Singh, S. Dalai, R. Teotia, P. Sharma, J. Bellare
Abstract:
This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects.Keywords: biocompatibility, bone tissue engineering, hydroxyapatite, nanobioactive glass
Procedia PDF Downloads 4563755 Viscoelastic Behaviour of Hyaluronic Acid Copolymers
Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu
Abstract:
The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.Keywords: copolymer, viscoelasticity, gelation, 3D network
Procedia PDF Downloads 2873754 Sardine Oil as a Source of Lipid in the Diet of Giant Freshwater Prawn (Macrobrachium rosenbergii)
Authors: A. T. Ramachandra Naik, H. Shivananda Murthy, H. n. Anjanayappa
Abstract:
The freshwater prawn, Macrobrachium rosenbergii is a more popular crustacean cultured widely in monoculture system in India. It has got high nutritional value in the human diet. Hence, understanding its enzymatic and body composition is important in order to judge its flesh quality. Fish oil specially derived from Indian oil sardine is a good source of highly unsaturated fatty acid and lipid source in fish/prawn diet. A 35% crude protein diet with graded levels of Sardine oil as a source of fat was incorporated at four levels viz, 2.07, 4.07, 6.07 and 8.07% maintaining a total lipid level of feed at 8.11, 10.24, 12.28 and 14.33% respectively. Diet without sardine oil (6.05% total lipid) was served as basal treatment. The giant freshwater prawn, Macrobrachium rosenbergii was used as test animal and the experiment was lost for 112 days. Significantly, higher gain in weight of prawn was recorded in the treatment with 6.07% sardine oil incorporation followed by higher specific growth rate, food conversion rate and protein efficiency ratio. The 8.07% sardine oil diet produced the highest RNA: DNA ratio in the prawn muscle. Digestive enzyme analyses in the digestive tract and mid-gut gland showed the greatest activity in prawns fed the 8.07% diet.Keywords: digestive enzyme, fish diet, Macrobrachium rosenbergii, sardine oil
Procedia PDF Downloads 3293753 Heterodimetallic Ferrocenyl Dithiophosphonate Complexes of Nickel(II), Zinc(II) and Cadmium(II) as High Efficiency Co-Sensitizers in Dye-Sensitized Solar Cells
Authors: Tomilola J. Ajayi, Moses Ollengo, Lukas le Roux, Michael N. Pillay, Richard J. Staples, Shannon M. Biros Werner E. van Zyl
Abstract:
The formation, characterization, and dye-sensitized solar cell application of nickel(II), zinc(II) and cadmium(II) ferrocenyl dithiophosphonate complexes were investigated. The multidentate monoanionic ligand [S₂PFc(OH)]¯ (L1) was synthesized from the reaction between ferrocenyl Lawesson’s reagent, [FcP(=S)μ-S]₂ (FcLR), (Fc = ferrocenyl) and water. Ligand L1 could potentially coordinate to metal centers through the S, S’ and O donor atoms. The reaction between metal salt precursors and L1 produced a Ni(II) complex of the type [Ni{S₂P(Fc)(OH)}₂] (1) (molar ratio 1:2), a tetranickel (II) complex of the type [Ni₂{S₂OP(Fc)}₂]₂ (2) (molar ratio (1:1), as well as a Zn(II) complex [Zn{S₂P(Fc)(OH)}₂]₂ (3), and a Cd(II) complex [Cd{S₂P(Fc)(OH)}₂]₂ (4). Complexes 1-4 were characterized by 1H and 31P NMR and FT-IR, and complexes 1 and 2 were additionally analysed by X-Ray crystallography. After co-sensitization, the DSSCs were characterized using UV-Vis, cyclic voltammetry, electrochemical impedance spectroscopy, and photovoltaic measurements (I-V curves). Overall finding shows that co-sensitization of our compounds with ruthenium dye N719 resulted in a better overall solar conversion efficiency than only pure N719 dye under the same experimental conditions. In conclusion, we report the first examples of dye-sensitized solar cells (DSSCs) co-sensitized with ferrocenyl dithiophosphonate complexes.Keywords: dithiophosphonate, dye sensitized solar cell, co-sensitization, solar efficiency
Procedia PDF Downloads 1503752 The Influence of Nutritional and Immunological Status on the Prognosis of Head and Neck Cancer
Authors: Ching-Yi Yiu, Hui-Chen Hsu
Abstract:
Objectives: Head and neck cancer (HNC) is a big global health problem in the world. Despite the development of diagnosis and treatment, the overall survival of HNC is still low. The well recognition of the interaction of the host immune system and cancer cells has led to realizing the processes of tumor initiation, progression and metastasis. Many systemic inflammatory responses have been shown to play a crucial role in cancer progression. The pre and post-treatment nutritional and immunological status of HNC patients is a reliable prognostic indicator of tumor outcomes and survivors. Methods: Between July 2020 to June 2022, We have enrolled 60 HNC patients, including 59 males and 1 female, in Chi Mei Medical Center, Liouying, Taiwan. The age distribution was from 37 to 81 years old (y/o), with a mean age of 57.6 y/o. We evaluated the pre-and post-treatment nutritional and immunological status of these HNC patients with body weight, body weight loss, body mass index (BMI), whole blood count including hemoglobin (Hb), lymphocyte, neutrophil and platelet counts, biochemistry including prealbumin, albumin, c-reactive protein (CRP), with the time period of before treatment, post-treatment 3 and 6 months. We calculated the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) to assess how these biomarkers influence the outcomes of HNC patients. Results: We have carcinoma of the hypopharynx in 21 cases with 35%, carcinoma of the larynx in 9 cases, carcinoma of the tonsil and tongue every 6 cases, carcinoma soft palate and tongue base every 5 cases, carcinoma of buccal mucosa, retromolar trigone and mouth floor every 2 cases, carcinoma of the hard palate and low lip each 1 case. There were stage I 15 cases, stage II 13 cases, stage III 6 cases, stage IVA 10 cases, and stage IVB 16 cases. All patients have received surgery, chemoradiation therapy or combined therapy. We have wound infection in 6 cases, 2 cases of pharyngocutaneous fistula, flap necrosis in 2 cases, and mortality in 6 cases. In the wound infection group, the average BMI is 20.4 kg/m2; the average Hb is 12.9 g/dL, the average albumin is 3.5 g/dL, the average NLR is 6.78, and the average PLR is 243.5. In the PC fistula and flap necrosis group, the average BMI is 21.65 kg/m2; the average Hb is 11.7 g/dL, the average albumin is 3.15 g/dL, average NLR is 13.28, average PLR is 418.84. In the mortality group, the average BMI is 22.3 kg/m2; the average Hb is 13.58 g/dL, the average albumin is 3.77 g/dL, the average NLR is 6.06, and the average PLR is 275.5. Conclusion: HNC is a big challenging public health problem worldwide, especially in the high prevalence of betel nut consumption area Taiwan. Besides the definite risk factors of smoking, drinking and betel nut related, the other biomarkers may play significant prognosticators in the HNC outcomes. We concluded that the average BMI is less than 22 kg/m2, the average Hb is low than 12.0 g/dL, the average albumin is low than 3.3 g/dL, the average NLR is low than 3, and the average PLR is more than 170, the surgical complications and mortality will be increased, and the prognosis is poor in HNC patients.Keywords: nutritional, immunological, neutrophil-to-lymphocyte ratio, paltelet-to-lymphocyte ratio.
Procedia PDF Downloads 793751 Sainte Sophie Landfill: Field-Scale Assessment of Municipal Solid Waste Mechanical Characteristics
Authors: Wameed Alghazali, Shawn Kenny, Paul J. Van Geel
Abstract:
Settlement of municipal solid waste (MSW) in landfills can be represented by mechanical settlement, which is instantaneous and time-dependent creep components, and biodegradation-induced settlement. Mechanical settlement is governed by the physical characteristics of MSW and the applied overburden pressure. Several research studies used oedometers and different size compression cells to evaluate the primary and mechanical creep compression indices/ratios. However, MSW is known for its heterogeneity, which means data obtained from laboratory testing are not necessary to be a good representation of the mechanical response observed in the field. Furthermore, most of the laboratory tests found in the literature were conducted on shredded samples of MSW to obtain specimens that are suitable for the testing setup. It is believed that shredding MSW samples changes the physical and mechanical properties of the waste. In this study, settlement field data was collected during the filling stage of Ste. Sophie landfill was used to estimate the primary and mechanical creep compression ratios. The field results from Ste. Sophie landfill indicated that both the primary and mechanical creep compression ratios of MSW are not constants but decrease with the increase in the applied vertical stress.Keywords: mechanical creep compression ratio, municipal solid waste, primary compression ratio, stress level
Procedia PDF Downloads 94