Search results for: logistic model tree
9801 Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density
Authors: S. Lahijanian, M. Mobli, B. Baninasab, N. Etemadi
Abstract:
Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures.Keywords: chlorophyll fluorescence, cold stress, ionic leakage, proline, stomatal density
Procedia PDF Downloads 2639800 New Forms of Living and Compatibility with the Three Ages of Life - Definition of Fundamental Design Characteristics for Intergenerational Mansions
Authors: Alessandra Marino
Abstract:
This paper thoroughly investigates the design characteristics necessary for intergenerational living and evaluates their applicability within the Italian social panorama in order to identify a model that can serve as a reference for subsequent regulatory adjustments of a new building typology. The applied methodology involves the collaboration of people with various background and architects, all representing the three main ages of life - childhood or youth, adulthood, seniority - through questionnaires aimed at researching the peculiar characteristics that contemporary intergenerational housing should include; the questionnaires are then compared with each other in order to identify any recurring patterns by age group and/or influenced by the specialist knowledge on the subject of the architects compared to the rest of the user sample. The results indicate that among specialist users in the field of architecture, young students identify home automation as the key to the inclusion of the weakest groups within the building, adult architects believe that the identification of intergenerational/community services within the building is the cornerstone, and senior architects focus on widespread spatial accessibility. At the same time, the results among non-specialist users do not identify a significantly diversified model by age group but are generally in agreement in the importance of separation between private environments and collective spaces. The interpretation of the results obtained leads to a compositional study of a new building typology with the future objective of channeling the subsequent outcomes within the regulatory adjustments of the sector.Keywords: intergenerational living, social sustainability, health, lifestyle, well-being
Procedia PDF Downloads 689799 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 1229798 Circular Economy in Social Practice in Response to Social Needs: Community Actions Versus Government Policy
Authors: Sai-Kit Choi
Abstract:
While traditional social services heavily depended on Government funding and support, there were always time lag, and resources mismatch with the fast growing and changing social needs. This study aims at investigating the effectiveness of implementing Circular Economy concept in a social service setting with comparison to Government Policy in response to social needs in 3 areas: response time, suitability, and community participation. To investigate the effectiveness of implementing Circular Economy concept in a social service setting, a real service model, a community resources sharing platform, was set up and statistics of the first 6 months’ operation data were used as comparison with traditional social services. Literature review was conducted as a reference basis of traditional social services under Government Policy. Case studies were conducted to provide the qualitative perspectives of the innovative approach. The results suggest that the Circular Economy model showed extraordinarily high level of community participation. In addition, it could utilize community resources in response precisely to the burning social needs. On the other hand, the available resources were unstable when comparing to those services supported by Government funding. The research team concluded that Circular Economy has high potential in applications in social service, especially in certain areas, such as resources sharing platform. Notwithstanding, it should be aware of the stability of resources when the services targeted to support some crucial needs.Keywords: circular economy, social innovation, community participation, sharing economy, social response
Procedia PDF Downloads 1119797 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria
Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List
Abstract:
Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM
Procedia PDF Downloads 3129796 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 1839795 Oriental Tradition, Taoism:A Critical Option for Peace Building Initiative in the Contemporary Society
Authors: Kingsley Okoro Nwannennaya
Abstract:
The 21st century seems to have been eclipsed by social conflict, giving vent to a mentality construct that accepts conflict as inextricable part of the social system. This is justified by the escalation of conflict in all the zones of the world. We therefore, query whether a peaceful society is a mere illusion? It is in an attempt to give lucid answer to this question that the researcher began critical investigations on various peace building and conflict management models. Here the researcher discovered that these models as good as they may be have not addressed the root of conflicts which revolves on the social structure in place in any society. Hence the current social structure is organized around class system, which gave birth to competition, greed, selfishness, power struggle etc. and also promotes mono-culture based on Euro-American traditions. This placed some cultures on a disadvantageous position, with conflict as its outgrowth. However, the researcher being interested to finding a peace building and conflict management model that will address this gap discovered that Taoism has the seed that can offer the world the desired peace. This tradition anchors on the principles of Tao, Yin-yang and Wu-wei. Basic to the trio concepts are the idea of Pluralism, non-interference, non-action and flowing with the order of nature. This paper, having adopted, historical and sociological methods of investigations opines that if Taoist tradition shall be adopted as a peace building model, the desired peace of our dream shall soon become a reality.Keywords: critical option, oriental traditions, peace initiative, taoism
Procedia PDF Downloads 4129794 Capnography in Hypoxic Pseudo-Pea May Correlate to the Amount of Required Intervention for Resuscitation
Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis
Abstract:
Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) has been studied in ventricular fibrillation and true PEA but in p-PEA. We utilized an hypoxic porcine model to characterize the performance of ET-CO2 in resuscitation from p-PEA. Hypothesis: Capnography correlates to the number of required interventions for resuscitation from p-PEA. Methods: Female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic aortic (Ao) pressure less than 40 mmHg. Pigs were grouped based on the interventions required to achieve ROSC: 100%O2, 100%O2 + CPR, 100%O2 + CPR + epinephrine. Results: End tidal CO2 reliably predicted O2 therapy vs CPR-based interventions needed for resuscitation (Figure 1). Pigs who would recover with 100%O2 only had a mean ET-CO2 slope of 0.039 ± 0.013 [ R2 = 0.68], those requiring oxygen + CPR had a slope of -0.15 ± 0.016 [R2 = 0.95], and those requiring oxygen + CPR + epinephrine had a slope of -0.12 ± 0.031 [R2 = 0.79]. Conclusions: In a porcine model of hypoxic p-PEA, measured ET-CO2 appears to be strongly correlated with the required interventions needed for ROSC. If confirmed clinically, these results indicate that ET-CO2 may be useful in guiding therapy in patients suffering p-PEA cardiac arrest.Keywords: pseudo-PEA, resuscitation, capnography, hypoxic pseudo-PEA
Procedia PDF Downloads 1949793 Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm
Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh
Abstract:
In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened.Keywords: dependent chance programming, genetic algorithm, minimum deviation method, order allocation, supplier selection
Procedia PDF Downloads 2549792 Cross-Country Mitigation Policies and Cross Border Emission Taxes
Authors: Massimo Ferrari, Maria Sole Pagliari
Abstract:
Pollution is a classic example of economic externality: agents who produce it do not face direct costs from emissions. Therefore, there are no direct economic incentives for reducing pollution. One way to address this market failure would be directly taxing emissions. However, because emissions are global, governments might as well find it optimal to wait let foreign countries to tax emissions so that they can enjoy the benefits of lower pollution without facing its direct costs. In this paper, we first document the empirical relation between pollution and economic output with static and dynamic regression methods. We show that there is a negative relation between aggregate output and the stock of pollution (measured as the stock of CO₂ emissions). This relationship is also highly non-linear, increasing at an exponential rate. In the second part of the paper, we develop and estimate a two-country, two-sector model for the US and the euro area. With this model, we aim at analyzing how the public sector should respond to higher emissions and what are the direct costs that these policies might have. In the model, there are two types of firms, brown firms (which produce a polluting technology) and green firms. Brown firms also produce an externality, CO₂ emissions, which has detrimental effects on aggregate output. As brown firms do not face direct costs from polluting, they do not have incentives to reduce emissions. Notably, emissions in our model are global: the stock of CO₂ in the economy affects all countries, independently from where it is produced. This simplified economy captures the main trade-off between emissions and production, generating a classic market failure. According to our results, the current level of emission reduces output by between 0.4 and 0.75%. Notably, these estimates lay in the upper bound of the distribution of those delivered by studies in the early 2000s. To address market failure, governments should step in introducing taxes on emissions. With the tax, brown firms pay a cost for polluting hence facing the incentive to move to green technologies. Governments, however, might also adopt a beggar-thy-neighbour strategy. Reducing emissions is costly, as moves production away from the 'optimal' production mix of brown and green technology. Because emissions are global, a government could just wait for the other country to tackle climate change, ripping the benefits without facing any costs. We study how this strategic game unfolds and show three important results: first, cooperation is first-best optimal from a global prospective; second, countries face incentives to deviate from the cooperating equilibria; third, tariffs on imported brown goods (the only retaliation policy in case of deviation from the cooperation equilibrium) are ineffective because the exchange rate would move to compensate. We finally study monetary policy under when costs for climate change rise and show that the monetary authority should react stronger to deviations of inflation from its target.Keywords: climate change, general equilibrium, optimal taxation, monetary policy
Procedia PDF Downloads 1589791 Traditional Industries Innovation and Brand Value Analysis in Taiwan: Case Study of a Certain Plastic Company
Authors: Ju Shan Lin
Abstract:
The challenges for traditional industries in Taiwan the past few years are the changes of overall domestic and foreign industry structure, the entrepreneurs not only need to keep on improving their profession skills but also continuously research and develop new products. It is also necessary for the all traditional industries to keep updating the business strategy, let the enterprises continue to progress, and won't be easily replaced by the other industries. The traditional industry in Taiwan attach great importance to the field of enterprises upgrading and innovation in recent years, by the enterprise innovation and transformation can enhance the overall business situation also enable them to obtain more additional profits than in the past. Except the original industry structure's need to transform and upgrade, the brand's business and marketing strategy are also essential. This study will take a certain plastic company as case analysis, for the brand promotion of traditional industries, brand values and business innovation model for further exploration. It will also be mentioned that the other traditional industries cases which were already achieved success on the enterprise's upgrading and innovation, at the same time, the difficulties which they faced with and the way they overcome will be explored as well. This study will use the case study method combined with expert interviews to discuss and analyze this certain plastic company's current business situation, the existing products and the possible trends in the future. Looking forward to providing an innovative business model that will enable this plastic company to upgrade its corporate image and the brand could transform successfully.Keywords: brand marketing strategy, enterprise upgrade, industrial transformation, traditional industry
Procedia PDF Downloads 2389790 Determinants of the Users Intention of Social-Local-Mobile Applications
Authors: Chia-Chen Chen, Mu-Yen Chen
Abstract:
In recent years, with the vigorous growth of hardware and software technologies of smart mobile devices coupling with the rapid increase of social network influence, mobile commerce also presents the commercial operation mode of the future mainstream. For the time being, SoLoMo has become one of the very popular commercial models, its full name and meaning mainly refer to that users can obtain three key service types through smart mobile devices (Mobile) and omnipresent network services, and then link to the social (Social) web site platform to obtain the information exchange, again collocating with position and situational awareness technology to get the service suitable for the location (Local), through anytime, anywhere and any personal use of different mobile devices to provide the service concept of seamless integration style, and more deriving infinite opportunities of the future. The study tries to explore the use intention of users with SoLoMo mobile application formula, proposing research model to integrate TAM, ISSM, IDT and network externality, and with questionnaires to collect data and analyze results to verify the hypothesis, results show that perceived ease-of-use (PEOU), perceived usefulness (PU), and network externality have significant impact on the use intention with SoLoMo mobile application formula, and the information quality, relative advantages and observability have impacts on the perceived usefulness, and further affecting the use intention.Keywords: SoLoMo (social, local, and mobile), technology acceptance model, innovation diffusion theory, network externality
Procedia PDF Downloads 5289789 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM
Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei
Abstract:
In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank
Procedia PDF Downloads 1849788 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland
Authors: Raptis Sotirios
Abstract:
Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services
Procedia PDF Downloads 2299787 Virtual Metrology for Copper Clad Laminate Manufacturing
Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho
Abstract:
In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology
Procedia PDF Downloads 3499786 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education
Authors: Felix Golla
Abstract:
In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies
Procedia PDF Downloads 689785 Stakeholder Perception in the Role of Short-term Accommodations on the Place Brand and Real Estate Development of Urban Areas: A Case Study of Malate, Manila
Authors: Virgilio Angelo Gelera Gener
Abstract:
This study investigates the role of short-term accommodations on the place brand and real estate development of urban areas. It aims to know the perceptions of the general public, real estate developers, as well as city and barangay-level local government units (LGUs) on how these lodgings affect the place brand and land value of a community. It likewise attempts to identify the personal and institutional variables having a great influence on said perceptions in order to provide a better understanding of these establishments and their relevance within urban localities. Using certain sources, Malate, Manila was identified to be the ideal study area of the thesis. This prompted the employment of mixed methods research as the study’s fundamental data gathering and analytical tool. Here, a survey with 350 locals was done, asking them questions that would answer the aforementioned queries. Thereafter, a Pearson Chi-square Test and Multinomial Logistic Regression (MLR) were utilized to determine the variables affecting their perceptions. There were also Focus Group Discussions (FGDs) with the three (3) most populated Malate barangays, as well as Key Informant Interviews (KIIs) with selected city officials and fifteen (15) real estate company representatives. With that, survey results showed that although a 1992 Department of Tourism (DOT) Circular regards short-term accommodations as lodgings mainly for travelers, most people actually use it for their private/intimate moments. Because of this, the survey further revealed that short-term accommodations exhibit a negative place brand among the respondents though they also believe that it’s still one of society’s most important economic players. Statistics from the Pearson Chi-square Test, on the other hand, indicate that there are fourteen (14) out of seventeen (17) variables exhibiting great influence on respondents’ perceptions. Whereas MLR findings show that being born in Malate and being part of a family household was the most significant regardless of socio-economic level and monthly household income. For the city officials, it was revealed that said lodgings are actually the second-highest earners in the City’s lodging industry. It was further stated that their zoning ordinance treats short-term accommodations just like any other lodging enterprise. So it’s perfectly legal for these establishments to situate themselves near residential areas and/or institutional structures. A sit down with barangays, on the other hand, recognized the economic benefits of short-term accommodations but likewise admitted that it contributes a negative place brand to the community. Lastly, real estate developers are amenable to having their projects built near short-term accommodations, for they do not have any bad views against it. They explained that their projects sites have always been motivated by suitability, liability, and marketability factors only. Overall, these findings merit a recalibration of the zoning ordinance and DOT Circular, as well as the imposition of regulations on their sexually suggestive roadside advertisements. Then, once relevant measures are refined for proper implementation, it can also pave the way for spatial interventions (like visual buffer corridors) to better address the needs of the locals, private groups, and government.Keywords: estate planning, place brand, real estate development, short-term accommodations
Procedia PDF Downloads 1639784 Modeling of Combustion Process in the Piston Aircraft Engine Using a MCFM-3Z Model
Authors: Marcin Szlachetka, Konrad Pietrykowski
Abstract:
Modeling of a combustion process in a 9-cylinder aircraft engine is presented. The simulations of the combustion process in the IC engine have provided the information on the spatial and time distributions of selected quantities within the combustion chamber of the engine. The numerical analysis results have been compared with the results of indication process of the engine on the test stand. Modeling of combustion process an auto-ignited IC engine in the AVL Fire was carried out within the study. For the calculations, a ECFM-3Z model was used. Verification of simulation results was carried out by comparison of the pressure in the cylinder. The courses of indicated pressure, obtained from the simulations and during the engine tests mounted on a test stand were compared. The engine was braked by the propeller, which results in an adequate external power characteristics. The test object is a modified ASz-62IR engine with the injection system. The engine was running at take-off power. To check the optimum ignition timing regarding power, calculations, tests were performed for 7 different moments of ignition. The analyses of temperature distribution in the cylinder depending on the moments of ignition were carried out. Additional the course of pressure in the cylinder at different angles of ignition delays of the second spark plug were examined. The swirling of the mixture in the combustion chamber was also analysed. It has been shown that the largest vortexes occur in the middle of the chamber, and gets smaller, closer to the combustion chamber walls. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: CFD, combustion, internal combustion engine, aircraft engine
Procedia PDF Downloads 3709783 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation
Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras
Abstract:
The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation
Procedia PDF Downloads 1499782 An Application of Fuzzy Analytical Network Process to Select a New Production Base: An AEC Perspective
Authors: Walailak Atthirawong
Abstract:
By the end of 2015, the Association of Southeast Asian Nations (ASEAN) countries proclaim to transform into the next stage of an economic era by having a single market and production base called ASEAN Economic Community (AEC). One objective of the AEC is to establish ASEAN as a single market and one production base making ASEAN highly competitive economic region and competitive with new mechanisms. As a result, it will open more opportunities to enterprises in both trade and investment, which offering a competitive market of US$ 2.6 trillion and over 622 million people. Location decision plays a key role in achieving corporate competitiveness. Hence, it may be necessary for enterprises to redesign their supply chains via enlarging a new production base which has low labor cost, high labor skill and numerous of labor available. This strategy will help companies especially for apparel industry in order to maintain a competitive position in the global market. Therefore, in this paper a generic model for location selection decision for Thai apparel industry using Fuzzy Analytical Network Process (FANP) is proposed. Myanmar, Vietnam and Cambodia are referred for alternative location decision from interviewing expert persons in this industry who have planned to enlarge their businesses in AEC countries. The contribution of this paper lies in proposing an approach model that is more practical and trustworthy to top management in making a decision on location selection.Keywords: apparel industry, ASEAN Economic Community (AEC), Fuzzy Analytical Network Process (FANP), location decision
Procedia PDF Downloads 2359781 Analyses for Primary Coolant Pump Coastdown Phenomena for Jordan Research and Training Reactor
Authors: Yazan M. Alatrash, Han-ok Kang, Hyun-gi Yoon, Shen Zhang, Juhyeon Yoon
Abstract:
Flow coastdown phenomena are very important to secure nuclear fuel integrity during loss of off-site power accidents. In this study, primary coolant flow coastdown phenomena are investigated for the Jordan Research and Training Reactor (JRTR) using a simulation software package, Modular Modelling System (MMS). Two MMS models are built. The first one is a simple model to investigate the characteristics of the primary coolant pump only. The second one is a model for a simulation of the Primary Coolant System (PCS) loop, in which all the detailed design data of the JRTR PCS system are modelled, including the geometrical arrangement data. The same design data for a PCS pump are used for both models. Coastdown curves obtained from the two models are compared to study the PCS loop coolant inertia effect on a flow coastdown. Results showed that the loop coolant inertia effect is found to be small in the JRTR PCS loop, i.e., about one second increases in a coastdown half time required to halve the coolant flow rate. The effects of different flywheel inertia on the flow coastdown are also investigated. It is demonstrated that the coastdown half time increases with the flywheel inertia linearly. The designed coastdown half time is proved to be well above the design requirement for the fuel integrity.Keywords: flow coastdown, loop inertia, modelling, research reactor
Procedia PDF Downloads 5009780 Using the Technological, Pedagogical, and Content Knowledge (TPACK) Model to Address College Instructors Weaknesses in Integration of Technology in Their Current Area Curricula
Authors: Junior George Martin
Abstract:
The purpose of this study was to explore college instructors’ integration of technology in their content area curriculum. The instructors indicated that they were in need of additional training to successfully integrate technology in their subject areas. The findings point to the implementation of a proposed the Technological, Pedagogical, and Content Knowledge (TPACK) model professional development workshop to satisfactorily address the weaknesses of the instructors in technology integration. The professional development workshop is proposed as a rational solution to adequately address the instructors’ inability to the successful integration of technology in their subject area in an effort to improve their pedagogy. The intense workshop would last for 5 days and will be designed to provide instructors with training in areas such as a use of technology applications and tools, and using modern methodologies to improve technology integration. Exposing the instructors to the specific areas identified will address the weaknesses they demonstrated during the study. Professional development is deemed the most appropriate intervention based on the opportunities it provides the instructors to access hands-on training to overcome their weaknesses. The purpose of the TPACK professional development workshop will be to improve the competence of the instructors so that they are adequately prepared to integrate technology successfully in their curricula. At the end of the period training, the instructors are expected to adopt strategies that will have a positive impact on the learning experiences of the students.Keywords: higher education, modern technology tools, professional development, technology integration
Procedia PDF Downloads 3109779 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions
Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini
Abstract:
This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing
Procedia PDF Downloads 1469778 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 1119777 Detection of High Fructose Corn Syrup in Honey by Near Infrared Spectroscopy and Chemometrics
Authors: Mercedes Bertotto, Marcelo Bello, Hector Goicoechea, Veronica Fusca
Abstract:
The National Service of Agri-Food Health and Quality (SENASA), controls honey to detect contamination by synthetic or natural chemical substances and establishes and controls the traceability of the product. The utility of near-infrared spectroscopy for the detection of adulteration of honey with high fructose corn syrup (HFCS) was investigated. First of all, a mixture of different authentic artisanal Argentinian honey was prepared to cover as much heterogeneity as possible. Then, mixtures were prepared by adding different concentrations of high fructose corn syrup (HFCS) to samples of the honey pool. 237 samples were used, 108 of them were authentic honey and 129 samples corresponded to honey adulterated with HFCS between 1 and 10%. They were stored unrefrigerated from time of production until scanning and were not filtered after receipt in the laboratory. Immediately prior to spectral collection, honey was incubated at 40°C overnight to dissolve any crystalline material, manually stirred to achieve homogeneity and adjusted to a standard solids content (70° Brix) with distilled water. Adulterant solutions were also adjusted to 70° Brix. Samples were measured by NIR spectroscopy in the range of 650 to 7000 cm⁻¹. The technique of specular reflectance was used, with a lens aperture range of 150 mm. Pretreatment of the spectra was performed by Standard Normal Variate (SNV). The ant colony optimization genetic algorithm sample selection (ACOGASS) graphical interface was used, using MATLAB version 5.3, to select the variables with the greatest discriminating power. The data set was divided into a validation set and a calibration set, using the Kennard-Stone (KS) algorithm. A combined method of Potential Functions (PF) was chosen together with Partial Least Square Linear Discriminant Analysis (PLS-DA). Different estimators of the predictive capacity of the model were compared, which were obtained using a decreasing number of groups, which implies more demanding validation conditions. The optimal number of latent variables was selected as the number associated with the minimum error and the smallest number of unassigned samples. Once the optimal number of latent variables was defined, we proceeded to apply the model to the training samples. With the calibrated model for the training samples, we proceeded to study the validation samples. The calibrated model that combines the potential function methods and PLSDA can be considered reliable and stable since its performance in future samples is expected to be comparable to that achieved for the training samples. By use of Potential Functions (PF) and Partial Least Square Linear Discriminant Analysis (PLS-DA) classification, authentic honey and honey adulterated with HFCS could be identified with a correct classification rate of 97.9%. The results showed that NIR in combination with the PT and PLS-DS methods can be a simple, fast and low-cost technique for the detection of HFCS in honey with high sensitivity and power of discrimination.Keywords: adulteration, multivariate analysis, potential functions, regression
Procedia PDF Downloads 1249776 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)
Authors: Pukhtoon Yar
Abstract:
Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City
Procedia PDF Downloads 1859775 Efficient Mercury Sorbent: Activated Carbon and Metal Organic Framework Hybrid
Authors: Yongseok Hong, Kurt Louis Solis
Abstract:
In the present study, a hybrid sorbent using the metal organic framework (MOF), UiO-66, and powdered activated carbon (pAC) is synthesized to remove cationic and anionic metals simultaneously. UiO-66 is an octahedron-shaped MOF with a Zr₆O₄(OH)₄ metal node and 1,4-benzene dicarboxylic acid (BDC) organic linker. Zr-based MOFs are attractive for trace element remediation in wastewaters, because Zr is relatively non-toxic as compared to other classes of MOF and, therefore, it will not cause secondary pollution. Most remediation studies with UiO-66 target anions such as fluoride, but trace element oxyanions such as arsenic, selenium, and antimony have also been investigated. There have also been studies involving mercury removal by UiO-66 derivatives, however these require post-synthetic modifications or have lower effective surface areas. Activated carbon is known for being a readily available, well-studied, effective adsorbent for metal contaminants. Solvothermal method was employed to prepare hybrid sorbent from UiO66 and activated carbon, which could be used to remove mercury and selenium simultaneously. The hybrid sorbent was characterized using FSEM-EDS, FT-IR, XRD, and TGA. The results showed that UiO66 and activated carbon are successfully composited. From BET studies, the hybrid sorbent has a SBET of 1051 m² g⁻¹. Adsorption studies were performed, where the hybrid showed maximum adsorption of 204.63 mg g⁻¹ and 168 mg g⁻¹ for Hg (II) and selenite, respectively, and follows the Langmuir model for both species. Kinetics studies have revealed that the Hg uptake of the hybrid is pseudo-2nd order and has rate constant of 5.6E-05 g mg⁻¹ min⁻¹ and the selenite uptake follows the simplified Elovich model with α = 2.99 mg g⁻¹ min⁻¹, β = 0.032 g mg⁻¹.Keywords: adsorption, flue gas wastewater, mercury, selenite, metal organic framework
Procedia PDF Downloads 1749774 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy
Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi
Abstract:
Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA
Procedia PDF Downloads 1009773 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese
Abstract:
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system
Procedia PDF Downloads 5109772 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese
Abstract:
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system
Procedia PDF Downloads 461