Search results for: Electron-positron plasma
212 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga
Authors: M. F. Mamabolo
Abstract:
Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.Keywords: Kaap river system, mines, heavy metals, sulphate
Procedia PDF Downloads 78211 Inactivation of Semicarbazide-Sensitive Amine Oxidase Induces the Phenotypic Switch of Smooth Muscle Cells and Aggravates the Development of Atherosclerotic Lesions
Authors: Miao Zhang, Limin Liu, Feng Zhi, Panpan Niu, Mengya Yang, Xuemei Zhu, Ying Diao, Jun Wang, Ying Zhao
Abstract:
Background and Aims: Clinical studies have demonstrated that serum semicarbazide-sensitive amine oxidase (SSAO) activities positively correlate with the progression of atherosclerosis. The aim of the present study is to investigate the effect of SSAO inactivation on the development of atherosclerosis. Methods: Female LDLr knockout (KO) mice were given the Western-type diet for 6 and 9 weeks to induce the formation of early and advanced lesions, and semicarbazide (SCZ, 0.125%) was added into the drinking water to inactivate SSAO in vivo. Results: Despite no impact on plasma total cholesterol levels, abrogation of SSAO by SCZ not only resulted in the enlargement of both early (1.5-fold, p=0.0043) and advanced (1.8-fold, p=0.0013) atherosclerotic lesions, but also led to reduced/increased lesion contents of macrophages/smooth muscle cells (SMCs) (macrophage: ~0.74-fold, p=0.0002(early)/0.0016(advanced); SMC: ~1.55-fold, p=0.0003(early) /0.0001(advanced)), respectively. Moreover, SSAO inactivation inhibited the migration of circulating monocytes into peripheral tissues and reduced the amount of circulating Ly6Chigh monocytes (0.7-fold, p=0.0001), which may account for the reduced macrophage content in lesions. In contrast, the increased number of SMCs in lesions of SCZ-treated mice is attributed to an augmented synthetic vascular SMC phenotype switch as evidenced by the increased proliferation of SMCs and accumulation of collagens in vivo. Conclusion: SSAO inactivation by SCZ promotes the phenotypic switch of SMCs and the development of atherosclerosis. The enzymatic activity of SSAO may thus represent a potential target in the prevention and/or treatment of atherosclerosis.Keywords: atherosclerosis, phenotype switch of smooth muscle cells, SSAO/VAP-1, semicarbazide
Procedia PDF Downloads 327210 Identification of microRNAs in Early and Late Onset of Parkinson’s Disease Patient
Authors: Ahmad Rasyadan Arshad, A. Rahman A. Jamal, N. Mohamed Ibrahim, Nor Azian Abdul Murad
Abstract:
Introduction: Parkinson’s disease (PD) is a complex and asymptomatic disease where patients are usually diagnosed at late stage where about 70% of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers is crucial for early diagnosis of PD. MicroRNA (miRNA) is a short nucleotide non-coding small RNA which regulates the gene expression in post-translational process. The involvement of these miRNAs in neurodegenerative diseases includes maintenance of neuronal development, necrosis, mitochondrial dysfunction and oxidative stress. Thus, miRNA could be a potential biomarkers for diagnosis of PD. Objective: This study aim to identify the miRNA involved in Late Onset PD (LOPD) and Early Onset PD (EOPD) compared to the controls. Methods: This is a case-control study involved PD patients in the Chancellor Tunku Muhriz Hospital at the UKM Medical Centre. miRNA samples were extracted using miRNeasy serum/plasma kit from Qiagen. The quality of miRNA extracted was determined using Agilent RNA 6000 Nano kit in the Bioanalyzer. miRNA expression was performed using GeneChip miRNA 4.0 chip from Affymetrix. Microarray was performed in EOPD (n= 7), LOPD (n=9) and healthy control (n=11). Expression Console and Transcriptomic Analyses Console were used to analyze the microarray data. Result: miR-129-5p was significantly downregulated in EOPD compared to LOPD with -4.2 fold change (p = <0.050. miR-301a-3p was upregulated in EOPD compared to healthy control (fold = 10.3, p = <0.05). In LOPD versus healthy control, miR-486-3p (fold = 15.28, p = <0.05), miR-29c-3p (fold = 12.21, p = <0.05) and miR-301a-3p (fold = 10.01, p =< 0.05) were upregulated. Conclusion: Several miRNA have been identified to be differentially expressed in EOPD compared to LOPD and PD versus control. These miRNAs could serve as the potential biomarkers for early diagnosis of PD. However, these miRNAs need to be validated in a larger sample size.Keywords: early onset PD, late onset PD, microRNA (miRNA), microarray
Procedia PDF Downloads 257209 Comparative Evaluation on in vitro Bioactivity, Proliferation and Antibacterial Efficiency of Sol-Gel Derived Bioactive Glass Substituted by Li and Mg
Authors: Amirhossein Moghanian, Morteza Elsa, Mehrnaz Aminitabar
Abstract:
Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO2–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂ –(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, the substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well as significant antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA) bacteria.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 148208 Pattern of Prostate Specific Antigen Request in a Tertiary Health Institution S’ Tumor Marker Laboratory in Nigeria: A Two Year Review
Authors: Ademola Azeez
Abstract:
Background: This study is a two year review of requests pattern for Prostate Specific Antigen (PSA), in a Nigerian tertiary health care institution. Prostate specific antigen was first described about 44 years ago but is still in use today for, diagnosis, monitoring, screening and prognosis of prostatic carcinoma though not-very specific as was widely believed. Prostate cancer is an increasingly important public health problem among adult men worldwide. Nigeria, which was formerly regarded as a low-incidence area by several authors is now witnessing a steep rise in the occurrence of this disease. This has been suggested to be due to increasing availability of screening tests and diagnostic facilities and not necessarily because of increased incidence of the diseases. Many notable Nigerians have died due to this dreaded disease. Methods: All plasma samples for PSA from January 2021-December 2022 were analyzed weekly by abbot autoanalyser, chemiluminescence assay method. Bio-data from request form were collated and analyzed. A total of 385 requests were received for the period under review. Result: There was an increase of request from inception to the last year of review. Smoked food, consumption of local herb and alcohol in order of importance, respectively, appears to be prominent factor in patient requested for PSA. The mean age was 67.years; the youngest was 29, while the oldest was 93years. Age 70 has the highest frequency of 8.5% .Mean PSA was 12.9ng/ml. There was a positive correlation between age and PSA (R=0.255, P < 0.05).Significant increase in PSA with age were reported. Men who retired from active jobs constitute the highest request for PSA test. Conclusion: There was an increasing trend in the proportion of requests with values outside the reference interval especially in patients diagnosed of benign prostatic hyperplasia, prostate cancer, while some routine test for PSA were elevated for the first time .This is in line with earlier report of increasing incidence of prostate cancer in Nigeria despite the increasing knowledge of healthy lifestyle.Keywords: pattern, PSA, tertiary institution, Nigeria
Procedia PDF Downloads 25207 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer
Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh
Abstract:
Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering
Procedia PDF Downloads 163206 Anti-Diabetic Effect of High Purity Epigallocatechin Gallate from Green Tea
Authors: Hye Jin Choi, Mirim Jin, Jeong June Choi
Abstract:
Green tea, which is one of the most popular of tea, contains various ingredients that help health. Epigallocatechin gallate (EGCG) is one of the main active polyphenolic compound possessing diverse biologically beneficial effects such as anti-oxidation, anti-cancer founding in green tea. This study was performed to investigate the anti-diabetic effect of high-purity EGCG ( > 98%) in a spontaneous diabetic mellitus animal model, db/db mouse. Four-week-old male db/db mice, which was induced to diabetic mellitus by the high-fat diet, were orally administered with high-purity EGCG (10, 50 and 100 mg/kg) for 4 weeks. Daily weight and diet efficiency were examined, and blood glucose level was assessed once a week. After 4 weeks of EGCG administration, fasting blood glucose level was measured. Then, the mice were sacrificed and total abdominal fat was sampled to examine the change in fat weight. Plasma was separated from the blood and the levels of aspartate amino-transferase (ALT) and alanine amino-transferase (AST) were investigated. As results, blood glucose and body weight were significantly decreased by EGCG treatment compared to the control group. Also, the amount of abdominal fat was down-regulated by EGCG. However, ALT and AST levels, which are indicators of liver function, were similar to those of control group. Taken together, our study suggests that high purity EGCG is capable of treating diabetes mellitus based in db / db mice with safety and has a potent to develop a therapeutics for metabolic disorders. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (317034-03-2-HD030)Keywords: anti-diabetic effect, db/db mouse, diabetes mellitus, green tea, epigallocatechin gallate
Procedia PDF Downloads 186205 Correlation of Serum Apelin Level with Coronary Calcium Score in Patients with Suspected Coronary Artery Disease
Authors: M. Zeitoun, K. Abdallah, M. Rashwan
Abstract:
Introduction: A growing body of evidence indicates that apelin, a relatively recent member of the adipokines family, has a potential anti-atherogenic effect. An association between low serum apelin state and coronary artery disease (CAD) was previously reported; however, the relationship between apelin and the atherosclerotic burden was unclear. Objectives: Our aim was to explore the correlation of serum apelin level with coronary calcium score (CCS) as a quantitative marker of coronary atherosclerosis. Methods: This observational cross-sectional study enrolled 100 consecutive subjects referred for cardiac multi-detector computed tomography (MDCT) for assessment of CAD (mean age 54 ± 9.7 years, 51 male and 49 females). Clinical parameters, glycemic and lipid profile, high sensitivity CRP (hsCRP), homeostasis model assessment of insulin resistance (HOMA-IR), serum creatinine and complete blood count were assessed. Serum apelin levels were determined using a commercially available Enzyme Immunoassay (EIA) Kit. High-resolution non-contrast CT images were acquired by a 64-raw MDCT and CCS was calculated using the Agatston scoring method. Results: Forty-three percent of the studied subjects had positive coronary artery calcification (CAC). The mean CCS was 79 ± 196.5 Agatston units. Subjects with detectable CAC had significantly higher fasting plasma glucose, HbA1c, and WBCs count than subjects without detectable CAC (p < 0.05). Most importantly, subjects with detectable CAC had significantly lower serum apelin level than subjects without CAC (1.3 ± 0.4 ng/ml vs. 2.8 ± 0.6 ng/ml, p < 0.001). In addition, there was a statistically significant inverse correlation between serum apelin levels and CCS (r = 0.591, p < 0.001); on multivariate analysis this correlation was found to be independent of traditional cardiovascular risk factors and hs-CRP. Conclusion:To the best of our knowledge, this is the first report of an independent association between apelin and CCS in patients with suspected CAD. Apelin emerges as a possible novel biomarker for CAD, but this result remains to be proved prospectively.Keywords: HbA1c, apelin, adipokines, coronary calcium score (CCS), coronary artery disease (CAD)
Procedia PDF Downloads 340204 Effect of cold water immersion on bone mineral metabolism in aging rats
Authors: Irena Baranowska-Bosiacka, Mateusz Bosiacki, Patrycja Kupnicka, Anna Lubkowska, Dariusz Chlubek
Abstract:
Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density.Keywords: swimming in cold water, adaptation to cold water, bone mineral metabolism, aging
Procedia PDF Downloads 59203 Fexofenadine Hydrochloride Orodispersisble Tablets: Formulation and in vitro/in vivo Evaluation in Healthy Human Volunteers
Authors: Soad Ali Yehia, Mohamed Shafik El-Ridi, Mina Ibrahim Tadros, Nolwa Gamal El-Sherif
Abstract:
Fexofenadine hydrochloride (FXD) is a slightly soluble, bitter-tasting, drug having an oral bioavailability of 35%. The maximum plasma concentration is reached 2.6 hours (Tmax) post-dose. The current work aimed to develop taste-masked FXD orodispersible tablets (ODTs) to increase extent of drug absorption and reduce Tmax. Taste masking was achieved via solid dispersion (SD) with chitosan (CS) or sodium alginate (ALG). FT-IR, DSC and XRD were performed to identify physicochemical interactions and FXD crystallinity. Taste-masked FXD-ODTs were developed via addition of superdisintegrants (crosscarmelose sodium or sodium starch glycolate, 5% and 10%, w/w) or sublimable agents (camphor, menthol or thymol; 10% and 20%, w/w) to FXD-SDs. ODTs were evaluated for weight variation, drug-content, friability, wetting time, disintegration time and drug release. Camphor-based (20%, w/w) FXD-ODT (F12) was optimized (F23) by incorporation of a more hydrophilic lubricant, sodium stearyl fumarate (Pruv®). The topography of the latter formula was examined via scanning electron microscopy (SEM). The in vivo estimation of FXD pharmacokinetics, relative to Allegra® tablets, was evaluated in healthy human volunteers. Based on the gustatory sensation test in healthy volunteers, FXD:CS (1:1) and FXD:ALG (1:0.5) SDs were selected. Taste-masked FXD-ODTs had appropriate physicochemical properties and showed short wetting and disintegration times. Drug release profiles of F23 and phenylalanine-containing Allegra® ODT were similar (f2 = 96) showing a complete release in two minutes. SEM micrographs revealed pores following camphor sublimation. Compared to Allegra® tablets, pharmacokinetic studies in healthy volunteers proved F23 ability to increase extent of FXD absorption (14%) and reduce Tmax to 1.83 h.Keywords: fexofenadine hydrochloride, taste masking, chitosan, orodispersible
Procedia PDF Downloads 342202 Evaluation of Compatibility between Produced and Injected Waters and Identification of the Causes of Well Plugging in a Southern Tunisian Oilfield
Authors: Sonia Barbouchi, Meriem Samcha
Abstract:
Scale deposition during water injection into aquifer of oil reservoirs is a serious problem experienced in the oil production industry. One of the primary causes of scale formation and injection well plugging is mixing two waters which are incompatible. Considered individually, the waters may be quite stable at system conditions and present no scale problems. However, once they are mixed, reactions between ions dissolved in the individual waters may form insoluble products. The purpose of this study is to identify the causes of well plugging in a southern Tunisian oilfield, where fresh water has been injected into the producing wells to counteract the salinity of the formation waters and inhibit the deposition of halite. X-ray diffraction (XRD) mineralogical analysis has been carried out on scale samples collected from the blocked well. Two samples collected from both formation water and injected water were analysed using inductively coupled plasma atomic emission spectroscopy, ion chromatography and other standard laboratory techniques. The results of complete waters analysis were the typical input parameters, to determine scaling tendency. Saturation indices values related to CaCO3, CaSO4, BaSO4 and SrSO4 scales were calculated for the water mixtures at different share, under various conditions of temperature, using a computerized scale prediction model. The compatibility study results showed that mixing the two waters tends to increase the probability of barite deposition. XRD analysis confirmed the compatibility study results, since it proved that the analysed deposits consisted predominantly of barite with minor galena. At the studied temperatures conditions, the tendency for barite scale is significantly increasing with the increase of fresh water share in the mixture. The future scale inhibition and removal strategies to be implemented in the concerned oilfield are being derived in a large part from the results of the present study.Keywords: compatibility study, produced water, scaling, water injection
Procedia PDF Downloads 165201 Ecological Risk Assessment of Informal E-Waste Processing in Alaba International Market, Lagos, Nigeria
Authors: A. A. Adebayo, O. Osibanjo
Abstract:
Informal electronic waste (e-waste) processing is a crude method of recycling, which is on the increase in Nigeria. The release of hazardous substances such as heavy metals (HMs) into the environment during informal e-waste processing has been a major concern. However, there is insufficient information on environmental contamination from e-waste recycling, associated ecological risk in Alaba International Market, a major electronic market in Lagos, Nigeria. The aims of this study were to determine the levels of HMs in soil, resulting from the e-waste recycling; and also assess associated ecological risks in Alaba international market. Samples of soils (334) were randomly collected seasonally for three years from fourteen selected e-waste activity points and two control sites. The samples were digested using standard methods and HMs analysed by inductive coupled plasma optical emission. Ecological risk was estimated using Ecological Risk index (ER), Potential Ecological Risk index (RI), Index of geoaccumulation (Igeo), Contamination factor (Cf) and degree of contamination factor (Cdeg). The concentrations range of HMs (mg/kg) in soil were: 16.7-11200.0 (Pb); 14.3-22600.0 (Cu); 1.90-6280.0 (Ni), 39.5-4570.0 (Zn); 0.79-12300.0 (Sn); 0.02-138.0 (Cd); 12.7-1710.0 (Ba); 0.18-131.0 (Cr); 0.07-28.0 (V), while As was below detection limit. Concentrations range in control soils were 1.36-9.70 (Pb), 2.06-7.60 (Cu), 1.25-5.11 (Ni), 3.62-15.9 (Zn), BDL-0.56 (Sn), BDL-0.01 (Cd), 14.6-47.6 (Ba), 0.21–12.2 (Cr) and 0.22-22.2 (V). The trend in ecological risk index was in the order Cu > Pb > Ni > Zn > Cr > Cd > Ba > V. The potential ecological risk index with respect to informal e-waste activities were: burning > dismantling > disposal > stockpiling. The index of geo accumulation indices revealed that soils were extremely polluted with Cd, Cu, Pb, Zn and Ni. The contamination factor indicated that 93% of the studied areas have very high contamination status for Pb, Cu, Ba, Sn and Co while Cr and Cd were in the moderately contaminated status. The degree of contamination decreased in the order of Sn > Cu > Pb >> Zn > Ba > Co > Ni > V > Cr > Cd. Heavy metal contamination of Alaba international market environment resulting from informal e-waste processing was established. Proper management of e-waste and remediation of the market environment are recommended to minimize the ecological risks.Keywords: Alaba international market, ecological risk, electronic waste, heavy metal contamination
Procedia PDF Downloads 196200 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel
Authors: Sellidj Abdelaziz, Lebaili Soltane
Abstract:
A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment
Procedia PDF Downloads 115199 Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency
Authors: Amir Khaleghipour, Amirhossein Moghanian, Elhamalsadat Ghaffari
Abstract:
Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 188198 Differences in Cognitive Functioning over the Course of Chemotherapy in Patients Suffering from Multiple Myeloma and the Possibility to Predict Their Cognitive State on the Basis of Biological Factors
Authors: Magdalena Bury-Kaminska, Aneta Szudy-Szczyrek, Aleksandra Nowaczynska, Olga Jankowska-Lecka, Marek Hus, Klaudia Kot
Abstract:
Introduction: The aim of the research was to determine the changes in cognitive functioning in patients with plasma cell myeloma by comparing patients’ state before the treatment and during chemotherapy as well as to determine the biological factors that can be used to predict patients’ cognitive state. Methods: The patients underwent the research procedure twice: before chemotherapy and after 4-6 treatment cycles. A psychological test and measurement of the following biological variables were carried out: TNF-α (tumor necrosis factor), IL-6 (interleukin 6), IL-10 (interleukin 10), BDNF (brain-derived neurotrophic factor). The following research methods were implemented: the Montreal Cognitive Assessment (MoCA), Battery of Tests for Assessing Cognitive Functions PU1, experimental and clinical trials based on the Choynowski’s Memory Scale, Stroop Color-Word Interference Test (SCWT), depression measurement questionnaire. Results: The analysis of the research showed better cognitive functions of patients during chemotherapy in comparison to the phase before it. Moreover, neurotrophin BDNF allows to predict the level of selected cognitive functions (semantic fluency and execution control) already at the diagnosis stage. After 4-6 cycles, it is also possible to draw conclusions concerning the extent of working memory based on the level of BDNF. Cytokine TNF-α allows us to predict the level of letter fluency during anti-cancer treatment. Conclusions: It is possible to presume that BDNF has a protective influence on patients’ cognitive functions and working memory and that cytokine TNF-α co-occurs with a diminished execution control and better material grouping in terms of phonological fluency. Acknowledgment: This work was funded by the National Science Center in Poland [grant no. 2017/27/N/HS6/02057.Keywords: chemobrain, cognitive impairment, non−central nervous system cancers, hematologic diseases
Procedia PDF Downloads 151197 Elevated Creatinine Clearance and Normal Glomerular Filtration Rate in Patients with Systemic Lupus erythematosus
Authors: Stoyanka Vladeva, Elena Kirilova, Nikola Kirilov
Abstract:
Background: The creatinine clearance is a widely used value to estimate the GFR. Increased creatinine clearance is often called hyperfiltration and is usually seen during pregnancy, patients with diabetes mellitus preceding the diabetic nephropathy. It may also occur with large dietary protein intake or with plasma volume expansion. Renal injury in lupus nephritis is known to affect the glomerular, tubulointerstitial, and vascular compartment. However high creatinine clearance has not been found in patients with SLE, Target: Follow-up of creatinine clearance values in patients with systemic lupus erythematosus without history of kidney injury. Material and methods: We observed the creatinine, creatinine clearance, GFR and dipstick protein values of 7 women (with a mean age of 42.71 years) with systemic lupus erythematosus. Patients with active lupus have been monthly tested in the period of 13 months. Creatinine clearance has been estimated by Cockcroft-Gault Equation formula in ml/sec. GFR has been estimated by MDRD formula (The Modification of Diet in renal Disease) in ml/min/1.73 m2. Proteinuria has been defined as present when dipstick protein > 1+.Results: In all patients without history of kidney injury we found elevated creatinine clearance levels, but GFRremained within the reference range. Two of the patients were in remission while the other five patients had clinically and immunologically active Lupus. Three of the patients had a permanent presence of high creatinine clearance levels and proteinuria. Two of the patients had periodically elevated creatinine clearance without proteinuria. These results show that kidney disturbances may be caused by the vascular changes typical for SLE. Glomerular hyperfiltration can be result of focal segmental glomerulosclerosis caused by a reduction in renal mass. Probably lupus nephropathy is preceded not only by glomerular vascular changes, but also by tubular vascular changes. Using only the GFR is not a sufficient method to detect these primary functional disturbances. Conclusion: For early detection of kidney injury in patients with SLE we determined that the follow up of creatinine clearance values could be helpful.Keywords: systemic Lupus erythematosus, kidney injury, elevated creatinine clearance level, normal glomerular filtration rate
Procedia PDF Downloads 269196 Biomolecules Based Microarray for Screening Human Endothelial Cells Behavior
Authors: Adel Dalilottojari, Bahman Delalat, Frances J. Harding, Michaelia P. Cockshell, Claudine S. Bonder, Nicolas H. Voelcker
Abstract:
Endothelial Progenitor Cell (EPC) based therapies continue to be of interest to treat ischemic events based on their proven role to promote blood vessel formation and thus tissue re-vascularisation. Current strategies for the production of clinical-grade EPCs requires the in vitro isolation of EPCs from peripheral blood followed by cell expansion to provide sufficient quantities EPCs for cell therapy. This study aims to examine the use of different biomolecules to significantly improve the current strategy of EPC capture and expansion on collagen type I (Col I). In this study, four different biomolecules were immobilised on a surface and then investigated for their capacity to support EPC capture and proliferation. First, a cell microarray platform was fabricated by coating a glass surface with epoxy functional allyl glycidyl ether plasma polymer (AGEpp) to mediate biomolecule binding. The four candidate biomolecules tested were Col I, collagen type II (Col II), collagen type IV (Col IV) and vascular endothelial growth factor A (VEGF-A), which were arrayed on the epoxy-functionalised surface using a non-contact printer. The surrounding area between the printed biomolecules was passivated with polyethylene glycol-bisamine (A-PEG) to prevent non-specific cell attachment. EPCs were seeded onto the microarray platform and cell numbers quantified after 1 h (to determine capture) and 72 h (to determine proliferation). All of the extracellular matrix (ECM) biomolecules printed demonstrated an ability to capture EPCs within 1 h of cell seeding with Col II exhibiting the highest level of attachment when compared to the other biomolecules. Interestingly, Col IV exhibited the highest increase in EPC expansion after 72 h when compared to Col I, Col II and VEGF-A. These results provide information for significant improvement in the capture and expansion of human EPC for further application.Keywords: biomolecules, cell microarray platform, cell therapy, endothelial progenitor cells, high throughput screening
Procedia PDF Downloads 288195 In vivo Antidiabetic and Antioxidant Potential of Pseudovaria macrophylla Extract
Authors: Aditya Arya, Hairin Taha, Ataul Karim Khan, Nayiar Shahid, Hapipah Mohd Ali, Mustafa Ali Mohd
Abstract:
This study has investigated the antidiabetic and antioxidant potential of Pseudovaria macrophylla bark extract on streptozotocin–nicotinamide induced type 2 diabetic rats. LCMS-QTOF and NMR experiments were done to determine the chemical composition in the methanolic bark extract. For in vivo experiments, the STZ (60 mg/kg/b.w, 15 min after 120 mg/kg/1 nicotinamide, i.p.) induced diabetic rats were treated with methanolic extract of Pseuduvaria macrophylla (200 and 400 mg/kg∙bw) and glibenclamide (2.5 mg/kg) as positive control respectively. Biochemical parameters were assayed in the blood samples of all groups of rats. The pro-inflammatory cytokines, antioxidant status and plasma transforming growth factor βeta-1 (TGF-β1) were evaluated. The histological study of the pancreas was examined and its expression level of insulin was observed by immunohistochemistry. In addition, the expression of glucose transporters (GLUT 1, 2 and 4) were assessed in pancreas tissue by western blot analysis. The outcomes of the study displayed that the bark methanol extract of Pseuduvaria macrophylla has potentially normalized the elevated blood glucose levels and improved serum insulin and C-peptide levels with significant increase in the antioxidant enzyme, reduced glutathione (GSH) and decrease in the level of lipid peroxidation (LPO). Additionally, the extract has markedly decreased the levels of serum pro-inflammatory cytokines and transforming growth factor beta-1 (TGF-β1). Histopathology analysis demonstrated that Pseuduvaria macrophylla has the potential to protect the pancreas of diabetic rats against peroxidation damage by downregulating oxidative stress and elevated hyperglycaemia. Furthermore, the expression of insulin protein, GLUT-1, GLUT-2 and GLUT-4 in pancreatic cells was enhanced. The findings of this study support the anti-diabetic claims of Pseudovaria macrophylla bark.Keywords: diabetes mellitus, Pseuduvaria macrophylla, alkaloids, caffeic acid
Procedia PDF Downloads 356194 Heavy Metals and Carcinogenic Risk Assessment in Free-Ranged Livestock of Lead-Contaminated Goldmine Communities of Zamfara State, Northern Nigeria
Authors: Sulaiman Rabiu, Muazu Gusau Abubakar, Jafar Usman Zakari
Abstract:
The consumption of meat is of great importance as it provides a good source of proteins and significant amount of essential trace element to the body. However, contamination of meat and meat products with heavy metals is becoming a serious threat to food safety and public health. Therefore, the present study is aimed to evaluate the concentration of some heavy metals in muscles and entrails of free-ranged cattle, sheep and goats. A total of sixty (60) fresh samples of muscles, liver, kidney, small intestines and stomach of free ranged cattle, sheep and goats were collected from abattoirs of different goldmine communities of Anka, Bukkuyum, Maru andTalata-Mafara Local Government Areas of Zamfara State, Nigeria. The samples were digested using 10 mL of a mixed 70% high grade concentration of HNO₃ and 65% HCl (4:1 v/v); the mixture was heated until dense fumes disappeared forming a clear transparent solution and diluted to 50 mL with deionized water. Actual concentrations of Cd, Cr, Cu, Co, As, Ni, Mn, Pb and Zn were determined using Microwave Plasma Atomic Emission Spectrophotometer (MP-AES). From the results obtained, goat liver had the highest mean concentration of lead, arsenic, cobalt and manganese (12.43± 0.31, 14.25±0.32, 3.47± 0.86 and 12.68± 0.92 mg/kg respectively) while goat kidney had the highest concentration of copper and zinc (10.08±0.61 and 24.16±1.30 mg/kg respectively). The highest concentrations of cadmium and nickel were recorded in sheep kidney (7.75± 0.65 and 2.08±0.10 mg/kg respectively). Cattle muscles had the highest chromium concentration than all the organs analysed. The target hazard quotients (THQs) for all the metals were below 1.0, but TR which is a risk indices for carcinogenicity indicates an alarming result that requires stringent control to protect public health.Therefore, intensive public health awareness on the risk associated with contamination of heavy metals in meat should be advocated.Keywords: contamination, goldmine, heavy metals, meat
Procedia PDF Downloads 110193 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde
Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate
Abstract:
Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase
Procedia PDF Downloads 420192 Identification and Quantification of Sesquiterpene Lactones of Sagebrush (Artemisia tridentate) and Its Chemical Modification
Authors: Rosemary Anibogwu, Kavita Sharma, Karl De Jesus
Abstract:
Sagebrush is an abundant and naturally occurring plant in the Intermountain West region of the United States. The plant contains an array of bioactive compounds such as flavonoids, terpenoids, sterols, and phenolic acids. It is important to identify and characterize these compounds because Native Americans use sagebrush as herbal medicine. These compounds are also utilized for preventing infection in wounds, treating headaches and colds, and possess antitumor properties. This research is an exploratory study on the sesquiterpene present in the leaves of sagebrush. The leaf foliage was extracted with 100 % chloroform and 100 % methanol. The percentage yield for the crude was considerably higher in chloroform. The Thin Layer Chromatography (TLC) analysis of the crude extracted unveiled a brown band at Rf = 0.25 and a dark brown band at Rf = 0.74, along with three unknown faint bands the 254 nm UV lamp. Furthermore, the two distinct brown (Achillin) and dark brown band (Hydroxyachillin) in TLC were further utilized in the isolation of pure compounds with column chromatography. The structures of Achillin and Hydroxyachillin were elucidated based on extensive spectroscopic analysis, including TLC, High-Performance Liquid Chromatography (HPLC), 1D- and 2D-Nuclear Magnetic Resonance (NMR), and Mass Spectroscopy (MS). The antioxidant activities of crude extract and three pure compounds were evaluated in terms of their peroxyl radical scavenging by Ferric Reducing Ability of Plasma (FRAP) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude extract showed the antioxidant activity of 18.99 ± 0.51 µmol TEg -1 FW for FRAP and 11.59 ± 0.38 µmol TEg -1 FW for DPPH. The activities of Achillin, Hydroxyachillin, and Quercetagetin trimethyl ether were 13.03, 15.90 and 14.02 µmol TEg -1 FW respectively for the FRAP assay. The three purified compounds have been submitted to the National Cancer Institute 60 cancer cell line for further study.Keywords: HPLC, nuclear magnetic resonance spectroscopy, sagebrush, sesquiterpene lactones
Procedia PDF Downloads 130191 Cost-Effectiveness Analysis of the Use of COBLATION™ Knee Chondroplasty versus Mechanical Debridement in German Patients
Authors: Ayoade Adeyemi, Leo Nherera, Paul Trueman, Antje Emmermann
Abstract:
Background and objectives: Radiofrequency (RF) generated plasma chondroplasty is considered a promising treatment alternative to mechanical debridement (MD) with a shaver. The aim of the study was to perform a cost-effectiveness analysis comparing costs and outcomes following COBLATION chondroplasty versus mechanical debridement in patients with knee pain associated with a medial meniscus tear and idiopathic ICRS grade III focal lesion of the medial femoral condyle from a payer perspective. Methods: A decision-analytic model was developed comparing economic and clinical outcomes between the two treatment options in German patients following knee chondroplasty. Revision rates based on the frequency of repeat arthroscopy, osteotomy and conversion to total knee replacement, reimbursement costs and outcomes data over a 4-year time horizon were extracted from published literature. One-way sensitivity analyses were conducted to assess uncertainties around model parameters. Threshold analysis determined the revision rate at which model results change. All costs were reported in 2016 euros, future costs were discounted at a 3% annual rate. Results: Over a 4 year period, COBLATION chondroplasty resulted in an overall net saving cost of €461 due to a lower revision rate of 14% compared to 48% with MD. Threshold analysis showed that both options were associated with comparable costs if COBLATION revision rate was assumed to increase up to 23%. The initial procedure costs for COBLATION were higher compared to MD and outcome scores were significantly improved at 1 and 4 years post-operation versus MD. Conclusion: The analysis shows that COBLATION chondroplasty is a cost-effective option compared to mechanical debridement in the treatment of patients with a medial meniscus tear and idiopathic ICRS grade III defect of the medial femoral condyle.Keywords: COBLATION, cost-effectiveness, knee chondroplasty, mechanical debridement
Procedia PDF Downloads 391190 Osteoprotegerin and Osteoprotegerin/TRAIL Ratio are Associated with Cardiovascular Dysfunction and Mortality among Patients with Renal Failure
Authors: Marek Kuźniewski, Magdalena B. Kaziuk , Danuta Fedak, Paulina Dumnicka, Ewa Stępień, Beata Kuśnierz-Cabala, Władysław Sułowicz
Abstract:
Background: The high prevalence of cardiovascular morbidity and mortality among patients with chronic kidney disease (CKD) is observed especially in those undergoing dialysis. Osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been associated with cardiovascular complications. Our aim was to study their role as cardiovascular risk factors in stage 5 CKD patients. Methods: OPG, RANKL and TRAIL concentrations were measured in 69 hemodialyzed CKD patients and 35 healthy volunteers. In CKD patients, cardiovascular dysfunction was assessed with aortic pulse wave velocity (AoPWV), carotid artery intima-media thickness (CCA-IMT), coronary artery calcium score (CaSc) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentration. Cardiovascular and overall mortality data were collected during a 7-years follow-up. Results: OPG plasma concentrations were higher in CKD patients comparing to controls. Total soluble RANKL was lower and OPG/RANKL ratio higher in patients. Soluble TRAIL concentrations did not differ between the groups and OPG/TRAIL ratio was higher in CKD patients. OPG and OPG/TRAIL positively predicted long-term mortality (all-cause and cardiovascular) in CKD patients. OPG positively correlated with AoPWV, CCA-IMT and NT-proBNP whereas OPG/TRAIL with AoPWV and NT-proBNP. Described relationships were independent of classical and non-classical cardiovascular risk factors, with exception of age. Conclusions: Our study confirmed the role of OPG as a biomarker of cardiovascular dysfunction and a predictor of mortality in stage 5 CKD. OPG/TRAIL ratio can be proposed as a predictor of cardiovascular dysfunction and mortality.Keywords: osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, receptor activator of nuclear factor kappa-B ligand, hemodialysis, chronic kidney disease, cardiovascular disease
Procedia PDF Downloads 334189 Analyzing the Sound of Space - The Glissando of the Planets and the Spiral Movement on the Sound of Earth, Saturn and Jupiter
Authors: L. Tonia, I. Daglis, W. Kurth
Abstract:
The sound of the universe creates an affinity with the sounds of music. The analysis of the sound of space focuses on the existence of a tone material, the microstructure and macrostructure, and the form of the sound through the signals recorded during the flight of the spacecraft Van Allen Probes and Cassini’s mission. The sound becomes from the frequencies that belong to electromagnetic waves. Plasma Wave Science Instrument and Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) recorded the signals from space. A transformation of that signals to audio gave the opportunity to study and analyze the sound. Due to the fact that the musical tone pitch has a frequency and every electromagnetic wave produces a frequency too, the creation of a musical score, which appears as the sound of space, can give information about the form, the symmetry, and the harmony of the sound. The conversion of space radio emissions to audio provides a number of tone pitches corresponding to the original frequencies. Through the process of these sounds, we have the opportunity to present a music score that “composed” from space. In this score, we can see some basic features associated with the music form, the structure, the tone center of music material, the construction and deconstruction of the sound. The structure, which was built through a harmonic world, includes tone centers, major and minor scales, sequences of chords, and types of cadences. The form of the sound represents the symmetry of a spiral movement not only in micro-structural but also to macro-structural shape. Multiple glissando sounds in linear and polyphonic process of the sound, founded in magnetic fields around Earth, Saturn, and Jupiter, but also a spiral movement appeared on the spectrogram of the sound. Whistles, Auroral Kilometric Radiations, and Chorus emissions reveal movements similar to musical excerpts of works by contemporary composers like Sofia Gubaidulina, Iannis Xenakis, EinojuhamiRautavara.Keywords: space sound analysis, spiral, space music, analysis
Procedia PDF Downloads 175188 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements
Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles
Abstract:
During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium
Procedia PDF Downloads 306187 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents
Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir
Abstract:
Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS
Procedia PDF Downloads 448186 A Step Towards Circular Economy: Assessing the Efficacy of Ion Exchange Resins in the Recycling of Automotive Engine Coolants
Authors: George Madalin Danila, Mihaiella Cretu, Cristian Puscasu
Abstract:
The recycling of used antifreeze/coolant is a widely discussed and intricate issue. Complying with government regulations for the proper disposal of hazardous waste poses a significant challenge for today's automotive and industrial industries. In recent years, global focus has shifted toward Earth's fragile ecology, emphasizing the need to restore and preserve the natural environment. The business and industrial sectors have undergone substantial changes to adapt and offer products tailored to these evolving markets. The global antifreeze market size was evaluated at US 5.4 billion in 2020 to reach USD 5,9 billion by 2025 due to the increased number of vehicles worldwide, but also to the growth of HVAC systems. This study presents the evaluation of an ion exchange resin-based installation designed for the recycling of engine coolants, specifically ethylene glycol (EG) and propylene glycol (PG). The recycling process aims to restore the coolant to meet the stringent ASTM standards for both new and recycled coolants. A combination of physical-chemical methods, gas chromatography-mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS) was employed to analyze and validate the purity and performance of the recycled product. The experimental setup included performance tests, namely corrosion to glassware and the tendency to foaming of coolant, to assess the efficacy of the recycled coolants in comparison to new coolant standards. The results demonstrate that the recycled EG coolants exhibit comparable quality to new coolants, with all critical parameters falling within the acceptable ASTM limits. This indicates that the ion exchange resin method is a viable and efficient solution for the recycling of engine coolants, offering an environmentally friendly alternative to the disposal of used coolants while ensuring compliance with industry standards.Keywords: engine coolant, glycols, recycling, ion exchange resin, circular economy
Procedia PDF Downloads 42185 Magnetic Nanoparticles Coated with Modified Polysaccharides for the Immobilization of Glycoproteins
Authors: Kinga Mylkie, Pawel Nowak, Marta Z. Borowska
Abstract:
The most important proteins in human serum responsible for drug binding are human serum albumin (HSA) and α1-acid glycoprotein (AGP). The AGP molecule is a glycoconjugate containing a single polypeptide chain composed of 183 amino acids (the core of the protein), and five glycan branched chains (sugar part) covalently linked by an N-glycosidic bond with aspartyl residues (Asp(N) -15, -38, -54, -75, - 85) of polypeptide chain. This protein plays an important role in binding alkaline drugs, a large group of drugs used in psychiatry, some acid drugs (e.g., coumarin anticoagulants), and neutral drugs (steroid hormones). The main goal of the research was to obtain magnetic nanoparticles coated with biopolymers in a chemically modified form, which will have highly reactive functional groups able to effectively immobilize the glycoprotein (acid α1-glycoprotein) without losing the ability to bind active substances. The first phase of the project involved the chemical modification of biopolymer starch. Modification of starch was carried out by methods of organic synthesis, leading to the preparation of a polymer enriched on its surface with aldehyde groups, which in the next step was coupled with 3-aminophenylboronic acid. Magnetite nanoparticles coated with starch were prepared by in situ co-precipitation and then oxidized with a 1 M sodium periodate solution to form a dialdehyde starch coating. Afterward, the reaction between the magnetite nanoparticles coated with dialdehyde starch and 3-aminophenylboronic acid was carried out. The obtained materials consist of a magnetite core surrounded by a layer of modified polymer, which contains on its surface dihydroxyboryl groups of boronic acids which are capable of binding glycoproteins. Magnetic nanoparticles obtained as carriers for plasma protein immobilization were fully characterized by ATR-FTIR, TEM, SEM, and DLS. The glycoprotein was immobilized on the obtained nanoparticles. The amount of mobilized protein was determined by the Bradford method.Keywords: glycoproteins, immobilization, magnetic nanoparticles, polysaccharides
Procedia PDF Downloads 128184 Development of Ketorolac Tromethamine Encapsulated Stealth Liposomes: Pharmacokinetics and Bio Distribution
Authors: Yasmin Begum Mohammed
Abstract:
Ketorolac tromethamine (KTM) is a non-steroidal anti-inflammatory drug with a potent analgesic and anti-inflammatory activity due to prostaglandin related inhibitory effect of drug. It is a non-selective cyclo-oxygenase inhibitor. The drug is currently used orally and intramuscularly in multiple divided doses, clinically for the management arthritis, cancer pain, post-surgical pain, and in the treatment of migraine pain. KTM has short biological half-life of 4 to 6 hours, which necessitates frequent dosing to retain the action. The frequent occurrence of gastrointestinal bleeding, perforation, peptic ulceration, and renal failure lead to the development of other drug delivery strategies for the appropriate delivery of KTM. The ideal solution would be to target the drug only to the cells or tissues affected by the disease. Drug targeting could be achieved effectively by liposomes that are biocompatible and biodegradable. The aim of the study was to develop a parenteral liposome formulation of KTM with improved efficacy while reducing side effects by targeting the inflammation due to arthritis. PEG-anchored (stealth) and non-PEG-anchored liposomes were prepared by thin film hydration technique followed by extrusion cycle and characterized for in vitro and in vivo. Stealth liposomes (SLs) exhibited increase in percent encapsulation efficiency (94%) and 52% percent of drug retention during release studies in 24 h with good stability for a period of 1 month at -20°C and 4°C. SLs showed about maximum 55% of edema inhibition with significant analgesic effect. SLs produced marked differences over those of non-SL formulations with an increase in area under plasma concentration time curve, t₁/₂, mean residence time, and reduced clearance. 0.3% of the drug was detected in arthritic induced paw with significantly reduced drug localization in liver, spleen, and kidney for SLs when compared to other conventional liposomes. Thus SLs help to increase the therapeutic efficacy of KTM by increasing the targeting potential at the inflammatory region.Keywords: biodistribution, ketorolac tromethamine, stealth liposomes, thin film hydration technique
Procedia PDF Downloads 293183 Adaptor Protein APPL2 Could Be a Therapeutic Target for Improving Hippocampal Neurogenesis and Attenuating Depressant Behaviors and Olfactory Dysfunctions in Chronic Corticosterone-induced Depression
Authors: Jiangang Shen
Abstract:
Olfactory dysfunction is a common symptom companied by anxiety- and depressive-like behaviors in depressive patients. Chronic stress triggers hormone responses and inhibits the proliferation and differentiation of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ)-olfactory bulb (OB), contributing to depressive behaviors and olfactory dysfunction. However, the cellular signaling molecules to regulate chronic stress mediated olfactory dysfunction are largely unclear. Adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPLs) are multifunctional adaptor proteins. Herein, we tested the hypothesis that APPL2 could inhibit hippocampal neurogenesis by affecting glucocorticoid receptor (GR) signaling, subsequently contributing to depressive and anxiety behaviors as well as olfactory dysfunctions. The major discoveries are included: (1) APPL2 Tg mice had enhanced GR phosphorylation under basic conditions but had no different plasma corticosterone (CORT) level and GR phosphorylation under stress stimulation. (2) APPL2 Tg mice had impaired hippocampal neurogenesis and revealed depressive and anxiety behaviors. (3) GR antagonist RU486 reversed the impaired hippocampal neurogenesis in the APPL2 Tg mice. (4) APPL2 Tg mice displayed higher GR activity and less capacity for neurogenesis at the olfactory system with lesser olfactory sensitivity than WT mice. (5) APPL2 negatively regulates olfactory functions by switching fate commitments of NSCs in adult olfactory bulbs via interaction with Notch1 signaling. Furthermore, baicalin, a natural medicinal compound, was found to be a promising agent targeting APPL2/GR signaling and promoting adult neurogenesis in APPL2 Tg mice and chronic corticosterone-induced depression mouse models. Behavioral tests revealed that baicalin had antidepressant and olfactory-improving effects. Taken together, APPL2 is a critical therapeutic target for antidepressant treatment.Keywords: APPL2, hippocampal neurogenesis, depressive behaviors and olfactory dysfunction, stress
Procedia PDF Downloads 75