Search results for: structural equation modeling semiparametric
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9035

Search results for: structural equation modeling semiparametric

725 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring

Authors: Katerina Krizova, Inigo Molina

Abstract:

The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.

Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content

Procedia PDF Downloads 125
724 Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes

Authors: Valery Gulyayev, Sergey Glazunov, Elena Andrusenko, Nataliya Shlyun

Abstract:

Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization.

Keywords: curvilinear drilling, drill string tripping in and out, contact forces, resistance forces

Procedia PDF Downloads 147
723 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 87
722 A Reduced Ablation Model for Laser Cutting and Laser Drilling

Authors: Torsten Hermanns, Thoufik Al Khawli, Wolfgang Schulz

Abstract:

In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too.

Keywords: asymptotic ablation shape, interactive process simulation, laser drilling, laser cutting, metamodeling, reduced modeling

Procedia PDF Downloads 216
721 Geotechnical Education in the USA: A Comparative Analysis of Academic Schooling vs. Industry Needs in the Area of Earth Retaining Structures

Authors: Anne Lemnitzer, Eric Tavarez

Abstract:

The academic rigor of the geotechnical engineering curriculum indicates strong institutional and geographical variations. Geotechnical engineering deals with the most challenging civil engineering material, as opposed to structural engineering, environmental studies, transportation engineering, and water resources. Yet, technical expectations posed by the practicing professional community do not necessarily consider the challenges inherent to the disparity in academic rigor and disciplinary differences. To recognize the skill shortages among current graduates as well as identify opportunities to better equip graduate students in specific fields of geotechnical engineering, a two-part survey was developed in collaboration with the Earth Retaining Structures (ERS) Committee of the American Society of Civil Engineers. Earth Retaining Structures are critical components of infrastructure systems and integral components to many major engineering projects. Within the geotechnical curriculum, Earth Retaining Structures is either taught as a separate course or major subject within a foundation design class. Part 1 of the survey investigated the breadth and depth of the curriculum with respect to ERS by requesting faculty across the United States to provide data on their curricular content, integration of practice-oriented course content, student preparation for professional licensing, and level of technical competency expected upon student graduation. Part 2 of the survey enables a comparison of training provided versus training needed. This second survey addressed practicing geotechnical engineers in all sectors of the profession (e.g., private engineering consulting, governmental agencies, contractors, suppliers/manufacturers) and collected data on the expectations with respect to technical and non-technical skills of engineering graduates entering the professional workforce. Results identified skill shortages in soft skills, critical thinking, analytical and language skills, familiarity with design codes and standards, and communication with various stakeholders. The data will be used to develop educational tools to advance the proficiency and expertise of geotechnical engineering students to meet and exceed the expectations of the profession and to stimulate a lifelong interest in advancing the field of geotechnical engineering.

Keywords: geotechnical engineering, academic training, industry requirements, earth retaining structures

Procedia PDF Downloads 127
720 Analyzing Restrictive Refugee Policies in Japan and the United Kingdom: An Examination of Fundamental Causes and Implications

Authors: Shalini Shawari Matharage

Abstract:

The worldwide refugee challenge has arisen as a critical concern, with millions of individuals fleeing their home countries owing to conflict, persecution, and human rights violations. Since the establishment of an international framework in 1951 for tackling the humanitarian needs of refugees and asylum seekers, many developed and developing countries have adopted a refugee admittance framework into their national immigration policy and steadily changed their domestic legislation to assist the resettlement of refugees. However, many developed nations have put forth strict limitations on refugee admission in the midst of the continuing refugee crisis, claiming factors including national sovereignty, security of their borders, and national economy. Two such developed nations that have been restrictive on refugees is Japan and the United Kingdom. Despite their contrasting histories, migration methods, and viewpoints on diversity in modern society, the two notably developed nations have taken similar restrictive approaches in refugee policy in the recent years. This study attempts to investigate the underlying causes that led these countries to adopt strict refugee policies and how those policies have affected their compliance with international human rights responsibilities. The study employs a head-to-head methodology to examine the structural inequities in Japan and the United Kingdom's refugee policies. Using data from the UNHCR Refugee Data Finder, official government policy proposals, statements, and academic works, the study evaluates the contemporary refugee legislations, fundamental causes, and subsequent implications. The study illustrates a combination of economic, security, and demographic issues, as well as political rigidity and negative public perceptions, as major determinants of the two countries' restrictive refugee policies. The findings shed light on the restrictive actions taken by Japan and the UK, raising concerns about potential breaches in obligations to their commitments to international law and human rights obligations. Understanding the underlying issues influencing these policies allows lawmakers and activists to establish more compassionate refugee policies that adhere to international human rights and protect vulnerable individuals fleeing persecution. Ultimately, this study aims to contribute to the development of sensible refugee policies that uphold human rights and humanitarian values.

Keywords: immigration, Japan, refugee policy, united kingdom

Procedia PDF Downloads 74
719 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 60
718 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 283
717 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 390
716 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests

Authors: Huseyin Guler, Cigdem Kosar

Abstract:

The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.

Keywords: bridge estimators, HEGY test, model selection, seasonal unit root

Procedia PDF Downloads 342
715 Promoting Diversity and Equity through Interdisciplinary Leadership Training

Authors: Sharon Milberger, Jane Turner, Denise White-Perkins

Abstract:

Michigan shares the overall U.S. national need for more highly qualified professionals who have knowledge and experience in the use of evidence-based practices to meet the special health care needs of children, adolescents, and adults with neurodevelopmental disabilities including autism spectrum disorder (DD/ASD). The Michigan Leadership Education in Neurodevelopmental Disabilities (MI-LEND) program is a consortium of six universities that spans the state of Michigan and serves more than 181,800 undergraduate, graduate, and professional students. The purpose of the MI LEND program is to improve the health of infants, children and adolescents with disabilities in Michigan by training individuals from different disciplines to assume leadership roles in their respective fields and work across disciplines. The MI-LEND program integrates “L.I.F.E.” perspectives into all training components. L.I.F.E. is an acronym for Leadership, Interdisciplinary, Family-Centered and Equity perspectives. This paper will describe how L.I.F.E. perspectives are embedded into all aspects of the MI-LEND training program including the application process, didactic training, community and clinical experiences, discussions, journaling and projects. Specific curriculum components will be described including content from a training module dedicated to Equity. Upon completion of the Equity module, trainees are expected to be able to: 1) Use a population health framework to identify key social determinants impacting families and children; 2) Explain how addressing bias and providing culturally appropriate linguistic care/services can influence patient/client health and wellbeing; and 3) Describe the impact of policy and structural/institutional factors influencing care and services for children with DD/ASD and their families. Each trainee completes two self-assessments: the Cultural and Linguistic Competence Health Practitioner Assessment and the other assessing social attitudes/implicit bias. Trainees also conduct interviews with a family with a child with DD/ASD. In addition, interdisciplinary Equity-related group activities are incorporated into face-to-face training sessions. Each MI-LEND trainee has multiple ongoing opportunities for self-reflection through discussion and journaling and completion of a L.I.F.E. project as a culminating component of the program. The poster will also discuss the challenges related to teaching and measuring successful outcomes related to diversity/equity perspectives.

Keywords: disability, diversity, equity, training

Procedia PDF Downloads 165
714 Dinoflagellate Thecal Plates as a Green Cellulose Source

Authors: Alvin Chun Man Kwok, Wai Sun Chan, Wei Yuan, Joseph Tin Yum Wong

Abstract:

Cellulose, the most abundant biopolymer, is the major constituent of plant and dinoflagellate cell walls. Thecate dinoflagellates, in particular, are renowned for their remarkable capacity to synthesize intricate cellulosic thecal plates (CTPs). Unlike the extracellular two-dimensional structure of plant cell walls, these CTPs are three-dimensional and reside within the cellular structure itself. The deposition of CTPs occurs with remarkable precision, and their arrangement serves as crucial taxonomic markers. It is noteworthy that these plates possess the hardness of wood, despite the absence of lignin. Partial and prolonged hydrolysis of CTPs results in the formation of uniform long bundles and lowdimensional, modular crystalline whiskers. This observation aligns with the consistent nanomechanical properties, suggesting a CTPboard structure. The unique composition and structural characteristics of CTPs distinguish them from other cellulose-based materials in the natural world. Spectroscopic studies using Raman and FTIR methods indicate a clear low crystallinity index, with the OH shift becoming more distinct following SDS treatment. Birefringence imaging confirms the highly organized structure of CTPs, demonstrating varying degrees of anisotropy in different regions, including both seaward and cytosolic passages. The knockdown of a cellulose synthase enzyme in dinoflagellates resulted in severe malformation of CTPs and hindered the life-cycle transition. Unlike certain other microalgal groups, these unique circum-spherical depositions of CTPs were not pre-fabricated and transported "to site," but synthesized within alveolar sacs at the specific site. Our research is particularly focused on unraveling the mechanisms underlying the biodeposition of CTPs and exploring their potential biotechnological applications. Understanding the processes involved in CTP formation can pave the way for harnessing their unique properties for various practical applications. Dinoflagellates play a crucial role as major agents of algal blooms and are also known for producing anti-greenhouse sulfur compounds such as DMS/DMSP, highlighting the significance of CTPs as a carbon-neutral source of cellulose. Grant acknowledgement: Research in the laboratory are supported by GRF16104523 from Research Grant Council to JTYW.

Keywords: cellulosic thecal plates, dinoflagellates, cellulose, cell wall

Procedia PDF Downloads 103
713 Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition

Authors: Siri Marthe Arbo, Afaf Saai, Sture Sørli, Mette Nedreberg

Abstract:

This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels.

Keywords: duplex stainless steel, laser metal deposition, process optimization, microstructure, mechanical properties

Procedia PDF Downloads 218
712 Constitutive Flo1p Expression on Strains Bearing Deletions in Genes Involved in Cell Wall Biogenesis

Authors: Lethukuthula Ngobese, Abin Gupthar, Patrick Govender

Abstract:

The ability of yeast cell wall-derived mannoproteins (glycoproteins) to positively contribute to oenological properties has been a key factor that stimulates research initiatives into these industrially important glycoproteins. In addition, and from a fundamental research perspective, yeast cell wall glycoproteins are involved in a wide range of biological interactions. To date, and to the best of our knowledge, our understanding of the fine molecular structure of these mannoproteins is fairly limited. Generally, the amino acid sequences of their protein moieties have been established from structural and functional analysis of the genomic sequence of these yeasts whilst far less information is available on the glycosyl moieties of these mannoproteins. A novel strategy was devised in this study that entails the genetic engineering of yeast strains that over-express and release cell wall-associated glycoproteins into the liquid growth medium. To this end, the Flo1p mannoprotein was overexpressed in Saccharomyces cerevisiae laboratory strains bearing a specific deletion in KNR4 and GPI7 genes involved in cell wall biosynthesis that have been previously shown to extracellularly hyper-secrete cell wall-associated glycoproteins. A polymerase chain reaction (PCR) -based cloning strategy was employed to generate transgenic yeast strains in which the native cell wall FLO1 glycoprotein-encoding gene is brought under transcriptional control of the constitutive PGK1 promoter. The modified Helm’s flocculation assay was employed to assess flocculation intensities of a Flo1p over-expressing wild type and deletion mutant as an indirect measure of their abilities to release the desired mannoprotein. The flocculation intensities of the transformed strains were assessed and all the strains showed similar intensities (>98% flocculation). To assess if mannoproteins were released into the growth medium, the supernatant of each strain was subjected to the BCA protein assay and the transformed Δknr4 strain showed a considerable increase in protein levels. This study has the potential to produce mannoproteins in sufficient quantities that may be employed in future investigations to understand their molecular structures and mechanisms of interaction to the benefit of both fundamental and industrial applications.

Keywords: glycoproteins, genetic engineering, flocculation, over-expression

Procedia PDF Downloads 416
711 An Autonomous Space Debris-Removal System for Effective Space Missions

Authors: Shriya Chawla, Vinayak Malhotra

Abstract:

Space exploration has noted an exponential rise in the past two decades. The world has started probing the alternatives for efficient and resourceful sustenance along with utilization of advanced technology viz., satellites on earth. Space propulsion forms the core of space exploration. Of all the issues encountered, space debris has increasingly threatened the space exploration and propulsion. The efforts have resulted in the presence of disastrous space debris fragments orbiting the earth at speeds up to several kilometres per hour. Debris are well known as a potential damage to the future missions with immense loss of resources, mankind, and huge amount of money is invested in active research on them. Appreciable work had been done in the past relating to active space debris-removal technologies such as harpoon, net, drag sail. The primary emphasis is laid on confined removal. In recently, remove debris spacecraft was used for servicing and capturing cargo ships. Airbus designed and planned the debris-catching net experiment, aboard the spacecraft. The spacecraft represents largest payload deployed from the space station. However, the magnitude of the issue suggests that active space debris-removal technologies, such as harpoons and nets, still would not be enough. Thus, necessitating the need for better and operative space debris removal system. Techniques based on diverting the path of debris or the spacecraft to avert damage have turned out minimal usage owing to limited predictions. Present work focuses on an active hybrid space debris removal system. The work is motivated by the need to have safer and efficient space missions. The specific objectives of the work are 1) to thoroughly analyse the existing and conventional debris removal techniques, their working, effectiveness and limitations under varying conditions, 2) to understand the role of key controlling parameters in coupled operation of debris capturing and removal. The system represents the utilization of the latest autonomous technology available with an adaptable structural design for operations under varying conditions. The design covers advantages of most of the existing technologies while removing the disadvantages. The system is likely to enhance the probability of effective space debris removal. At present, systematic theoretical study is being carried out to thoroughly observe the effects of pseudo-random debris occurrences and to originate an optimal design with much better features and control.

Keywords: space exploration, debris removal, space crafts, space accidents

Procedia PDF Downloads 170
710 A Cognitive Training Program in Learning Disability: A Program Evaluation and Follow-Up Study

Authors: Krisztina Bohacs, Klaudia Markus

Abstract:

To author’s best knowledge we are in absence of studies on cognitive program evaluation and we are certainly short of programs that prove to have high effect sizes with strong retention results. The purpose of our study was to investigate the effectiveness of a comprehensive cognitive training program, namely BrainRx. This cognitive rehabilitation program target and remediate seven core cognitive skills and related systems of sub-skills through repeated engagement in game-like mental procedures delivered one-on-one by a clinician, supplemented by digital training. A larger sample of children with learning disability were given pretest and post-test cognitive assessments. The experimental group completed a twenty-week cognitive training program in a BrainRx center. A matched control group received another twenty-week intervention with Feuerstein’s Instrumental Enrichment programs. A second matched control group did not receive training. As for pre- and post-test, we used a general intelligence test to assess IQ and a computer-based test battery for assessing cognition across the lifespan. Multiple regression analyses indicated that the experimental BrainRx treatment group had statistically significant higher outcomes in attention, working memory, processing speed, logic and reasoning, auditory processing, visual processing and long-term memory compared to the non-treatment control group with very large effect sizes. With the exception of logic and reasoning, the BrainRx treatment group realized significantly greater gains in six of the above given seven cognitive measures compared to the Feuerstein control group. Our one-year retention measures showed that all the cognitive training gains were above ninety percent with the greatest retention skills in visual processing, auditory processing, logic, and reasoning. The BrainRx program may be an effective tool to establish long-term cognitive changes in case of students with learning disabilities. Recommendations are made for treatment centers and special education institutions on the cognitive training of students with special needs. The importance of our study is that targeted, systematic, progressively loaded and intensive brain training approach may significantly change learning disabilities.

Keywords: cognitive rehabilitation training, cognitive skills, learning disability, permanent structural cognitive changes

Procedia PDF Downloads 202
709 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
708 Biodeterioration of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

This chapter investigates the biodeterioration of parks in the UK caused by lichens, focusing on Campbell Park and Great Linford Manor Park in Milton Keynes. The study first isolates and identifies potent biodeteriogens responsible for potential biodeterioration in these parks, enumerating and recording different classes and genera of lichens known for their biodeteriorative properties. It then examines the implications of lichens on biodeterioration at historic sites within these parks, considering impacts on historic structures, the environment, and associated health risks. Conservation strategies and preventive measures are discussed before concluding.Lichens, characterized by their symbiotic association between a fungus and an alga, thrive on various surfaces including building materials, soil, rock, wood, and trees. The fungal component provides structure and protection, while the algal partner performs photosynthesis. Lichens collected from the park sites, such as Xanthoria, Cladonia, and Arthonia, were observed affecting the historic walls, objects, and trees. Their biodeteriorative impacts were visible to the naked eye, contributing to aesthetic and structural damage. The study highlights the role of lichens as bioindicators of pollution, sensitive to changes in air quality. The presence and diversity of lichens provide insights into the air quality and pollution levels in the parks. However, lichens also pose health risks, with certain species causing respiratory issues, allergies, skin irritation, and other toxic effects in humans and animals. Conservation strategies discussed include regular monitoring, biological and chemical control methods, physical removal, and preventive cleaning. The study emphasizes the importance of a multifaceted, multidisciplinary approach to managing lichen-induced biodeterioration. Future management practices could involve advanced techniques such as eco-friendly biocides and self-cleaning materials to effectively control lichen growth and preserve historic structures. In conclusion, this chapter underscores the dual role of lichens as agents of biodeterioration and indicators of environmental quality. Comprehensive conservation management approaches, encompassing monitoring, targeted interventions, and advanced conservation methods, are essential for preserving the historic and natural integrity of parks like Campbell Park and Great Linford Manor Park.

Keywords: biodeterioration, historic parks, algae, UK

Procedia PDF Downloads 36
707 Comparison of Cardiomyogenic Potential of Amniotic Fluid Mesenchymal Stromal Cells Derived from Normal and Isolated Congenital Heart Defective Fetuses

Authors: Manali Jain, Neeta Singh, Raunaq Fatima, Soniya Nityanand, Mandakini Pradhan, Chandra Prakash Chaturvedi

Abstract:

Isolated Congenital Heart Defect (ICHD) is the major cause of neonatal death worldwide among all forms of CHDs. A significant proportion of fetuses with ICHD die in the neonatal period if no treatment is provided. Recently, stem cell therapies have emerged as a potential approach to ameliorate ICHD in children. ICHD is characterized by cardiac structural abnormalities during embryogenesis due to alterations in the cardiomyogenic properties of a pool of cardiac progenitors/ stem cells associated with fetal heart development. The stem cells present in the amniotic fluid (AF) are of fetal origin and may reflect the physiological and pathological changes in the fetus during embryogenesis. Therefore, in the present study, the cardiomyogenic potential of AF-MSCs derived from fetuses with ICHD (ICHD AF-MSCs) has been evaluated and compared with that of AF-MSCs of structurally normal fetuses (normal AF-MSCs). Normal and ICHD AF-MSC were analyzed for the expression of cardiac progenitor markers viz., stage-specific embryonic antigen-1 (SSEA-1), vascular endothelial growth factor 2 (VEGFR-2) and platelet-derived growth factor receptor-alpha (PDGFR-α) by flow cytometry. The immunophenotypic characterization revealed that ICHD AF-MSCs have significantly lower expression of cardiac progenitor markers VEGFR-2 (0.14% ± 0.6 vs.48.80% ± 0.9; p <0.01), SSEA-1 (70.86% ± 2.4 vs. 88.36% ±2.7; p <0.01), and PDGFR-α (3.92% ± 1.8 vs. 47.59% ± 3.09; p <0.01) in comparison to normal AF-MSCs. Upon induction with 5’-azacytidine for 21 days, ICHD AF-MSCs showed a significantly down-regulated expression of cardiac transcription factors such as GATA-4 (0.4 ± 0.1 vs. 6.8 ± 1.2; p<0.01), ISL-1 (2.3± 0.6 vs. 14.3 ± 1.12; p<0.01), NK-x 2-5 (1.1 ± 0.3 vs. 14.1 ±2.8; p<0.01), TBX-5 (0.4 ± 0.07 vs. 4.4 ± 0.3; p<0.001), and TBX-18 (1.3 ± 0.2 vs. 4.19 ± 0.3; p<0.01) when compared with the normal AF-MSCs. Furthermore, immunocytochemical staining revealed that both types of AF-MSCs could differentiate into cardiovascular lineages and express cardiomyogenic, endothelial, and smooth muscle actin markers, viz., cardiac troponin (cTNT), CD31, and alpha-smooth muscle actin (α-SMA). However, normal AF-MSCs showed an enhanced expression of cTNT (p<0.001), CD31 (p<0.01), and α-SMA (p<0.05), compared to ICHD AF-MSCs. Overall, these results suggest that the ICHD-AF-MSCs have a defective cardiomyogenic differentiation potential and that the defects in these stem cells may have a role in the pathogenesis of ICHD.

Keywords: amniotic fluid, cardiomyogenic potential, isolated congenital heart defect, mesenchymal stem cells

Procedia PDF Downloads 103
706 2D Titanium, Vanadium Carbide Mxene, and Polyaniline Heterostructures for Electrochemical Energy Storage

Authors: Ayomide A. Sijuade, Nafiza Anjum

Abstract:

The rising demand to meet the need for clean and sustainable energy solutions has led the market to create effective energy storage technologies. In this study, we look at the possibility of using a heterostructure made of polyaniline (PANI), titanium carbide (Ti₃C₂), and vanadium carbide (V₂C) for energy storage devices. V₂C is a two-dimensional transition metal carbide with remarkable mechanical and electrical conductivity. Ti₃C2 has solid thermal conductivity and mechanical strength. PANI, on the other hand, is a conducting polymer with customizable electrical characteristics and environmental stability. Layer-by-layer assembly creates the heterostructure of V₂C, Ti₃C₂, and PANI, allowing for precise film thickness and interface quality control. Structural and morphological characterization is carried out using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. For energy storage applications, the heterostructure’s electrochemical performance is assessed. Electrochemical experiments, such as cyclic voltammetry and galvanostatic charge-discharge tests, examine the heterostructure’s charge storage capacity, cycle stability, and rate performance. Comparing the heterostructure to the individual components reveals better energy storage capabilities. V₂C, Ti₃C₂, and PANI synergize to increase specific capacitance, boost charge storage, and prolong cycling stability. The heterostructure’s unique arrangement of 2D materials and conducting polymers promotes effective ion diffusion and charge transfer processes, improving the effectiveness of energy storage. The heterostructure also exhibits remarkable electrochemical stability, which minimizes capacity loss after repeated cycling. The longevity and long-term dependability of energy storage systems depend on this quality. By examining the potential of V₂C, Ti₃C₂, and PANI heterostructures, the results of this study expand energy storage technology. These materials’ specialized integration and design show potential for use in hybrid energy storage systems, lithium-ion batteries, and supercapacitors. Overall, the development of high-performance energy storage devices utilizing V₂C, Ti₃C₂, and PANI heterostructures is clarified by this research, opening the door to the realization of effective, long-lasting, and eco-friendly energy storage solutions to satisfy the demands of the modern world.

Keywords: MXenes, energy storage materials, conductive polymers, composites

Procedia PDF Downloads 59
705 A Study of the Relationship among the Hotel Staff's Work Stress, Perceived Organizational Support, and Work Efficacy: A Case Study of Macao

Authors: Zhang Tao, Si Tang, Zhang Yufeng, Jin Jiahua

Abstract:

Work pressure is an emerging research of organizational behavior. Many factors associated with this study also attracted the interest of scholars. Macao is surrounding by open micro-capitalist economy which has a high internationalization level and Mature operation system. And there is no doubt that tourism and hotel service industry is the pillar of the Macao economy with the developing of the mainland individual tourist visa. More and more cities are willing to inclusive culture diversity which lead to the amount of inbound tourists present high-speed up trend cause the hotel industry has a strong customer base and development space. At the same time, the hotel staff is an important role in the service. However, affected by some adverse factors, the hotel staff face a variety of pressures. This study combs the concept and theory of pressures relevant influencing factors and puts forward the purpose of this research. The focus of this study will be organizational supported by work efficiency and work pressure, using qualitative and quantitative research methods. Through questionnaires and interviews, 10 hotels in Macao were selected and 500 questionnaires were distributed to the employees. Statistical analysis software SPSS was used for descriptive statistics. By exploratory factor analysis and confirmatory factor analysis, effect. And the relevant practitioners on behalf of the interview content analysis. The innovation of this research lies in the empirical study of the relationship between the working pressure, organizational support and working efficiency of Macau hotel practitioners, and constructs and validates the structural model of the relationship among them. This model will be helpful for people to use more research methods to study hotel practitioners pressure in the future. At the same time, we can draw the following conclusions: 1. There is a significant negative correlation between salary level and job stress; 2. There is a significant negative correlation between job stress and performance; 3. Different organizational support can interfere the relationship between job stress and performance; 4. Put forward the strategy of relevance adjustment, which provides a reference value for the hotel industry in human resource management. It would be helpful to improve their service standard by training their practitioners more scientifically and rationally.

Keywords: Macau, perceived organizational support, work stress, work efficiency

Procedia PDF Downloads 249
704 A Multi-Scale Study of Potential-Dependent Ammonia Synthesis on IrO₂ (110): DFT, 3D-RISM, and Microkinetic Modeling

Authors: Shih-Huang Pan, Tsuyoshi Miyazaki, Minoru Otani, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Ammonia (NH₃) is crucial in renewable energy and agriculture, yet its traditional production via the Haber-Bosch process faces challenges due to the inherent inertness of nitrogen (N₂) and the need for high temperatures and pressures. The electrocatalytic nitrogen reduction (ENRR) presents a more sustainable option, functioning at ambient conditions. However, its advancement is limited by selectivity and efficiency challenges due to the competing hydrogen evolution reaction (HER). The critical roles of protonation of N-species and HER highlight the necessity of selecting optimal catalysts and solvents to enhance ENRR performance. Notably, transition metal oxides, with their adjustable electronic states and excellent chemical and thermal stability, have shown promising ENRR characteristics. In this study, we use density functional theory (DFT) methods to investigate the ENRR mechanisms on IrO₂ (110), a material known for its tunable electronic properties and exceptional chemical and thermal stability. Employing the constant electrode potential (CEP) model, where the electrode - electrolyte interface is treated as a polarizable continuum with implicit solvation, and adjusting electron counts to equalize work functions in the grand canonical ensemble, we further incorporate the advanced 3D Reference Interaction Site Model (3D-RISM) to accurately determine the ENRR limiting potential across various solvents and pH conditions. Our findings reveal that the limiting potential for ENRR on IrO₂ (110) is significantly more favorable than for HER, highlighting the efficiency of the IrO₂ catalyst for converting N₂ to NH₃. This is supported by the optimal *NH₃ desorption energy on IrO₂, which enhances the overall reaction efficiency. Microkinetic simulations further predict a promising NH₃ production rate, even at the solution's boiling point¸ reinforcing the catalytic viability of IrO₂ (110). This comprehensive approach provides an atomic-level understanding of the electrode-electrolyte interface in ENRR, demonstrating the practical application of IrO₂ in electrochemical catalysis. The findings provide a foundation for developing more efficient and selective catalytic strategies, potentially revolutionizing industrial NH₃ production.

Keywords: density functional theory, electrocatalyst, nitrogen reduction reaction, electrochemistry

Procedia PDF Downloads 24
703 Investigation of Subsurface Structures within Bosso Local Government for Groundwater Exploration Using Magnetic and Resistivity Data

Authors: Adetona Abbassa, Aliyu Shakirat B.

Abstract:

The study area is part of Bosso local Government, enclosed within Longitude 6.25’ to 6.31’ and Latitude 9.35’ to 9.45’, an area of 16x8 km², within the basement region of central Nigeria. The region is a host to Nigerian Airforce base 12 (NAF 12quick response) and its staff quarters, the headquarters of Bosso local government, the Independent National Electoral Commission’s two offices, four government secondary schools, six primary schools and Minna international airport. The area suffers an acute shortage of water from November when rains stop to June when rains commence within North Central Nigeria. A way of addressing this problem is a reconnaissance method to delineate possible fractures and fault lines that exists within the region by sampling the Aeromagnetic data and using an appropriate analytical algorithm to delineate these fractures. This is followed by an appropriate ground truthing method that will confirm if the fracture is connected to underground water movement. The first vertical derivative for structural analysis, reveals a set of lineaments labeled AA’, BB’, CC’, DD’, EE’ and FF’ all trending in the Northeast – Southwest directions. AA’ is just below latitude 9.45’ above Maikunkele village, cutting off the upper part of the field, it runs through Kangwo, Nini, Lawo and other communities. BB’ is at Latitude 9.43’ it truncated at about 2Km before Maikunkele and Kuyi. CC’ is around 9.40’ sitting below Maikunkele runs down through Nanaum. DD’ is from Latitude 9.38’; interestingly no community within this region where the fault passes through. A result from the three sites where Vertical Electrical Sounding was carried out reveals three layers comprised of topsoil, intermediate Clay formation and weathered/fractured or fresh basement. The depth to basement map was also produced, depth to the basement from the ground surface with VES A₂, B5, D₂ and E₁ to be relatively deeper with depth values range between 25 to 35 m while the shallower region of the area has a depth range value between 10 to 20 m. Hence, VES A₂, A₅, B₄, B₅, C₂, C₄, D₄, D₅, E₁, E₃, and F₄ are high conductivity zone that are prolific for groundwater potential. The depth range of the aquifer potential zones is between 22.7 m to 50.4 m. The result from site C is quite unique though the 3 layers were detected in the majority of the VES points, the maximum depth to the basement in 90% of the VES points is below 8 km, only three VES points shows considerably viability, which are C₆, E₂ and F₂ with depths of 35.2 m and 38 m respectively but lack of connectivity will be a big challenge of chargeability.

Keywords: lithology, aeromagnetic, aquifer, geoelectric, iso-resistivity, basement, vertical electrical sounding(VES)

Procedia PDF Downloads 139
702 The Development and Change of Settlement in Tainan County (1904-2015) Using Historical Geographic Information System

Authors: Wei Ting Han, Shiann-Far Kung

Abstract:

In the early time, most of the arable land is dry farming and using rainfall as water sources for irrigation in Tainan county. After the Chia-nan Irrigation System (CIS) was completed in 1930, Chia-nan Plain was more efficient allocation of limited water sources or irrigation, because of the benefit from irrigation systems, drainage systems, and land improvement projects. The problem of long-term drought, flood and salt damage in the past were also improved by CIS. The canal greatly improved the paddy field area and agricultural output, Tainan county has become one of the important agricultural producing areas in Taiwan. With the development of water conservancy facilities, affected by national policies and other factors, many agricultural communities and settlements are formed indirectly, also promoted the change of settlement patterns and internal structures. With the development of historical geographic information system (HGIS), Academia Sinica developed the WebGIS theme with the century old maps of Taiwan which is the most complete historical map of database in Taiwan. It can be used to overlay historical figures of different periods, present the timeline of the settlement change, also grasp the changes in the natural environment or social sciences and humanities, and the changes in the settlements presented by the visualized areas. This study will explore the historical development and spatial characteristics of the settlements in various areas of Tainan County. Using of large-scale areas to explore the settlement changes and spatial patterns of the entire county, through the dynamic time and space evolution from Japanese rule to the present day. Then, digitizing the settlement of different periods to perform overlay analysis by using Taiwan historical topographic maps in 1904, 1921, 1956 and 1989. Moreover, using document analysis to analyze the temporal and spatial changes of regional environment and settlement structure. In addition, the comparison analysis method is used to classify the spatial characteristics and differences between the settlements. Exploring the influence of external environments in different time and space backgrounds, such as government policies, major construction, and industrial development. This paper helps to understand the evolution of the settlement space and the internal structural changes in Tainan County.

Keywords: historical geographic information system, overlay analysis, settlement change, Tainan County

Procedia PDF Downloads 130
701 Bibliometric Analysis of Risk Assessment of Inland Maritime Accidents in Bangladesh

Authors: Armana Huq, Wahidur Rahman, Sanwar Kader

Abstract:

Inland waterways in Bangladesh play an important role in providing comfortable and low-cost transportation. However, a maritime accident takes away many lives and creates unwanted hazards every year. This article deals with a comprehensive review of inland waterway accidents in Bangladesh. Additionally, it includes a comparative study between international and local inland research studies based on maritime accidents. Articles from inland waterway areas are analyzed in-depth to make a comprehensive overview of the nature of the academic work, accident and risk management process and different statistical analyses. It is found that empirical analysis based on the available statistical data dominates the research domain. For this study, major maritime accident-related works in the last four decades in Bangladesh (1981-2020) are being analyzed for preparing a bibliometric analysis. A study of maritime accidents of passenger's vessels during (1995-2005) indicates that the predominant causes of accidents in the inland waterways of Bangladesh are collision and adverse weather (77%), out of which collision due to human error alone stands (56%) of all accidents. Another study refers that the major causes of waterway accidents are the collision (60.3%) during 2005-2015. About 92% of this collision occurs due to direct contact with another vessel during this period. Rest 8% of the collision occurs by contact with permanent obstruction on waterway roots. The overall analysis of another study from the last 25 years (1995-2019) shows that one of the main types of accidents is collisions, with about 50.3% of accidents being caused by collisions. The other accident types are cyclone or storm (17%), overload (11.3%), physical failure (10.3%), excessive waves (5.1%), and others (6%). Very few notable works are available in testing or comparing the methods, proposing new methods for risk management, modeling, uncertainty treatment. The purpose of this paper is to provide an overview of the evolution of marine accident-related research domain regarding inland waterway of Bangladesh and attempts to introduce new ideas and methods to abridge the gap between international and national inland maritime-related work domain which can be a catalyst for a safer and sustainable water transportation system in Bangladesh. Another fundamental objective of this paper is to navigate various national maritime authorities and international organizations to implement risk management processes for shipping accident prevention in waterway areas.

Keywords: inland waterways, safety, bibliometric analysis, risk management, accidents

Procedia PDF Downloads 183
700 Effect of Dietary Organic Zinc Supplementation on Immunocompetance and Reproductive Performance in Rats

Authors: D. Nagalakshmi, S. Parashuramulu K. Sadasiva Rao, G. Aruna, L. Vikram

Abstract:

The zinc (Zn) is the second most abundant trace element in mammals and birds, forming structural component of over 300 enzymes, playing an important role in anti-oxidant defense, immune response and reproduction. Organic trace minerals are more readily absorbed from the digestive tract and more biologically available compared with its inorganic salt. Thus, the present study was undertaken on 60 adult female Sprague Dawley rats (275±2.04 g) for experimental duration of 12 weeks to investigate the effect of dietary Zn supplementation from various organic sources on immunity, reproduction, oxidative defense mechanism and blood biochemical profile. The rats were randomly allotted to 30 replicates (2 per replicate) which were in turn randomly allotted to 5 dietary treatments varying in Zn source i.e., one inorganic source (Zn carbonate) and 4 organic sources (Zn-proteinate, Zn-propionate, Zn-amino acid complex and Zn-methionine) so as to supply NRC recommended Zn concentration (12 ppm Zn). Supplementation of organic Zn had no effect on various haematological and serum biochemical constituents compared to inorganic Zn fed rats. The TBARS and protein carbonyls concentration in liver indicative of oxidative stress was comparable between various organic and inorganic groups. The glutathione reductase activity in haemolysate (P<0.05) and reduced glutathione concentration in liver (P<0.01) was higher when fed organic Zn and RBC catalase activity was higher (P<0.01) on Zn methionine compared to other organic sources tested and the inorganic source. The humoral immune response assessed as antibody titres against sheep RBC was higher (P<0.05) when fed organic sources of zinc compared to inorganic source. The cell mediated immune response expressed as delayed type hypersensitivity reaction was higher (P<0.05) in rats fed Zn propionate with no effect of other organic Zn sources. The serum progesterone concentration was higher (P<0.05) in rats fed organic Zn sources compared to inorganic zinc. The data on ovarian folliculogenesis indicated that organic Zn supplementation increased (P<0.05) the number of graafian follicles and corpus luteum with no effect on primary, secondary and tertiary follicle number. The study indicated that rats fed organic sources of Zn had higher antioxidant enzyme activities, immune response and serum progesterone concentration with higher number of mature follicles. Though the effect of feeding various organic sources were comparable, rats fed zinc methionine had higher antioxidant activity and cell mediated immune response was higher in rats on Zn propionate.

Keywords: organic zinc, immune, rats, reproductive

Procedia PDF Downloads 286
699 Disparities in Language Competence and Conflict: The Moderating Role of Cultural Intelligence in Intercultural Interactions

Authors: Catherine Peyrols Wu

Abstract:

Intercultural interactions are becoming increasingly common in organizations and life. These interactions are often the stage of miscommunication and conflict. In management research, these problems are commonly attributed to cultural differences in values and interactional norms. As a result, the notion that intercultural competence can minimize these challenges is widely accepted. Cultural differences, however, are not the only source of a challenge during intercultural interactions. The need to rely on a lingua franca – or common language between people who have different mother tongues – is another important one. In theory, a lingua franca can improve communication and ease coordination. In practice however, disparities in people’s ability and confidence to communicate in the language can exacerbate tensions and generate inefficiencies. In this study, we draw on power theory to develop a model of disparities in language competence and conflict in a multicultural work context. Specifically, we hypothesized that differences in language competence between interaction partners would be positively related to conflict such that people would report greater conflict with partners who have more dissimilar levels of language competence and lesser conflict with partners with more similar levels of language competence. Furthermore, we proposed that cultural intelligence (CQ) an intercultural competence that denotes an individual’s capability to be effective in intercultural situations, would weaken the relationship between disparities in language competence and conflict such that people would report less conflict with partners who have more dissimilar levels of language competence when the interaction partner has high CQ and more conflict when the partner has low CQ. We tested this model with a sample of 135 undergraduate students working in multicultural teams for 13 weeks. We used a round-robin design to examine conflict in 646 dyads nested within 21 teams. Results of analyses using social relations modeling provided support for our hypotheses. Specifically, we found that in intercultural dyads with large disparities in language competence, partners with the lowest level of language competence would report higher levels of interpersonal conflict. However, this relationship disappeared when the partner with higher language competence was also high in CQ. These findings suggest that communication in a lingua franca can be a source of conflict in intercultural collaboration when partners differ in their level of language competence and that CQ can alleviate these effects during collaboration with partners who have relatively lower levels of language competence. Theoretically, this study underscores the benefits of CQ as a complement to language competence for intercultural effectiveness. Practically, these results further attest to the benefits of investing resources to develop language competence and CQ in employees engaged in multicultural work.

Keywords: cultural intelligence, intercultural interactions, language competence, multicultural teamwork

Procedia PDF Downloads 166
698 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours

Authors: Fikret Yalcinkaya, Hamza Unsal

Abstract:

To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.

Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models

Procedia PDF Downloads 183
697 Applying the Quad Model to Estimate the Implicit Self-Esteem of Patients with Depressive Disorders: Comparing the Psychometric Properties with the Implicit Association Test Effect

Authors: Yi-Tung Lin

Abstract:

Researchers commonly assess implicit self-esteem with the Implicit Association Test (IAT). The IAT’s measure, often referred to as the IAT effect, indicates the strengths of automatic preferences for the self relative to others, which is often considered an index of implicit self-esteem. However, based on the Dual-process theory, the IAT does not rely entirely on the automatic process; it is also influenced by a controlled process. The present study, therefore, analyzed the IAT data with the Quad model, separating four processes on the IAT performance: the likelihood that automatic association is activated by the stimulus in the trial (AC); that a correct response is discriminated in the trial (D); that the automatic bias is overcome in favor of a deliberate response (OB); and that when the association is not activated, and the individual fails to discriminate a correct answer, there is a guessing or response bias drives the response (G). The AC and G processes are automatic, while the D and OB processes are controlled. The AC parameter is considered as the strength of the association activated by the stimulus, which reflects what implicit measures of social cognition aim to assess. The stronger the automatic association between self and positive valence, the more likely it will be activated by a relevant stimulus. Therefore, the AC parameter was used as the index of implicit self-esteem in the present study. Meanwhile, the relationship between implicit self-esteem and depression is not fully investigated. In the cognitive theory of depression, it is assumed that the negative self-schema is crucial in depression. Based on this point of view, implicit self-esteem would be negatively associated with depression. However, the results among empirical studies are inconsistent. The aims of the present study were to examine the psychometric properties of the AC (i.e., test-retest reliability and its correlations with explicit self-esteem and depression) and compare it with that of the IAT effect. The present study had 105 patients with depressive disorders completing the Rosenberg Self-Esteem Scale, Beck Depression Inventory-II and the IAT on the pretest. After at least 3 weeks, the participants completed the second IAT. The data were analyzed by the latent-trait multinomial processing tree model (latent-trait MPT) with the TreeBUGS package in R. The result showed that the latent-trait MPT had a satisfactory model fit. The effect size of test-retest reliability of the AC and the IAT effect were medium (r = .43, p < .0001) and small (r = .29, p < .01) respectively. Only the AC showed a significant correlation with explicit self-esteem (r = .19, p < .05). Neither of the two indexes was correlated with depression. Collectively, the AC parameter was a satisfactory index of implicit self-esteem compared with the IAT effect. Also, the present study supported the results that implicit self-esteem was not correlated with depression.

Keywords: cognitive modeling, implicit association test, implicit self-esteem, quad model

Procedia PDF Downloads 128
696 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 136