Search results for: chemical solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9374

Search results for: chemical solution

1184 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning

Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga

Abstract:

Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.

Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter

Procedia PDF Downloads 201
1183 Barriers of the Development and Implementation of Health Information Systems in Iran

Authors: Abbas Sheikhtaheri, Nasim Hashemi

Abstract:

Health information systems have great benefits for clinical and managerial processes of health care organizations. However, identifying and removing constraints and barriers of implementing and using health information systems before any implementation is essential. Physicians are one of the main users of health information systems, therefore, identifying the causes of their resistance and concerns about the barriers of the implementation of these systems is very important. So the purpose of this study was to determine the barriers of the development and implementation of health information systems in terms of the Iranian physicians’ perspectives. In this study conducted in 8 selected hospitals affiliated to Tehran and Iran Universities of Medical Sciences, Tehran, Iran in 2014, physicians (GPs, residents, interns, specialists) in these hospitals were surveyed. In order to collect data, a research made questionnaire was used (Cronbach’s α = 0.95). The instrument included 25 about organizational (9), personal (4), moral and legal (3) and technical barriers (9). Participants were asked to answer the questions using 5 point scale Likert (completely disagree=1 to completely agree=5). By using a simple random sampling method, 200 physicians (from 600) were invited to study that eventually 163 questionnaires were returned. We used mean score and t-test and ANOVA to analyze the data using SPSS software version 17. 52.1% of respondents were female. The mean age was 30.18 ± 7.29. The work experience years for most of them were between 1 to 5 years (80.4 percent). The most important barriers were organizational ones (3.4 ± 0.89), followed by ethical (3.18 ± 0.98), technical (3.06 ± 0.8) and personal (3.04 ± 1.2). Lack of easy access to a fast Internet (3.67±1.91) and the lack of exchanging information (3.61±1.2) were the most important technical barriers. Among organizational barriers, the lack of efficient planning for the development and implementation systems (3.56±1.32) and was the most important ones. Lack of awareness and knowledge of health care providers about the health information systems features (3.33±1.28) and the lack of physician participation in planning phase (3.27±1.2) as well as concerns regarding the security and confidentiality of health information (3.15 ± 1.31) were the most important personal and ethical barriers, respectively. Women (P = 0.02) and those with less experience (P = 0.002) were more concerned about personal barriers. GPs also were more concerned about technical barriers (P = 0.02). According to the study, technical and ethics barriers were considered as the most important barriers however, lack of awareness in target population is also considered as one of the main barriers. Ignoring issues such as personal and ethical barriers, even if the necessary infrastructure and technical requirements were provided, may result in failure. Therefore, along with the creating infrastructure and resolving organizational barriers, special attention to education and awareness of physicians and providing solution for ethics concerns are necessary.

Keywords: barriers, development health information systems, implementation, physicians

Procedia PDF Downloads 333
1182 Utilizing Topic Modelling for Assessing Mhealth App’s Risks to Users’ Health before and during the COVID-19 Pandemic

Authors: Pedro Augusto Da Silva E Souza Miranda, Niloofar Jalali, Shweta Mistry

Abstract:

BACKGROUND: Software developers utilize automated solutions to scrape users’ reviews to extract meaningful knowledge to identify problems (e.g., bugs, compatibility issues) and possible enhancements (e.g., users’ requests) to their solutions. However, most of these solutions do not consider the health risk aspects to users. Recent works have shed light on the importance of including health risk considerations in the development cycle of mHealth apps to prevent harm to its users. PROBLEM: The COVID-19 Pandemic in Canada (and World) is currently forcing physical distancing upon the general population. This new lifestyle made the usage of mHealth applications more essential than ever, with a projected market forecast of 332 billion dollars by 2025. However, this new insurgency in mHealth usage comes with possible risks to users’ health due to mHealth apps problems (e.g., wrong insulin dosage indication due to a UI error). OBJECTIVE: These works aim to raise awareness amongst mHealth developers of the importance of considering risks to users’ health within their development lifecycle. Moreover, this work also aims to help mHealth developers with a Proof-of-Concept (POC) solution to understand, process, and identify possible health risks to users of mHealth apps based on users’ reviews. METHODS: We conducted a mixed-method study design. We developed a crawler to mine the negative reviews from two samples of mHealth apps (my fitness, medisafe) from the Google Play store users. For each mHealth app, we performed the following steps: • The reviews are divided into two groups, before starting the COVID-19 (reviews’ submission date before 15 Feb 2019) and during the COVID-19 (reviews’ submission date starts from 16 Feb 2019 till Dec 2020). For each period, the Latent Dirichlet Allocation (LDA) topic model was used to identify the different clusters of reviews based on similar topics of review The topics before and during COVID-19 are compared, and the significant difference in frequency and severity of similar topics are identified. RESULTS: We successfully scraped, filtered, processed, and identified health-related topics in both qualitative and quantitative approaches. The results demonstrated the similarity between topics before and during the COVID-19.

Keywords: natural language processing (NLP), topic modeling, mHealth, COVID-19, software engineering, telemedicine, health risks

Procedia PDF Downloads 119
1181 Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India

Authors: Tanu Sharma, Bikramjit Singh Bajwa, Inderpreet Kaur

Abstract:

Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater.

Keywords: uranium, trace elements, multivariate data analysis, risk assessment

Procedia PDF Downloads 63
1180 Development of a New Margarine Added Date Seed Oil: Characteristics and Chemical Composition of Date Seed Oil

Authors: Hamitri-Guerfi Fatiha, Madani Khodir, Hadjal Samir, Kati Djamel, Youyou Ahcene

Abstract:

Date palm (Phoenix dactylifera) is a principal fruit that is grown in many regions of the world, resulting in a surplus production of dates. Algeria is considered to be one of the date producing countries. Date seeds (pits) have been a problem to the date industry as a waste stream. However, finding a way to make a profit on the pits would benefit date farmers substantially. This work concentrated on the valorization of date seed oils. A preliminary study was carried out on three varieties (soft, half soft, and dry) and we selected the dry variety. This work concerns the valorization of the date seed oil of the dry variety: ‘Mech Degla’ by its incorporation in a food formulation: margarine of table. Lipid extraction was carried out by hot extraction with the soxhlet; the extracts obtained are rich in fat contents, the results gave outputs of 13.21±0.21 %. The antioxidant activity of extracted oils was studied by the test of DPPH, the content polyphenols as well as the anti-radicalaire activity. The analysis of fatty acids was made by CPG. Thus, it comes out from our results that the recovered fat contents are interesting and considerable. A formulation of the margarine ‘BIO’ was elaborated on the scale industrialist by the addition of the extracts of date seeds ‘Mech-Degla’ oil in order to substitute a synthetic additive. The physicochemical characteristics of the elaborate margarines prove to be in conformity with the standards set by the Algerian companies. The texture of the elaborate margarine has an acceptable color, an aspect brilliant and homogeneous, it is plastic and easy to paste having an index of required SFC and the margarine melts easily in the mouth. Moreover, the evaluation of oxidative stability is carried out by the test of Rancimat. The result obtained reported that the margarine enriched with date seed oil, proved more resistant to oxidation, than the margarine without extract, which is improved much during incorporation of the extracts simultaneously. By conclusion, considering the content of polyphénols noted in the two extracts (aqueous and oily), we can exhort the scientific community to become aware of the treasures of our country especially the wonders of the south which are the dates and theirs under products (pits).

Keywords: antioxydant activity, date seed oil, quality characteristics, margarine

Procedia PDF Downloads 400
1179 Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Hekmat R. Madian, Sherif A. El-Safty, Mohamed A. Shenashen

Abstract:

After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation.

Keywords: silicone antifouling, environmentally friendly, nanocomposites, nanofillers, fouling repellency, hydrophobicity

Procedia PDF Downloads 90
1178 The Use of Food Industry Bio-Products for Sustainable Lactic Acid Bacteria Encapsulation

Authors: Paulina Zavistanaviciute, Vita Krungleviciute, Elena Bartkiene

Abstract:

Lactic acid bacteria (LAB) are microbial supplements that increase the nutritional, therapeutic, and safety value of food and feed. Often LAB strains are incubated in an expensive commercially available de Man-Rogosa-Sharpe (MRS) medium; the cultures are centrifuged, and the cells are washing with sterile water. Potato juice and apple juice industry bio-products are industrial wastes which may constitute a source of digestible nutrients for microorganisms. Due to their low cost and good chemical composition, potato juice and apple juice production bio- products could have a potential application in LAB encapsulation. In this study, pure LAB (P. acidilactici and P. pentosaceus) were multiplied in a crushed potato juice and apple juice industry bio-products medium. Before using, bio-products were sterilized and filtered. No additives were added to mass, except apple juice industry bioproducts were diluted with sterile water (1/5; v/v). The tap of sterilised mass, and LAB cell suspension (5 mL), containing of 8.9 log10 colony-forming units (cfu) per mL of the P. acidilactici and P. pentosaceus was used to multiply the LAB for 72 h. The final colony number in the potato juice and apple juice bio- products substrate was on average 9.60 log10 cfu/g. In order to stabilize the LAB, several methods of dehydration have been tested: lyophilisation (MilrockKieffer Lane, Kingston, USA) and dehydration in spray drying system (SD-06, Keison, Great Britain). Into the spray drying system multiplied LAB in a crushed potato juice and apple juice bio-products medium was injected in peristaltic way (inlet temperature +60 °C, inlet air temperature +150° C, outgoing air temperature +80 °C, air flow 200 m3/h). After lyophilisation (-48 °C) and spray drying (+150 °C) the viable cell concentration in the fermented potato juice powder was 9.18 ± 0.09 log10 cfu/g and 9.04 ± 0.07 log10 cfu/g, respectively, and in apple mass powder 8.03 ± 0.04 log10 cfu/g and 7.03 ± 0.03 log10 cfu/g, respectively. Results indicated that during the storage (after 12 months) at room temperature (22 +/- 2 ºC) LAB count in dehydrated products was 5.18 log10 cfu/g and 7.00 log10 cfu/g (in spray dried and lyophilized potato juice powder, respectively), and 3.05 log10 cfu/g and 4.10 log10 cfu/g (in spray dried and lyophilized apple juice industry bio-products powder, respectively). According to obtained results, potato juice could be used as alternative substrate for P. acidilactici and P. pentosaceus cultivation, and by drying received powders can be used in food/feed industry as the LAB starters. Therefore, apple juice industry by- products before spray drying and lyophilisation should be modified (i. e. by using different starches) in order to improve its encapsulation.

Keywords: bio-products, encapsulation, lactic acid bacteria, sustainability

Procedia PDF Downloads 265
1177 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells

Authors: Brahim Aissa

Abstract:

Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.

Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties

Procedia PDF Downloads 141
1176 Application of Lattice Boltzmann Method to Different Boundary Conditions in a Two Dimensional Enclosure

Authors: Jean Yves Trepanier, Sami Ammar, Sagnik Banik

Abstract:

Lattice Boltzmann Method has been advantageous in simulating complex boundary conditions and solving for fluid flow parameters by streaming and collision processes. This paper includes the study of three different test cases in a confined domain using the method of the Lattice Boltzmann model. 1. An SRT (Single Relaxation Time) approach in the Lattice Boltzmann model is used to simulate Lid Driven Cavity flow for different Reynolds Number (100, 400 and 1000) with a domain aspect ratio of 1, i.e., square cavity. A moment-based boundary condition is used for more accurate results. 2. A Thermal Lattice BGK (Bhatnagar-Gross-Krook) Model is developed for the Rayleigh Benard convection for both test cases - Horizontal and Vertical Temperature difference, considered separately for a Boussinesq incompressible fluid. The Rayleigh number is varied for both the test cases (10^3 ≤ Ra ≤ 10^6) keeping the Prandtl number at 0.71. A stability criteria with a precise forcing scheme is used for a greater level of accuracy. 3. The phase change problem governed by the heat-conduction equation is studied using the enthalpy based Lattice Boltzmann Model with a single iteration for each time step, thus reducing the computational time. A double distribution function approach with D2Q9 (density) model and D2Q5 (temperature) model are used for two different test cases-the conduction dominated melting and the convection dominated melting. The solidification process is also simulated using the enthalpy based method with a single distribution function using the D2Q5 model to provide a better understanding of the heat transport phenomenon. The domain for the test cases has an aspect ratio of 2 with some exceptions for a square cavity. An approximate velocity scale is chosen to ensure that the simulations are within the incompressible regime. Different parameters like velocities, temperature, Nusselt number, etc. are calculated for a comparative study with the existing works of literature. The simulated results demonstrate excellent agreement with the existing benchmark solution within an error limit of ± 0.05 implicates the viability of this method for complex fluid flow problems.

Keywords: BGK, Nusselt, Prandtl, Rayleigh, SRT

Procedia PDF Downloads 116
1175 Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines

Authors: V. Radulescu, S. Dumitru

Abstract:

Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).

Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow

Procedia PDF Downloads 151
1174 Study of Growth Behavior of Some Bacterial Fish Pathogens to Combined Selected Herbal Essential Oil

Authors: Ashkan Zargar, Ali Taheri Mirghaed, Zein Talal Barakat, Alireza Khosravi, Hamed Paknejad

Abstract:

With the increase of bacterial resistance to the chemical antibiotics, replacing it with ecofriendly herbal materials and with no adverse effects in the host body is very important. Therefore, in this study, the effect of combined essential oil (Thymus vulgaris-Origanum magorana and Ziziphora clinopodioides) on the growth behavior of Yersinia ruckeri, Aeromonas hydrophila and Lactococcus garvieae was evaluated. The compositions of the herbal essential oils used in this study were determined by gas chromatography-mass spectrometry (GC-MS) while, the investigating of antimicrobial effects was conducted by the agar-disc diffusion method, determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and bacterial growth curves determination relied on optical density (OD) at 630 nm. The main compounds were thymol (40.60 %) and limonene (15.98 %) for Thymus vulgaris while carvacrol (57.86 %) and thymol (13.54 %) were the major compounds in Origanum magorana. As regards Ziziphora clinopodiodes, α-pinene (22.6 %) and carvacrol (21.1 %) represented the major constituents. Concerning Yersinia ruckeri, disc-diffusion results showed that t.O.z (50 % Origanum majorana) combined essential oil was presented the best inhibition zone (30.66 mm) but it was exhibited no significant differences with other tested commercial antibiotics except oxytetracycline (P <0/05). The inhibitory activity and the bactericidal effect of the t.O.z, unveiled by the MIC= 0.2 μL /mL and MBC= 1.6 μL /mL values, were clearly the best between all combined oils. The growth behaviour of Yersinia ruckeri was affected by this combined essential oil and changes in temperature and pH conditions affected herbal oil performance. As regard Aeromonas hydrophila, its results were so similar to Yersinia ruckeri results and t.O.z (50 % Origanum majorana) was the best between all combined oils (inhibition zone= 26 mm, MIC= 0.4 μL /mL and MBC= 3.2 μL /mL, combined essential oil was affected bacterial growth behavior). Also for Lactococcus garvieae, t.O.z (50 % Origanum majorana) was the best between all combined oils having the best inhibition zone= 20.66 mm, MIC= 0.8 μL /mL and MBC= 1.6 μL /mL and best effect on inhibiting bacterial growth. Combined herbal essential oils have a good and noticeable effect on the growth behavior of pathogenic bacteria in the laboratory, and by continuing research in the host, they may be a suitable alternative to control, prevent and treat diseases caused by these bacteria.

Keywords: bacterial pathogen, herbal medicine, growth behavior, fish

Procedia PDF Downloads 56
1173 Obtainment of Systems with Efavirenz and Lamellar Double Hydroxide as an Alternative for Solubility Improvement of the Drug

Authors: Danilo A. F. Fontes, Magaly A. M.Lyra, Maria L. C. Moura, Leslie R. M. Ferraz, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim, Giovanna C. R. M. Schver, Ping I. Lee, Severino Alves-Júnior, José L. Soares-Sobrinho, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a first-choice drug in antiretroviral therapy with high efficacy in the treatment of infection by Human Immunodeficiency Virus, which causes Acquired Immune Deficiency Syndrome (AIDS). EFV has low solubility in water resulting in a decrease in the dissolution rate and, consequently, in its bioavailability. Among the technological alternatives to increase solubility, the Lamellar Double Hydroxides (LDH) have been applied in the development of systems with poorly water-soluble drugs. The use of analytical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR) and Differential Scanning Calorimetry (DSC) allowed the elucidation of drug interaction with the lamellar compounds. The objective of this work was to characterize and develop the binary systems with EFV and LDH in order to increase the solubility of the drug. The LDH-CaAl was synthesized by the method of co-precipitation from salt solutions of calcium nitrate and aluminum nitrate in basic medium. The systems EFV-LDH and their physical mixtures (PM) were obtained at different concentrations (5-60% of EFV) using the solvent technique described by Takahashi & Yamaguchi (1991). The characterization of the systems and the PM’s was performed by XRD techniques, IR, DSC and dissolution test under non-sink conditions. The results showed improvements in the solubility of EFV when associated with LDH, due to a possible change in its crystal structure and formation of an amorphous material. From the DSC results, one could see that the endothermic peak at 173°C, temperature that correspond to the melting process of EFZ in the crystal form, was present in the PM results. For the EFZ-LDH systems (with 5, 10 and 30% of drug loading), this peak was not observed. XRD profiles of the PM showed well-defined peaks for EFV. Analyzing the XRD patterns of the systems, it was found that the XRD profiles of all the systems showed complete attenuation of the characteristic peaks of the crystalline form of EFZ. The IR technique showed that, in the results of the PM, there was the appearance of one band and overlap of other bands, while the IR results of the systems with 5, 10 and 30% drug loading showed the disappearance of bands and a few others with reduced intensity. The dissolution test under non-sink conditions showed that systems with 5, 10 and 30% drug loading promoted a great increase in the solubility of EFV, but the system with 10% of drug loading was the only one that could keep substantial amount of drug in solution at different pHs.

Keywords: Efavirenz, Lamellar Double Hydroxides, Pharmaceutical Techonology, Solubility

Procedia PDF Downloads 563
1172 Diversification of Indonesian Terasi Shrimp (Acetes indicus) Powder as Alternative and Sustainable Food for the Double Burden of Malnutrition

Authors: Galuh Asri Bestari, Hajar Shofiyya

Abstract:

Double burden of malnutrition (DBM) has been a global problem in these last decades occurs in both developed and developing countries. Overweight in adults and stunting among preschool children have dramatically increased and become the main problems of malnutrition that should be solved immediately since they are directly related with the health status and productivity. Reformulation of food product by using the local sea resources called terasi shrimp (Acetes indicus) has a potential possibility in facing the DBM. A study was carried out in Indonesia to determine the acceptability of terasi shrimp powder through sensory evaluation. Terasi shrimps were processed into powder form through sun drying and pounding methods. The powder form was directly added in food as alternative seasonings and tested among stunted and normal preschool children. Meanwhile, a further processing method is given to the shrimp powder tested in overweight and normal-weighed adults. The shrimp powder was mixed with sago flour and formed into balls, then steamed for 15-20 minutes, and finally served as alternative snacks. Based on the sensory evaluation, the shrimp powder has a good acceptance in taste (54%), shape (60%), and color properties (63%), while the shrimp balls has a good acceptance in size (65%), shape (50%), color (48%), taste (40%), and texture (36%). Terasi shrimp powder can be stored for a month in room temperature. In addition, carried out chemical analysis revealed that terasi shrimp (Acetes indicus) has higher percentage of protein, calcium, and iron than other animal sources, but conversely contains zero sodium and very low percentage of fat. Terasi shrimp’s shell also contains a substance called chitosan which acts by forming gels in the intestinal tract to entrap lipids, thus interfering with their absorption. After going through some processing methods, the shrimp powder and balls did not show any significant changes in their nutrient contents. So that, terasi shrimp powder is good to be consumed not only by overweight adults, but also by children to support their optimum growth. Intervention of terasi shrimp powder should be implemented step by step from national up to global governance program to face the DBM.

Keywords: Acetes indicus, alternative food, double burden of malnutrition, sensory evaluation

Procedia PDF Downloads 293
1171 Nanofiltration Membranes with Deposyted Polyelectrolytes: Caracterisation and Antifouling Potential

Authors: Viktor Kochkodan

Abstract:

The main problem arising upon water treatment and desalination using pressure driven membrane processes such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis is membrane fouling that seriously hampers the application of the membrane technologies. One of the main approaches to mitigate membrane fouling is to minimize adhesion interactions between a foulant and a membrane and the surface coating of the membranes with polyelectrolytes seems to be a simple and flexible technique to improve the membrane fouling resistance. In this study composite polyamide membranes NF-90, NF-270, and BW-30 were modified using electrostatic deposition of polyelectrolyte multilayers made from various polycationic and polyanionic polymers of different molecular weights. Different anionic polyelectrolytes such as: poly(sodium 4-styrene sulfonate), poly(vinyl sulfonic acid, sodium salt), poly(4-styrene sulfonic acid-co-maleic acid) sodium salt, poly(acrylic acid) sodium salt (PA) and cationic polyelectrolytes such as poly(diallyldimethylammonium chloride), poly(ethylenimine) and poly(hexamethylene biguanide were used for membrane modification. An effect of deposition time and a number of polyelectrolyte layers on the membrane modification has been evaluated. It was found that degree of membrane modification depends on chemical nature and molecular weight of polyelectrolytes used. The surface morphology of the prepared composite membranes was studied using atomic force microscopy. It was shown that the surface membrane roughness decreases significantly as a number of the polyelectrolyte layers on the membrane surface increases. This smoothening of the membrane surface might contribute to the reduction of membrane fouling as lower roughness most often associated with a decrease in surface fouling. Zeta potentials and water contact angles on the membrane surface before and after modification have also been evaluated to provide addition information regarding membrane fouling issues. It was shown that the surface charge of the membranes modified with polyelectrolytes could be switched between positive and negative after coating with a cationic or an anionic polyelectrolyte. On the other hand, the water contact angle was strongly affected when the outermost polyelectrolyte layer was changed. Finally, a distinct difference in the performance of the noncoated membranes and the polyelectrolyte modified membranes was found during treatment of seawater in the non-continuous regime. A possible mechanism of the higher fouling resistance of the modified membranes has been discussed.

Keywords: contact angle, membrane fouling, polyelectrolytes, surface modification

Procedia PDF Downloads 239
1170 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation

Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari

Abstract:

Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.

Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite

Procedia PDF Downloads 6
1169 A Review of Digital Twins to Reduce Emission in the Construction Industry

Authors: Zichao Zhang, Yifan Zhao, Samuel Court

Abstract:

The carbon emission problem of the traditional construction industry has long been a pressing issue. With the growing emphasis on environmental protection and advancement of science and technology, the organic integration of digital technology and emission reduction has gradually become a mainstream solution. Among various sophisticated digital technologies, digital twins, which involve creating virtual replicas of physical systems or objects, have gained enormous attention in recent years as tools to improve productivity, optimize management and reduce carbon emissions. However, the relatively high implementation costs including finances, time, and manpower associated with digital twins have limited their widespread adoption. As a result, most of the current applications are primarily concentrated within a few industries. In addition, the creation of digital twins relies on a large amount of data and requires designers to possess exceptional skills in information collection, organization, and analysis. Unfortunately, these capabilities are often lacking in the traditional construction industry. Furthermore, as a relatively new concept, digital twins have different expressions and usage methods across different industries. This lack of standardized practices poses a challenge in creating a high-quality digital twin framework for construction. This paper firstly reviews the current academic studies and industrial practices focused on reducing greenhouse gas emissions in the construction industry using digital twins. Additionally, it identifies the challenges that may be encountered during the design and implementation of a digital twin framework specific to this industry and proposes potential directions for future research. This study shows that digital twins possess substantial potential and significance in enhancing the working environment within the traditional construction industry, particularly in their ability to support decision-making processes. It proves that digital twins can improve the work efficiency and energy utilization of related machinery while helping this industry save energy and reduce emissions. This work will help scholars in this field to better understand the relationship between digital twins and energy conservation and emission reduction, and it also serves as a conceptual reference for practitioners to implement related technologies.

Keywords: digital twins, emission reduction, construction industry, energy saving, life cycle, sustainability

Procedia PDF Downloads 75
1168 Ultrastructural Characterization of Lipid Droplets of Rat Hepatocytes after Whole Body 60-Cobalt Gamma Radiation

Authors: Ivna Mororó, Lise P. Labéjof, Stephanie Ribeiro, Kely Almeida

Abstract:

Lipid droplets (LDs) are normally presented in greater or lesser number in the cytoplasm of almost all eukaryotic and some prokaryotic cells. They are independent organelles composed of a lipid ester core and a surface phospholipid monolayer. As a lipid storage form, they provide an available source of energy for the cell. Recently it was demonstrated that they play an important role in other many cellular processes. Among the many unresolved questions about them, it is not even known how LDs is formed, how lipids are recruited to LDs and how they interact with the other organelles. Excess fat in the organism is pathological and often associated with the development of some genetic, hormonal or behavioral diseases. The formation and accumulation of lipid droplets in the cytoplasm can be increased by exogenous physical or chemical agents. It is well known that ionizing radiation affects lipid metabolism resulting in increased lipogenesis in cells, but the details of this process are unknown. To better understand the mode of formation of LDs in liver cells, we investigate their ultrastructural morphology after irradiation. For that, Wistar rats were exposed to whole body gamma radiation from 60-cobalt at various single doses. Samples of the livers were processed for analysis under a conventional transmission electron microscope. We found that when compared to controls, morphological changes in liver cells were evident at the higher doses of radiation used. It was detected a great number of lipid droplets of different sizes and homogeneous content and some of them merged each other. In some cells, it was observed diffused LDs, not limited by a monolayer of phospholipids. This finding suggests that the phospholipid monolayer of the LDs was disrupted by ionizing radiation exposure that promotes lipid peroxydation of endo membranes. Thus the absence of the phospholipid monolayer may prevent the realization of some cellular activities as follow: - lipid exocytosis which requires the merging of LDs membrane with the plasma membrane; - the interaction of LDs with other membrane-bound organelles such as the endoplasmic reticulum (ER), the golgi and mitochondria and; - lipolysis of lipid esters contained in the LDs which requires the presence of enzymes located in membrane-bound organelles as ER. All these impediments can contribute to lipid accumulation in the cytoplasm and the development of diseases such as liver steatosis, cirrhosis and cancer.

Keywords: radiobiology, hepatocytes, lipid metabolism, transmission electron microscopy

Procedia PDF Downloads 300
1167 Preliminary Studies of Antibiofouling Properties in Wrinkled Hydrogel Surfaces

Authors: Mauricio A. Sarabia-Vallejos, Carmen M. Gonzalez-Henriquez, Adolfo Del Campo-Garcia, Aitzibier L. Cortajarena, Juan Rodriguez-Hernandez

Abstract:

In this study, it was explored the formation and the morphological differences between wrinkled hydrogel patterns obtained via generation of surface instabilities. The slight variations in the polymerization conditions produce important changes in the material composition and pattern structuration. The compounds were synthesized using three main components, i.e. an amphiphilic monomer, hydroxyethyl methacrylate (HEMA), a hydrophobic monomer, trifluoroethyl methacrylate (TFMA), and a hydrophilic crosslinking agent, poly(ethylene glycol) diacrylate (PEGDA). The first part of this study was related to the formation of wrinkled surfaces using only HEMA and PEGDA and varying the amount of water added in the reaction. The second part of this study involves the gradual insertion of TFMA into the hydrophilic reaction mixture. Interestingly, the manipulation of the chemical composition of this hydrogel affects both surface morphology and physicochemical characteristics of the patterns, inducing transitions from one particular type of structure (wrinkles or ripples) to different ones (creases, folds, and crumples). Contact angle measurements show that the insertion of TFMA produces a slight decrease in surface wettability of the samples, remaining however highly hydrophilic (contact angle below 45°). More interestingly, by using confocal Raman spectroscopy, important information about the wrinkle formation mechanism is obtained. The procedure involving two consecutive thermal and photopolymerization steps lead to a “pseudo” two-layer system. Thus, upon photopolymerization, the surface is crosslinked to a higher extent than the bulk and water evaporation drives the formation of wrinkled surfaces. Finally, cellular, and bacterial proliferation studies were performed to the samples, showing that the amount of TFMA included in each sample slightly affects the proliferation of both (bacteria and cells), but in the case of bacteria, the morphology of the sample also plays an important role, importantly reducing the bacterial proliferation.

Keywords: antibiofouling properties, hydrophobic/hydrophilic balance, morphologic characterization, wrinkled hydrogel patterns

Procedia PDF Downloads 146
1166 Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method

Authors: Nur Azilina Abdul Aziz, Tuti Katrina Abdullah, Ahmad Azmin Mohamad

Abstract:

Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform.

Keywords: cathode material, LiCoO2, lithium-ion rechargeable batteries, Sol-Gel method

Procedia PDF Downloads 359
1165 Flexible Current Collectors for Printed Primary Batteries

Authors: Vikas Kumar

Abstract:

Portable batteries are reliable source of mobile energy to power smart wearable electronics, medical devices, communications, and others internet of thing (IoT) devices. There is a continuous increase in demand for thinner, more flexible battery with high energy density and reliability to meet the requirement. For a flexible battery, factors that affect these properties are the stability of current collectors, electrode materials and their interfaces with the corrosive electrolytes. State-of-the-art conventional and flexible batteries utilise carbon as an electrode and current collectors which cause high internal resistance (~100 ohms) and limit the peak current to ~1mA. This makes them unsuitable for a wide range of applications. Replacing the carbon parts with metallic components would reduce the internal resistance (and hence reduce parasitic loss), but significantly increases the risk of corrosion due to galvanic interactions within the battery. To overcome these challenges, low cost electroplated nickel (Ni) on copper (Cu) was studied as a potential anode current collector for a zinc-manganese oxide primary battery with different concentration of NH4Cl/ZnCl2 electrolyte. Using electrical impedance spectroscopy (EIS), we monitored the open circuit potential (OCP) of electroplated nickel (different thicknesses) in different concentration of electrolytes to optimise the thickness of Ni coating. Our results show that electroless Ni coating suffer excessive corrosion in these electrolytes. Corrosion rates of Ni coatings for different concentrations of electrolytes have been calculated with Tafel analysis. These results suggest that for electroplated Ni, channelling and/or open porosity is a major issue, which was confirmed by morphological analysis. These channels are an easy pathway for electrolyte to penetrate thorough Ni to corrode the Ni/Cu interface completely. We further investigated the incorporation of a special printed graphene layer on Ni to provide corrosion protection in this corrosive electrolyte medium. We find that the incorporation of printed graphene layer provides the corrosion protection to the Ni and enhances the chemical bonding between the active materials and current collector and also decreases the overall internal resistance of the battery system.

Keywords: corrosion, electrical impedance spectroscopy, flexible battery, graphene, metal current collector

Procedia PDF Downloads 114
1164 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage

Authors: Pranjali Sharma, Swati Neogi

Abstract:

Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.

Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance

Procedia PDF Downloads 135
1163 Guidelines for the Management Process Development of Research Journals in Order to Develop Suan Sunandha Rajabhat University to International Standards

Authors: Araya Yordchim, Rosjana Chandhasa, Suwaree Yordchim

Abstract:

This research aims to study guidelines on the development of management process for research journals in order to develop Suan Sunandha Rajabhat University to international standards. This research investigated affecting elements ranging from the format of the article, evaluation form for research article quality, the process of creating a scholarly journal, satisfaction level of those with knowledge and competency to conduct research, arisen problems, and solutions. Drawing upon the sample size of 40 persons who had knowledge and competency in conducting research and creating scholarly journal articles at an international level, the data for this research were collected using questionnaires as a tool. Through the usage of computer software, data were analyzed by using the statistics in the forms of frequency, percentage, mean, standard deviation, and multiple regression analysis. The majority of participants were civil servants with a doctorate degree, followed by civil servants with a master's degree. Among them, the suitability of the article format was rated at a good level while the evaluation form for research articles quality was assessed at a good level. Based on participants' viewpoints, the process of creating scholarly journals was at a good level, while the satisfaction of those who had knowledge and competency in conducting research was at a satisfactory level. The problems encountered were the difficulty in accessing the website. The solution to the problem was to develop a website with user-friendly accessibility, including setting up a Google scholar profile for the purpose of references counting and the articles being used for reference in real-time. Research article format influenced the level of satisfaction of those who had the knowledge and competency to conduct research with statistical significance at the 0.01 level. The research article quality assessment form (preface section, research article writing section, preparation for research article manuscripts section, and the original article evaluation form for the author) affected the satisfaction of those with knowledge and competency to conduct research with the statistical significance at the level of 0.01. The process of establishing journals had an impact on the satisfaction of those with knowledge and ability to conduct research with statistical significance at the level of .05

Keywords: guidelines, development of management, research journals, international standards

Procedia PDF Downloads 115
1162 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics

Procedia PDF Downloads 62
1161 Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water

Authors: Feleke Terefe Fanta

Abstract:

The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent.

Keywords: waste water, copper doped zeolite x, adsorption heavy metal, disinfection

Procedia PDF Downloads 61
1160 Structuring Highly Iterative Product Development Projects by Using Agile-Indicators

Authors: Guenther Schuh, Michael Riesener, Frederic Diels

Abstract:

Nowadays, manufacturing companies are faced with the challenge of meeting heterogeneous customer requirements in short product life cycles with a variety of product functions. So far, some of the functional requirements remain unknown until late stages of the product development. A way to handle these uncertainties is the highly iterative product development (HIP) approach. By structuring the development project as a highly iterative process, this method provides customer oriented and marketable products. There are first approaches for combined, hybrid models comprising deterministic-normative methods like the Stage-Gate process and empirical-adaptive development methods like SCRUM on a project management level. However, almost unconsidered is the question, which development scopes can preferably be realized with either empirical-adaptive or deterministic-normative approaches. In this context, a development scope constitutes a self-contained section of the overall development objective. Therefore, this paper focuses on a methodology that deals with the uncertainty of requirements within the early development stages and the corresponding selection of the most appropriate development approach. For this purpose, internal influencing factors like a company’s technology ability, the prototype manufacturability and the potential solution space as well as external factors like the market accuracy, relevance and volatility will be analyzed and combined into an Agile-Indicator. The Agile-Indicator is derived in three steps. First of all, it is necessary to rate each internal and external factor in terms of the importance for the overall development task. Secondly, each requirement has to be evaluated for every single internal and external factor appropriate to their suitability for empirical-adaptive development. Finally, the total sums of internal and external side are composed in the Agile-Indicator. Thus, the Agile-Indicator constitutes a company-specific and application-related criterion, on which the allocation of empirical-adaptive and deterministic-normative development scopes can be made. In a last step, this indicator will be used for a specific clustering of development scopes by application of the fuzzy c-means (FCM) clustering algorithm. The FCM-method determines sub-clusters within functional clusters based on the empirical-adaptive environmental impact of the Agile-Indicator. By means of the methodology presented in this paper, it is possible to classify requirements, which are uncertainly carried out by the market, into empirical-adaptive or deterministic-normative development scopes.

Keywords: agile, highly iterative development, agile-indicator, product development

Procedia PDF Downloads 230
1159 Achieving Household Electricity Saving Potential Through Behavioral Change

Authors: Lusi Susanti, Prima Fithri

Abstract:

The rapid growth of Indonesia population is directly proportional to the energy needs of the country, but not all of Indonesian population can relish the electricity. Indonesia's electrification ratio is still around 80.1%, which means that approximately 19.9% of households in Indonesia have not been getting the flow of electrical energy. Household electricity consumptions in Indonesia are generally still dominated by the public urban. In the city of Padang, West Sumatera, Indonesia, about 94.10% are power users of government services (PLN). The most important thing of the issue is human resources efficient energy. User behavior in utilizing electricity becomes significant. However repair solution will impact the user's habits sustainable energy issues. This study attempts to identify the user behavior and lifestyle that affect household electricity consumption and to evaluate the potential for energy saving. The behavior component is frequently underestimated or ignored in analyses of household electrical energy end use, partly because of its complexity. It is influenced by socio-demographic factors, culture, attitudes, aesthetic norms and comfort, as well as social and economic variables. Intensive questioner survey, in-depth interview and statistical analysis are carried out to collect scientific evidences of the behavioral based changes instruments to reduce electricity consumption in household sector. The questioner was developed to include five factors assuming affect the electricity consumption pattern in household sector. They are: attitude, energy price, household income, knowledge and other determinants. The survey was carried out in Padang, West Sumatra Province Indonesia. About 210 questioner papers were proportionally distributed to households in 11 districts in Padang. Stratified sampling was used as a method to select respondents. The results show that the household size, income, payment methods and size of house are factors affecting electricity saving behavior in residential sector. Household expenses on electricity are strongly influenced by gender, type of job, level of education, size of house, income, payment method and level of installed power. These results provide a scientific evidence for stakeholders on the potential of controlling electricity consumption and designing energy policy by government in residential sector.

Keywords: electricity, energy saving, household, behavior, policy

Procedia PDF Downloads 425
1158 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms

Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova

Abstract:

The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.

Keywords: bioregions, ecological monitoring, phytoplankton, remote sensing

Procedia PDF Downloads 250
1157 Nanoparticles-Protein Hybrid-Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: nanoparticles-protein hybrid, magnetic liposome, medical, pharmaceutical science

Procedia PDF Downloads 238
1156 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 80
1155 In vitro Evaluation of Capsaicin Patches for Transdermal Drug Delivery

Authors: Alija Uzunovic, Sasa Pilipovic, Aida Sapcanin, Zahida Ademovic, Berina Pilipović

Abstract:

Capsaicin is a naturally occurring alkaloid extracted from capsicum fruit extracts of different of Capsicum species. It has been employed topically to treat many diseases such as rheumatoid arthritis, osteoarthritis, cancer pain and nerve pain in diabetes. The high degree of pre-systemic metabolism of intragastrical capsaicin and the short half-life of capsaicin by intravenous administration made topical application of capsaicin advantageous. In this study, we have evaluated differences in the dissolution characteristics of capsaicin patch 11 mg (purchased from market) at different dissolution rotation speed. The proposed patch area is 308 cm2 (22 cm x 14 cm; it contains 36 µg of capsaicin per square centimeter of adhesive). USP Apparatus 5 (Paddle Over Disc) is used for transdermal patch testing. The dissolution study was conducted using USP apparatus 5 (n=6), ERWEKA DT800 dissolution tester (paddle-type) with addition of a disc. The fabricated patch of 308 cm2 is to be cut into 9 cm2 was placed against a disc (delivery side up) retained with the stainless-steel screen and exposed to 500 mL of phosphate buffer solution pH 7.4. All dissolution studies were carried out at 32 ± 0.5 °C and different rotation speed (50± 5; 100± 5 and 150± 5 rpm). 5 ml aliquots of samples were withdrawn at various time intervals (1, 4, 8 and 12 hours) and replaced with 5 ml of dissolution medium. Withdrawn were appropriately diluted and analyzed by reversed-phase liquid chromatography (RP-LC). A Reversed Phase Liquid Chromatography (RP-LC) method has been developed, optimized and validated for the separation and quantitation of capsaicin in a transdermal patch. The method uses a ProntoSIL 120-3-C18 AQ 125 x 4,0 mm (3 μm) column maintained at 600C. The mobile phase consisted of acetonitrile: water (50:50 v/v), the flow rate of 0.9 mL/min, the injection volume 10 μL and the detection wavelength 222 nm. The used RP-LC method is simple, sensitive and accurate and can be applied for fast (total chromatographic run time was 4.0 minutes) and simultaneous analysis of capsaicin and dihydrocapsaicin in a transdermal patch. According to the results obtained in this study, we can conclude that the relative difference of dissolution rate of capsaicin after 12 hours was elevated by increase of dissolution rotation speed (100 rpm vs 50 rpm: 84.9± 11.3% and 150 rpm vs 100 rpm: 39.8± 8.3%). Although several apparatus and procedures (USP apparatus 5, 6, 7 and a paddle over extraction cell method) have been used to study in vitro release characteristics of transdermal patches, USP Apparatus 5 (Paddle Over Disc) could be considered as a discriminatory test. would be able to point out the differences in the dissolution rate of capsaicin at different rotation speed.

Keywords: capsaicin, in vitro, patch, RP-LC, transdermal

Procedia PDF Downloads 213