Search results for: first damage threshold
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3172

Search results for: first damage threshold

2362 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 77
2361 Reductive Control in the Management of Redundant Actuation

Authors: Mkhinini Maher, Knani Jilani

Abstract:

We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented. The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a -geometric- distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement. Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.

Keywords: mobile robot, actuation, redundancy, omnidirectional, inverse pseudo moore-penrose, reductive control

Procedia PDF Downloads 511
2360 Air Pollution: The Journey from Single Particle Characterization to in vitro Fate

Authors: S. Potgieter-Vermaak, N. Bain, A. Brown, K. Shaw

Abstract:

It is well-known from public news media that air pollution is a health hazard and is responsible for early deaths. The quantification of the relationship between air quality and health is a probing question not easily answered. It is known that airborne particulate matter (APM) <2.5µm deposits in the tracheal and alveoli zones and our research probes the possibility of quantifying pulmonary injury by linking reactive oxygen species (ROS) in these particles to DNA damage. Currently, APM mass concentration is linked to early deaths and limited studies probe the influence of other properties on human health. To predict the full extent and type of impact, particles need to be characterised for chemical composition and structure. APMs are routinely analysed for their bulk composition, but of late analysis on a micro level probing single particle character, using micro-analytical techniques, are considered. The latter, single particle analysis (SPA), permits one to obtain detailed information on chemical character from nano- to micron-sized particles. This paper aims to provide a snapshot of studies using data obtained from chemical characterisation and its link with in-vitro studies to inform on personal health risks. For this purpose, two studies will be compared, namely, the bioaccessibility of the inhalable fraction of urban road dust versus total suspended solids (TSP) collected in the same urban environment. The significant influence of metals such as Cu and Fe in TSP on DNA damage is illustrated. The speciation of Hg (determined by SPA) in different urban environments proved to dictate its bioaccessibility in artificial lung fluids rather than its concentration.

Keywords: air pollution, human health, in-vitro studies, particulate matter

Procedia PDF Downloads 225
2359 Block Matching Based Stereo Correspondence for Depth Calculation

Authors: G. Balakrishnan

Abstract:

Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.

Keywords: stereo matching, filters, energy matrix, disparity

Procedia PDF Downloads 215
2358 Image Segmentation of Visual Markers in Robotic Tracking System Based on Differential Evolution Algorithm with Connected-Component Labeling

Authors: Shu-Yu Hsu, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Color segmentation is a basic and simple way for recognizing the visual markers in a robotic tracking system. In this paper, we propose a new method for color segmentation by incorporating differential evolution algorithm and connected component labeling to autonomously preset the HSV threshold of visual markers. To evaluate the effectiveness of the proposed algorithm, a ROBOTIS OP2 humanoid robot is used to conduct the experiment, where five most commonly used color including red, purple, blue, yellow, and green in visual markers are given for comparisons.

Keywords: color segmentation, differential evolution, connected component labeling, humanoid robot

Procedia PDF Downloads 605
2357 DNA Double-Strand Break–Capturing Nuclear Envelope Tubules Drive DNA Repair

Authors: Mitra Shokrollahi, Mia Stanic, Anisha Hundal, Janet N. Y. Chan, Defne Urman, Chris A. Jordan, Anne Hakem, Roderic Espin, Jun Hao, Rehna Krishnan, Philipp G. Maass, Brendan C. Dickson, Manoor P. Hande, Miquel A. Pujana, Razqallah Hakem, Karim Mekhail

Abstract:

Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin acetyltransferase-1 (ATAT1). These factors collaborate with the linker of nucleoskeleton and cytoskeleton complex (LINC), nuclear pore complex (NPC) protein NUP153, the nuclear lamina and kinesins KIF5B and KIF13B to generate DSB-capturing nuclear envelope tubules (dsbNETs). dsbNETs are partly supported by nuclear actin filaments and the circadian factor PER1 and reversed by kinesin KIFC3. Although dsbNETs promote repair and survival, they are also co-opted during poly (ADP-ribose) polymerase (PARP) inhibition to restrain BRCA1-deficient breast cancer cells and are hyper-induced in cells expressing the aging-linked lamin A mutant progerin. In summary, our results advance understanding of nuclear structure-function relationships, uncover a nuclear-cytoplasmic DDR and identify dsbNETs as critical factors in genome organization and stability.

Keywords: DNA damage response, genome stability, nuclear envelope, cancer, age-related disorders

Procedia PDF Downloads 16
2356 Hepatoprotective Assessment of L-Ascorbate 1-(2-Hydroxyethyl)-4,6-Dimethyl-1, 2-Dihydropyrimidine-2-On Exposure to Carbon Tetrachloride

Authors: Nail Nazarov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Zobov, Vladimir Reznik

Abstract:

Among hepatic pyrimidine used as a means of stimulating protein synthesis and recovery of liver cells in her damaged toxic and infectious etiology. When an experimental toxic hepatitis hepatoprotective activity detected some pyrimidine derivatives. There are literature data on oksimetiluratcila hepatoprotective effect. For analogs of pyrimidine nucleobases - drugs Methyluracilum pentoxy and hepatoprotective effect of weakly expressed. According to the American scientists broad spectrum of biological activity, including hepatoprotective properties, have a 2,4-dioxo-5-arilidenimino uracils. Influenced Xymedon medicinal preparation (1- (beta-hydroxyethyl) -4,6-dimethyl-1,2-dihydro-2-oksopirimidin) developed as a means of stimulating the regeneration of tissue revealed increased activity of microsomal oxidases human liver. In studies on the model of toxic liver damage in rats have shown hepatoprotective effect xymedon and stimulating its impact on the recovery of the liver tissue. Hepatoprotective properties of the new compound in the series of pyrimidine derivatives L-ascorbate 1-(2-hydroxyethyl)-4,6-dimethyl-1,2-dihydropirimidine-2-one synthesized on the basis Xymedon preparation were firstly investigated on rats under the carbon tetrachloride action. It was shown the differences of biochemical parameters from the reference value and severity of structural-morphological liver violations decreased in comparison with control group under the influence of the compound injected before exposure carbon tetrachloride. Hepatoprotective properties of the investigated compound were more pronounced in comparison with Xymedon.

Keywords: hepatoprotectors, pyrimidine derivatives, toxic liver damage, xymedon

Procedia PDF Downloads 425
2355 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads

Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon

Abstract:

The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.

Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads

Procedia PDF Downloads 270
2354 Species Composition of Lepidoptera (Insecta: Lepidoptera) Inhabited on the Saxaul (Chenopodiáceae: Haloxylon spp.) in the Desert Area of South-East Kazakhstan

Authors: N. Tumenbayeva

Abstract:

At the present time in Kazakhstan, the area for saxaul growing is strongly depopulateddue to anthropogenic and other factors. To prevent further reduction of natural haloxylon forest area their artificial crops are offered. Seed germination and survival of young plants in such haloxylon crops are very low. Insects, as one of the most important nutrient factors have appreciable effect on seed germination and saxaul productivity at the all stages of its formation. Insects, feeding on leaves, flowers, seeds and developing inside the trunk, branches, twigs, roots have a change in its formation and influence on the lifespan of saxaul. Representatives of Lepidoptera troop (Lepidopteraare the most harmful pests forsaxaul. As a result of our research we have identified 15 species of Lepidoptera living on haloxylon which display very different cycles and different types of food relations. It allows them to inhabit a variety of habitats, and feeding on various parts of saxaul. Some of them cause significant and sometimes very heavy damage for saxaul. There are 17identified species of Lepidoptera from the Coleophoridaefamily - 1, Gelechidae - 5, Pyralidae - 4, Noctuidae - 4, Lymantridae- 1, Cossidae - 2 species. At the same time we found 8 species for the first time, which have not been mentioned in the literature before. According to food specialization they are divided into monophages (2 types), oligophages (6 species) and polyphages (3 species). By affinity to plant parts, leaves and seeds are fed by 8 species, shoots by 1 specie, scions by 5 species, flowers, scions, seeds by 1, and 2species damage the roots and trunks. In whole installed seasonal groups of Lepidoptera - saxaul pests in the desert area, confined to the certain parts of the year, as well as certain parts of the plant for feeding. Harmfulness, depending on their activity appear during the growing season is also different.

Keywords: saxaul, Lepidoptera, insecta, haloxylon

Procedia PDF Downloads 324
2353 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 104
2352 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms

Authors: Tian Xia, Yuan Yan Tang

Abstract:

In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.

Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian

Procedia PDF Downloads 469
2351 Treatment and Conservation of an Antique Stone Stela by Nano Calcium Hydroxide with Nano Silica in Egyptian Museum of Cairo

Authors: Elhussein Ahmed Elsayed

Abstract:

An ancient limestone stela dating back to the epoch of the middle kingdom and displayed in the exhibition hall of the middle kingdom, it was discovered in Lisht in Giza, registered with No. 3045 and as a result of its display in an inappropriate display as a result of the use of natural lighting in the display, Represented in sunlight through windows opened day and night. The alternation of these daily changes between the temperature degrees of night and day, both daily and seasonally, causes the expansion and contraction of the rocks and then weakens their cohesion, causing fragmentation. This is indeed the current situation of this stela displayed in the hall, in addition to the damage and fading of colors, as well as the use of a high-viscosity restoration material in the consolidation that led to the attraction of dust and dirt and its adhesion to the surface. The color faded as a result of the lack of lighting control inside the exhibition hall, the remnants of the existing colors were blurred as a result of applying a consolidation material with a high viscosity, which led to the attraction of dust and dirt, and then blurring the colors on the inscription. Examinations and analyzes were carried out on the block, and the results of the examination with a polarized microscope showed that it is of primitive limestone, which contains fossils and microorganisms, which helps to damage. The analysis using the Raman device also showed that the high-viscosity material used in restoration in the past is Paralloid B72. The stone stela was consolidated by using two materials; Nano calcium hydroxide with Nano silica in the form of (Core-shell) at a concentration of 10% and it was applied using the brush.

Keywords: Egyptian museum, stone stela, treatment, nano materials, nano silica

Procedia PDF Downloads 77
2350 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 133
2349 Governance of Social Media Using the Principles of Community Radio

Authors: Ken Zakreski

Abstract:

Regulating Canadian Facebook Groups, of a size and type, when they reach a threshold of audio video content. Consider the evolution of the Streaming Act, Parl GC Bill C-11 (44-1) and the regulations that will certainly follow. The Canadian Heritage Minister's office stipulates, "the Broadcasting Act only applies to audio and audiovisual content, not written journalism.” Governance— After 10 years, a community radio station for Gabriola Island, BC – Canadian Radio-television and Telecommunications Commission (“CRTC”) was approved but never started – became a Facebook Group “Community Bulletin Board - Life on Gabriola“ referred to as CBBlog. After CBBlog started and began to gather real traction, a member of the Group cloned the membership and ran their competing Facebook group under the banner of "free speech”. Here we see an inflection point [change of cultural stewardship] with two different mathematical results [engagement and membership growth]. Canada's telecommunication history of “portability” and “interoperability” made that Facebook Group CBBlog the better option, over broadcast FM radio for a community pandemic information sharing service for Gabriola Island, BC. A culture of ignorance flourishes in social media. Often people do not understand their own experience, or the experience of others because they do not have the concepts needed for understanding. It is thus important they are not denied concepts required for their full understanding. For example, Legislators need to know something about gay culture before they can make any decisions about it. Community Media policies and CRTC regulations are known and regulators can use that history to forge forward with regulations for internet platforms of a size and content type that reach a threshold of audio / video content. Mostly volunteer run media services, provide order of magnitude lower costs over commercial media. (Treating) Facebook Groups as new media.? Cathy Edwards, executive director of the Canadian Association of Community Television Users and Stations (“CACTUS”), calls it new media in that the distribution platform is not the issue. What does make community groups community media? Cathy responded, "... it's bylaws, articles of incorporation that state they are community media, they have accessibility, commitments to skills training, any member of the community can be a member, and there is accountability to a board of directors". Eligibility for funding through CACTUS requires these same commitments. It is risky for a community to invest into a platform as ownership has not been litigated. Is a FaceBook Group an asset of a not for profit society? The memo, from law student, Jared Hubbard summarizes, “Rights and interests in a Facebook group could, in theory, be transferred as property... This theory is currently unconfirmed by Canadian courts. “

Keywords: social media, governance, community media, Canadian radio

Procedia PDF Downloads 70
2348 Service Life Study of Polymers Used in Renovation of Heritage Buildings and Other Structures

Authors: Parastou Kharazmi

Abstract:

Degradation of building materials particularly pipelines causes environmental damage during renovation or replacement and is a time consuming and costly process. Rehabilitation by polymer composites is a solution for renovation of degraded pipeline in heritage buildings and other structures which are less costly, faster and causes less damage to the environment; however, it is still not clear for how long these materials can perform as expected in the field and working condition. To study their service life, two types of composites based on Epoxy and Polyester resins have been evaluated by accelerated exposure and field exposure. The primary degradation agent used in accelerated exposure has been cycling temperature with half of the tests performed in presence of water. Thin films of materials used in accelerated testing were prepared in laboratory by using the same amount of material as well as technique of multi-layers application used in majority of the field installations. Extreme intensity levels of degradation agents have been used only to evaluate materials properties and as also mentioned in ISO 15686, are not directly correlated with degradation mechanisms that would be experienced in service. In the field exposure study, the focus has been to identify possible failure modes, causes, and effects. In field exposure, it has been observed that there are other degradation agents present which can be investigated further such as presence of contaminants and rust before application which prevents formation of a uniform layer of polymer or incompatibility between dissimilar materials. This part of the study also highlighted the importance of application’s quality of the materials in the field for providing the expected performance and service life. Results from extended accelerated exposure and field exposure can help in choosing inspection techniques, establishing the primary degradation agents and can be used for ageing exposure programs with clarifying relationship between different exposure periods and sites.

Keywords: building, renovation, service life, pipelines

Procedia PDF Downloads 189
2347 Aloe vera Prevents Injuries Induced by Whole Body X-ray Irradiation in Rodents

Authors: Shashi Bala, Neha A. Chugh, Subhash C. Bansal, Mohal L. Garg, Ashwani Koul

Abstract:

Purpose: The present study was designed to evaluate the radioprotective efficacy of Aloe vera from whole body X-ray exposure in rodents. Materials and Methods: For this purpose, after on week’s acclimatization, male balb/c mice procured from Central Animal House, Panjab University, Chandigarh (India), were divided into four groups: Group I mice served as control. Group II mice were orally administrated Aloe vera pulp extract (50 mg/ kg body weight) on alternate days for 30 days. Group III mice were subjected to whole body X-ray irradiation to cumulative dose of 2Gy (0.258Gy twice a day for four days in the last week). Group IV animals were pretreated with Aloe vera pulp extract on alternate days as in Group II and in the last week of the study, they were exposed to X-ray as in Group III. Results: Spleen of X-ray irradiated mice showed histopathological alterations accompanied with enhanced activity of lactate dehydrogenase (LDH) in serum. Elevated levels of reactive oxygen species (ROS), lipid peroxidation (LPO), enhanced activities in Glutathione based enzymes such as Glutathione peroxidase (GSH-Px), Glutathione reductase (GR), Catalase (CAT), Superoxide dismutase (SOD) associated with depletion in reduced Glutathione (GSH) concentration were observed after X-ray exposure in blood plasma and spleen.. Pro-inflammatory cytokines like tumor necrosis factors (TNF-α) and Inteleukin-6 (IL-6) levels were also found to be enhanced in serum of irradiated mice. Irradiation-induced significant elevation in Total leucocyte counts (TLC), neutrophil counts and decline in platelet counts, associated with unaltered levels of red blood cell counts (RBC’s) and haemoglobin (Hb) in various treatment groups. Clastogenic damage and apoptosis was also found to be increase in splenic tissue of X-ray exposed mice as assessed by micronucleus and TUNEL assay. However, X-ray irradiated animals administered with Aloe vera revealed significant improvement in levels of ROS/ LPO, LDH activity, and antioxidant mechanism. Aloe vera pretreated animals exhibited less severe damage, and early recovery in micronucleated cells, hematological parameters, apoptotic cells and inflammatory markers as compared to X-ray exposed mice. Conclusion: These results indicate that the radioprotective potential of Aloe vera against X-ray induced damage. This may be due to its free radical scavenging, antioxidant, anti-apoptotic and anti-inflammatory properties.

Keywords: aloe vera, antioxidant defense system, lactate dehydrogenase (LDH), micronucleus assay, x-ray

Procedia PDF Downloads 192
2346 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening

Authors: Jaroslaw Gawryluk, Andrzej Teter

Abstract:

Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: angle column, compression, experiment, FEM

Procedia PDF Downloads 206
2345 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations

Authors: Reza Soleimanpour, Ching Tai Ng

Abstract:

Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.

Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves

Procedia PDF Downloads 204
2344 Structural Determination of Nanocrystalline Si Films Using Raman Spectroscopy and the Ellipsometry

Authors: K. Kefif, Y. Bouizem, A. Belfedal, D. J. Sib, K. Zellama, l. Chahed

Abstract:

Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by radio frequency magnetron sputtering at relatively low growth temperatures (Ts=100 °C). The films grown on glass substrate in order to use the new generation of substrates sensitive to elevated temperatures. Raman spectroscopy was applied to investigate the effect of the argon gas diluted in hydrogen, on the structural properties and the evolution of the micro structure in the films. Raman peak position, intensity and line width were used to characterize the quality and the percentage of the crystallites in the films. The results of this investigation suggest the existence of a threshold dilution around a gas mixture of argon (40%) and hydrogen (60%) for which the crystallization occurs, even at low deposition temperatures. The difference between the amorphous and the crystallized structures is well confirmed by spectroscopic ellipsometry (SE) technique.

Keywords: Silicon, Thin films, Structural properties, Raman spectroscopy, Ellipsometry

Procedia PDF Downloads 305
2343 Level of Reactive Oxygen Species and Inflammatory Cytokines in Rheumatoid Arthritis Patients: Correlation with Disease Severity

Authors: Somaiya Mateen, Shagufta Moin, Mohammad Owais, Abdul Khan, Atif Zafar

Abstract:

In rheumatoid arthritis (RA), impaired oxidative metabolism and imbalance between pro-and anti-inflammatory cytokines are responsible for causing inflammation and the degradation of cartilage and bone. The present study was done to evaluate the level and hence the role of reactive oxygen species (ROS) and inflammatory cytokines in the pathogenesis of RA. The present study was performed in the blood of 80 RA patients and 55 age and sex-matched healthy controls. The level of ROS (in 5% hematocrit) and the plasma level of pro-inflammatory cytokines [TNF-α, interleukin-6 (IL-6), IL-22] and anti-inflammatory cytokines (IL-4 and IL-5) were monitored in healthy subjects and RA patients. For evaluating the role of rheumatoid factor (RF) in the pathogenesis of RA, patients were sub-divided on the basis of presence or absence of RF. Reactive species and inflammatory cytokines were correlated with disease activity measure-Disease Activity Score for 28 joints (DAS28). The level of ROS, TNF-α, IL-6 and IL-22 were found to be significantly higher in RA patients as compared to the healthy controls, with the increase being more significant in patients positive for rheumatoid factor and those having high disease severity. On the other hand, a significant decrease in the level of IL-4 and IL-10 were observed in RA patients compared with healthy controls, with the decrease being more prominent in severe cases of RA. Higher ROS (indicative of impaired anti-oxidant defence system) and pro-inflammatory cytokines level in RA patients may lead to the damage of biomolecules which in turn contributes to tissue damage and hence to the development of more severe RA. The imbalance between pro-and anti-inflammatory cytokines may lead to the development of multi-system immune complications. ROS and inflammatory cytokines may also serve as a potential biomarker for assessing the disease severity.

Keywords: rheumatoid arthritis, reactive oxygen species, pro-inflammatory cytokines, anti-inflammatory cytokines

Procedia PDF Downloads 318
2342 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou

Abstract:

Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs

Procedia PDF Downloads 239
2341 Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines

Authors: Mohammed Jarrar, Shalini Behl, Nadia Shaheen, Abeer Fatima, Reem Nasab

Abstract:

Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is crucial on aging of skin by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photo-damage is highly valued. Retinoids and Alpha Hydroxy Acids protective and or repairing effects of UV have been endorsed by some researchers. For consolidating a better understanding of anti and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblasts elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30-35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in enhancing elastin concentration in UV exposed cells. We assume this enhancement could be the result of increased tropo-elastin gene expression stimulated by retinol and lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.

Keywords: alpha hydroxy acid, elastin, retinol, ultraviolet radiations

Procedia PDF Downloads 342
2340 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 156
2339 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods

Authors: W. Swiderski

Abstract:

Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.

Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation

Procedia PDF Downloads 259
2338 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.

Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining

Procedia PDF Downloads 435
2337 Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil

Authors: D. Sarkar, M. Pal, A. K. Sarkar

Abstract:

Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity o f stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence, zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%.

Keywords: asphalt concrete, over burnt brick aggregate, marshall stability, zycosoil

Procedia PDF Downloads 357
2336 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 300
2335 Night Shift Work as an Oxidative Stressor: A Systematic Review

Authors: Madeline Gibson

Abstract:

Night shift workers make up an essential part of the modern workforce. However, night shift workers have higher incidences of late in life diseases and earlier mortality. Night shift workers are exposed to constant light and experience circadian rhythm disruption. Sleep disruption is thought to increase oxidative stress, defined as an imbalance of excess pro-oxidative factors and reactive oxygen species over anti-oxidative activity. Oxidative stress can damage cells, proteins and DNA and can eventually lead to varied chronic diseases such as cancer, diabetes, cardiovascular disease, Alzheimer’s and dementia. This review aimed to understand whether night shift workers were at greater risk of oxidative stress and to contribute to a consensus on this relationship. Twelve studies published in 2001-2019 examining 2,081 workers were included in the review. Studies compared both the impact of working a single shift and in comparisons between those who regularly work night shifts and only day shifts. All studies had evidence to support this relationship across a range of oxidative stress indicators, including increased DNA damage, reduced DNA repair capacity, increased lipid peroxidation, higher levels of reactive oxygen species, and to a lesser extent, a reduction in antioxidant defense. This research supports the theory that melatonin and the sleep-wake cycle mediate the relationship between shift work and oxidative stress. It is concluded that night shift work increases the risk for oxidative stress and, therefore, future disease. Recommendations are made to promote the long-term health of shift workers considering these findings.

Keywords: night shift work, coxidative stress, circadian rhythm, melatonin, disease, circadian rhythm disruption

Procedia PDF Downloads 267
2334 Elastic Collisions of Electrons with DNA and Water From 10 eV to 100 KeV: Scar Macro Investigation

Authors: Aouina Nabila Yasmina, Zine El Abidine Chaoui

Abstract:

Recently, understanding the interactions of electrons with the DNA molecule and its components has attracted considerable interest because DNA is the main site damaged by ionizing radiation. The interactions of radiation with DNA induce a variety of molecular damage such as single-strand breaks, double-strand breaks, basic damage, cross-links between proteins and DNA, and others, or the formation of free radicals, which, by chemical reactions with DNA, can also lead to breakage of the strand. One factor that can contribute significantly to these processes is the effect of water hydration on the formation and reaction of radiation induced by these radicals in and / or around DNA. B-DNA requires about 30% by weight of water to maintain its native conformation in the crystalline state. The transformation depends on various factors such as sequence, ion composition, concentration and water activity. Partial dehydration converts it to DNA-A. The present study shows the results of theoretical calculations for positrons and electrons elastic scattering with DNA medium and water over a broad energy range from 10 eV to 100 keV. Indeed, electron elastic cross sections and elastic mean free paths are calculated using a corrected form of the independent atom method, taking into account the geometry of the biomolecule (SCAR macro). Moreover, the elastic scattering of electrons and positrons by atoms of the biomolecule was evaluated by means of relativistic (Dirac) partial wave analysis. Our calculated results are compared with theoretical data available in the literature in the absence of experimental data, in particular for positron. As a central result, our electron elastic cross sections are in good agreement with existing theoretical data in the range of 10 eV to 1 keV.

Keywords: elastic cross scrion, elastic mean free path, scar macro method, electron collision

Procedia PDF Downloads 65
2333 Exploring the Use of Drones for Corn Borer Management: A Case Study in Central Italy

Authors: Luana Centorame, Alessio Ilari, Marco Giustozzi, Ester Foppa Pedretti

Abstract:

Maize is one of the most important agricultural cash crops in the world, involving three different chains: food, feed, and bioenergy production. Nowadays, the European corn borer (ECB), Ostrinia nubilalis, to the best of the author's knowledge, is the most important pest to control for maize growers. The ECB is harmful to maize; young larvae are responsible for minor damage to the leaves, while the most serious damage is tunneling by older larvae that burrow into the stock. Soon after, larvae can affect cobs, and it was found that ECB can foster mycotoxin contamination; this is why it is crucial to control it. There are multiple control methods available: agronomic, biological, and microbiological means, agrochemicals, and genetically modified plants. Meanwhile, the European Union’s policy focuses on the transition to sustainable supply chains and translates into the goal of reducing the use of agrochemicals by 50%. The current work aims to compare the agrochemical treatment of ECB and biological control through beneficial insects released by drones. The methodology used includes field trials of both chemical and biological control, considering a farm in central Italy as a case study. To assess the mechanical and technical efficacy of drones with respect to standard machinery, the available literature was consulted. The findings are positive because drones allow them to get in the field promptly, in difficult conditions and with lower costs if compared to traditional techniques. At the same time, it is important to consider the limits of drones regarding pilot certification, no-fly zones, etc. In the future, it will be necessary to deepen the topic with the real application in the field of both systems, expanding the scenarios in which drones can be used and the type of material distributed.

Keywords: beneficial insects, corn borer management, drones, precision agriculture

Procedia PDF Downloads 103