Search results for: groundwater flow and contaminant transport modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10166

Search results for: groundwater flow and contaminant transport modeling

2036 Post-Secondary Faculty Treatment of Non-Native English-Speaking Student Writing Errors in Academic Subject Courses

Authors: Laura E. Monroe

Abstract:

As more non-native English-speaking students enroll in English-medium universities, even more faculty will instruct students who are unprepared for the rigors of post-secondary academic writing in English. Many faculty members lack training and knowledge regarding the assessment of non-native English-speaking students’ writing, as well as the ability to provide effective feedback. This quantitative study investigated the possible attitudinal factors, including demographics, which might affect faculty preparedness and grading practices for both native and non-native English-speaking students’ academic writing and plagiarism, as well as the reasons faculty do not deduct points from both populations’ writing errors. Structural equation modeling and SPSS Statistics were employed to analyze the results of a faculty questionnaire disseminated to individuals who had taught non-native English-speaking students in academic subject courses. The findings from this study illustrated that faculty’s native language, years taught, and institution type were significant factors in not deducting points for academic writing errors and plagiarism, and the major reasons for not deducting points for errors were that faculty had too many students to grade, not enough training in assessing student written errors and plagiarism and that the errors and plagiarism would have taken too long to explain. The practical implications gleaned from these results can be applied to most departments in English-medium post-secondary institutions regarding faculty preparedness and training in student academic writing errors and plagiarism, and recommendations for future research are given for similar types of preparation and guidance for post-secondary faculty, regardless of degree path or academic subject.

Keywords: assessment, faculty, non-native English-speaking students, writing

Procedia PDF Downloads 149
2035 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation

Authors: Sikander Nawaz Khan

Abstract:

Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.

Keywords: disaster mitigation, GIS, GPS, remote sensing

Procedia PDF Downloads 481
2034 An Experimental Study of Low Concentration CO₂ Capture from Regenerative Thermal Oxidation Tail Gas in Rotating Packed Bed

Authors: Dang HuynhMinhTam, Kuang-Cong Lu, Yi-Hung Chen, Zhung-Yu Lin, Cheng-Siang Cheng

Abstract:

Carbon capture, utilization, and storage (CCUS) technology become a predominant technique to mitigate carbon dioxide and achieve net-zero emissions goals. This research targets to continuously capture the low concentration CO₂ from the tail gas of the regenerative thermal oxidizer (RTO) in the high technology industry. A rotating packed bed (RPB) reactor is investigated to capture the efficiency of CO₂ using a mixture of NaOH/Na₂CO₃ solutions to simulate the real absorbed solution. On a lab scale, semi-batch experiments of continuous gas flow and circulating absorbent solution are conducted to find the optimal parameters and are then examined in a continuous operation. In the semi-batch tests, the carbon capture efficiency and pH variation in the conditions of a low concentration CO₂ (about 1.13 vol%), the NaOH concentration of 1 wt% or 2 wt% mixed with 14 wt% Na₂CO₃, the rotating speed (600, 900, 1200 rpm), the gas-liquid ratio (100, 200, and 400), and the temperature of absorbent solution of 40 ºC are studied. The CO₂ capture efficiency significantly increases with higher rotating speed and smaller gas-liquid ratio, respectively, while the difference between the NaOH concentration of 1 wt% and 2 wt% is relatively small. The maximum capture efficiency is close to 80% in the conditions of the NaOH concentration of 1 wt%, the G/L ratio of 100, and the rotating speed of 1200 rpm within the first 5 minutes. Furthermore, the continuous operation based on similar conditions also demonstrates the steady efficiency of the carbon capture of around 80%.

Keywords: carbon dioxide capture, regenerative thermal oxidizer, rotating packed bed, sodium hydroxide

Procedia PDF Downloads 61
2033 Impact of Higher Educational Institute's Culture on Employees' Satisfaction and Commitment in Sultanate of Oman

Authors: Mahfoodh Saleh Al Sabbagh, Amitabh Mishra, Anwar Al Sheyadi

Abstract:

A tremendous transformation is taking place in the state of education in Sultanate of Oman. The vision 2040 for Higher Education focuses on both academic and technical sides of education aims at improving the quality of education as per higher international standards with emphasis on learning and innovation, creativity and scientific research. The objective is to achieve a proficient education system that keeps abreast of the recent development, the essentials of sustainable development and enhancing the national identity. Higher Education Institutes have contributed immensely to the growth of education in Oman, in this context; Business Organization represents the most complex social structure known today due to its dynamic nature. Employees are considered as one of the dynamic resources of the organization and through their commitment and involvement organization becomes competitive. Organization Culture can be promoted to facilitate the achievement of job satisfaction and employees commitment. The purpose of the research is to explore the impact of Higher Educational Institutions Culture on employee satisfaction, and commitment. Based on primary data, the study was conducted in Higher Education Institutions in the Sultanate of Oman. Data was collected through questionnaire consisting of 60 questions related to culture, satisfaction, and commitment. The sample consisted of 330 employees of leading Higher Education Institutes in the Sultanate of Oman. Structural Equation Modeling was carried out on the data through SPSS and AMOS. Results indicate that culture of organization is significantly related with employees’ satisfaction and commitment both in direct and indirect ways. Significant theoretical and practical implications are driven from the outcomes of the study.

Keywords: organization culture, employee satisfaction and commitment, higher education, Sultanate of Oman

Procedia PDF Downloads 318
2032 Clouds Influence on Atmospheric Ozone from GOME-2 Satellite Measurements

Authors: S. M. Samkeyat Shohan

Abstract:

This study is mainly focused on the determination and analysis of the photolysis rate of atmospheric, specifically tropospheric, ozone as function of cloud properties through-out the year 2007. The observational basis for ozone concentrations and cloud properties are the measurement data set of the Global Ozone Monitoring Experiment-2 (GOME-2) sensor on board the polar orbiting Metop-A satellite. Two different spectral ranges are used; ozone total column are calculated from the wavelength window 325 – 335 nm, while cloud properties, such as cloud top height (CTH) and cloud optical thick-ness (COT) are derived from the absorption band of molecular oxygen centered at 761 nm. Cloud fraction (CF) is derived from measurements in the ultraviolet, visible and near-infrared range of GOME-2. First, ozone concentrations above clouds are derived from ozone total columns, subtracting the contribution of stratospheric ozone and filtering those satellite measurements which have thin and low clouds. Then, the values of ozone photolysis derived from observations are compared with theoretical modeled results, in the latitudinal belt 5˚N-5˚S and 20˚N - 20˚S, as function of CF and COT. In general, good agreement is found between the data and the model, proving both the quality of the space-borne ozone and cloud properties as well as the modeling theory of ozone photolysis rate. The found discrepancies can, however, amount to approximately 15%. Latitudinal seasonal changes of photolysis rate of ozone are found to be negatively correlated to changes in upper-tropospheric ozone concentrations only in the autumn and summer months within the northern and southern tropical belts, respectively. This fact points to the entangled roles of temperature and nitrogen oxides in the ozone production, which are superimposed on its sole photolysis induced by thick and high clouds in the tropics.

Keywords: cloud properties, photolysis rate, stratospheric ozone, tropospheric ozone

Procedia PDF Downloads 211
2031 Pathway to Sustainable Shipping: Electric Ships

Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang

Abstract:

Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.

Keywords: cost reduction, electric ship, environmental protection, sustainable shipping

Procedia PDF Downloads 77
2030 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach

Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose

Abstract:

In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.

Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite

Procedia PDF Downloads 447
2029 Partially Phosphorylated Polyvinyl Phosphate-PPVP Composite: Synthesis and Its Potentiality for Zr (IV) Extraction from an Acidic Medium

Authors: Khaled Alshamari

Abstract:

Synthesized partially phosphorylated polyvinyl phosphate derivative (PPVP) was functionalized to extract Zirconium (IV) from Egyptian zircon sand. The specifications for the PPVP composite were approved effectively via different techniques, namely, FT-IR, XPS, BET, EDX, TGA, HNMR, C-NMR, GC-MS, XRD and ICP-OES analyses, which demonstrated a satisfactory synthesis of PPVP and zircon dissolution from Egyptian zircon sand. Factors controlling parameters, such as pH values, shaking time, initial zirconium concentration, PPVP dose, nitrate ions concentration, co-ions, temperature and eluting agents, have been optimized. At 25 ◦C, pH 0, 20 min shaking, 0.05 mol/L zirconium ions and 0.5 mol/L nitrate ions, PPVP has an exciting preservation potential of 195 mg/g, equivalent to 390 mg/L zirconium ions. From the extraction–distribution isotherm, the practical outcomes of Langmuir’s modeling are better than the Freundlich model, with a theoretical value of 196.07 mg/g, which is more in line with the experimental results of 195 mg/g. The zirconium ions adsorption onto the PPVP composite follows the pseudo-second-order kinetics with a theoretical capacity value of 204.08 mg/g. According to thermodynamic potential, the extraction process was expected to be an exothermic, spontaneous and beneficial extraction at low temperatures. The thermodynamic parameters ∆S (−0.03 kJ/mol), ∆H (−12.22 kJ/mol) and ∆G were also considered. As the temperature grows, ∆G values increase from −2.948 kJ/mol at 298 K to −1.941 kJ/mol at 338 K. Zirconium ions may be eluted from the working loaded PPVP by 0.025M HNO₃, with a 99% efficiency rate. It was found that zirconium ions revealed good separation factors towards some co-ions such as Hf⁴+ (28.82), Fe³+ (10.64), Ti⁴+ (28.82), V⁵+ (86.46) and U⁶+ (68.17). A successful alkali fusion technique with NaOH flux followed by the extraction with PPVP is used to obtain a high-purity zirconia concentrate with a zircon content of 72.77 % and a purity of 98.29%. As a result of this, the improved factors could finally be used.

Keywords: zirconium extraction, partially phosphorylated polyvinyl phosphate (PPVP), acidic medium, zircon

Procedia PDF Downloads 66
2028 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure

Authors: V. Nagammai

Abstract:

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.

Keywords: application specific noc, b* tree representation, floor planning, t tree representation

Procedia PDF Downloads 393
2027 Tribological Response of Self-Mated Zircaloy-4 under Varying Conditions

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are widely used for the core components of a pressurized heavy water reactor (PHWR) or Canada deuterium (CANDU) reactor due to their low neutron absorption cross-section and excellent mechanical properties. The components made of Zirconium alloys are subjected to flow-induced vibrations, resulting in fretting wear at the interface of; pressure tubes and bearing pads, pressure tubes and calandria tubes, and calandria tubes and Liquid injection shutdown system (LISS) nozzles. There is a need to explore the tribological response under such conditions. Present work simulates the contact between calandria tube and LISS nozzle of PHWR/CANDU reactor as cylinder-on-cylinder contact configuration. Reciprocating tribo-tests were conducted on Zircaloy-4 (Zr-4) under the self-mated condition at varying amplitude, frequency, and sliding time. To understand the active wear mechanism, worn surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The change in amplitude severely affects the wear than other factors. The wear mechanism transits from adhesion to abrasion with increasing test amplitude. The dominant wear mechanisms are micro-cutting and micro-plowing followed by delamination in some areas. However, the coefficient of friction has indifferent behaviors.

Keywords: zircaloy-4, tribology, calandria tube, LISS nozzle, PHWR

Procedia PDF Downloads 209
2026 Modeling Water Inequality and Water Security: The Role of Water Governance

Authors: Pius Babuna, Xiaohua Yang, Roberto Xavier Supe Tulcan, Bian Dehui, Mohammed Takase, Bismarck Yelfogle Guba, Chuanliang Han, Doris Abra Awudi, Meishui Lia

Abstract:

Water inequality, water security, and water governance are fundamental parameters that affect the sustainable use of water resources. Through policy formulation and decision-making, water governance determines both water security and water inequality. Largely, where water inequality exists, water security is undermined through unsustainable water use practices that lead to pollution of water resources, conflicts, hoarding of water, and poor sanitation. Incidentally, the interconnectedness of water governance, water inequality, and water security has not been investigated previously. This study modified the Gini coefficient and used a Logistics Growth of Water Resources (LGWR) Model to access water inequality and water security mathematically, and discussed the connected role of water governance. We tested the validity of both models by calculating the actual water inequality and water security of Ghana. We also discussed the implications of water inequality on water security and the overarching role of water governance. The results show that regional water inequality is widespread in some parts. The Volta region showed the highest water inequality (Gini index of 0.58), while the central region showed the lowest (Gini index of 0.15). Water security is moderately sustainable. The use of water resources is currently stress-free. It was estimated to maintain such status until 2132 ± 18, when Ghana will consume half of the current total water resources of 53.2 billion cubic meters. Effectively, water inequality is a threat to water security, results in poverty, under-development heightens tensions in water use, and causes instability. With proper water governance, water inequality can be eliminated through formulating and implementing approaches that engender equal allocation and sustainable use of water resources.

Keywords: water inequality, water security, water governance, Gini coefficient, moran index, water resources management

Procedia PDF Downloads 134
2025 The Investment Decision-Making Principles in Regional Tourism

Authors: Evgeni Baratashvili, Giorgi Sulashvili, Malkhaz Sulashvili, Bela Khotenashvili, Irma Makharashvili

Abstract:

The most investment decision-making principle of regional travel firm's management and its partner is the formulation of the aims of investment programs. The investments can be targeted in order to reduce the firm's production costs and to purchase good transport equipment. In attractive region, in order to develop firm’s activities, the investment program can be targeted for increasing of provided services. That is the case where the sales already have been used in the market. The investment can be directed to establish the affiliate firms, branches, to construct new hotels, to create food and trade enterprises, to develop entertainment enterprises, etc. Economic development is of great importance to regional development. International experience shows that inclusive economic growth largely depends on not only the national, but also regional development planning and implementation of a strong and competitive regions. Regional development is considered as the key factor in achieving national success. Establishing a modern institute separate entities if the pilot centers will constitute a promotion, international best practice-based public-private partnership to encourage the use of models. Regional policy directions and strategies adopted in accordance with the successful implementation of major importance in the near future specific action plans for inclusive development and implementation, which will be provided in accordance with the effective monitoring and evaluation tools and measurable indicators combined. All of these above-mentioned investments are characterized by different levels, which are related to the following fact: How successful tourism marketing service is, whether it is able to determine the proper market's reaction according to the particular firm's actions. In the sphere of regional tourism industry and in the investment decision possible variants it can be developed the some specter of models. Each of the models can be modified and specified according to the situation, and characteristic skills of the existing problem that must be solved. Besides, while choosing the proper model, the process is affected by the regulation system of economic processes. Also, it is influenced by liberalization quality and by the level of state participation.

Keywords: net income of travel firm, economic growth, Investment profitability, regional development, tourist product, tourism development

Procedia PDF Downloads 260
2024 Assessment of Air Pollutant Dispersion and Soil Contamination: The Critical Role of MATLAB Modeling in Evaluating Emissions from the Covanta Municipal Solid Waste Incineration Facility

Authors: Jadon Matthiasa, Cindy Donga, Ali Al Jibouria, Hsin Kuo

Abstract:

The environmental impact of emissions from the Covanta Waste-to-Energy facility in Burnaby, BC, was comprehensively evaluated, focusing on the dispersion of air pollutants and the subsequent assessment of heavy metal contamination in surrounding soils. A Gaussian Plume Model, implemented in MATLAB, was utilized to simulate the dispersion of key pollutants to understand their atmospheric behaviour and potential deposition patterns. The MATLAB code developed for this study enhanced the accuracy of pollutant concentration predictions and provided capabilities for visualizing pollutant dispersion in 3D plots. Furthermore, the code could predict the maximum concentration of pollutants at ground level, eliminating the need to use the Ranchoux model for predictions. Complementing the modelling approach, empirical soil sampling and analysis were conducted to evaluate heavy metal concentrations in the vicinity of the facility. This integrated methodology underscored the importance of computational modelling in air pollution assessment and highlighted the necessity of soil analysis to obtain a holistic understanding of environmental impacts. The findings emphasized the effectiveness of current emissions controls while advocating for ongoing monitoring to safeguard public health and environmental integrity.

Keywords: air emissions, Gaussian Plume Model, MATLAB, soil contamination, air pollution monitoring, waste-to-energy, pollutant dispersion visualization, heavy metal analysis, environmental impact assessment, emission control effectiveness

Procedia PDF Downloads 16
2023 Establishing Forecasts Pointing Towards the Hungarian Energy Change Based on the Results of Local Municipal Renewable Energy Production and Energy Export

Authors: Balazs Kulcsar

Abstract:

Professional energy organizations perform analyses mainly on the global and national levels about the expected development of the share of renewables in electric power generation, heating, and cooling, as well as the transport sectors. There are just a few publications, research institutions, non-profit organizations, and national initiatives with a focus on studies in the individual towns, settlements. Issues concerning the self-supply of energy on the settlement level have not become too wide-spread. The goal of our energy geographic studies is to determine the share of local renewable energy sources in the settlement-based electricity supply across Hungary. The Hungarian energy supply system defines four categories based on the installed capacities of electric power generating units. From these categories, the theoretical annual electricity production of small-sized household power plants (SSHPP) featuring installed capacities under 50 kW and small power plants with under 0.5 MW capacities have been taken into consideration. In the above-mentioned power plant categories, the Hungarian Electricity Act has allowed the establishment of power plants primarily for the utilization of renewable energy sources since 2008. Though with certain restrictions, these small power plants utilizing renewable energies have the closest links to individual settlements and can be regarded as the achievements of the host settlements in the shift of energy use. Based on the 2017 data, we have ranked settlements to reflect the level of self-sufficiency in electricity production from renewable energy sources. The results show that the supply of all the energy demanded by settlements from local renewables is within reach now in small settlements, e.g., in the form of the small power plant categories discussed in the study, and is not at all impossible even in small towns and cities. In Hungary, 30 settlements produce more renewable electricity than their own annual electricity consumption. If these overproductive settlements export their excess electricity towards neighboring settlements, then full electricity supply can be realized on further 29 settlements from renewable sources by local small power plants. These results provide an opportunity for governmental planning of the realization of energy shift (legislative background, support system, environmental education), as well as framing developmental forecasts and scenarios until 2030.

Keywords: energy geography, Hungary, local small power plants, renewable energy sources, self-sufficiency settlements

Procedia PDF Downloads 147
2022 A New Smart Plug for Home Energy Management

Authors: G. E. Kiral, O. Elma, A. T. Ince, B. Vural, U. S. Selamogullari, M. Uzunoglu

Abstract:

Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy.

Keywords: energy efficiency, home energy management, smart home, smart plug

Procedia PDF Downloads 728
2021 Closed-Loop Supply Chain: A Study of Bullwhip Effect Using Simulation

Authors: Siddhartha Paul, Debabrata Das

Abstract:

Closed-loop supply chain (CLSC) management focuses on integrating forward and reverse flow of material as well as information to maximize value creation over the entire life-cycle of a product. Bullwhip effect in supply chain management refers to the phenomenon where a small variation in customers’ demand results in larger variation of orders at the upstream levels of supply chain. Since the quality and quantity of products returned to the collection centers (as a part of reverse logistics process) are uncertain, bullwhip effect is inevitable in CLSC. Therefore, in the present study, first, through an extensive literature survey, we identify all the important factors related to forward as well as reverse supply chain which causes bullwhip effect in CLSC. Second, we develop a system dynamics model to study the interrelationship among the factors and their effect on the performance of overall CLSC. Finally, the results of the simulation study suggest that demand forecasting, lead times, information sharing, inventory and work in progress adjustment rate, supply shortages, batch ordering, price variations, erratic human behavior, parameter correcting, delivery time delays, return rate of used products, manufacturing and remanufacturing capacity constraints are the important factors which have a significant influence on system’s performance, specifically on bullwhip effect in a CLSC.

Keywords: bullwhip effect, closed-loop supply chain, system dynamics, variance ratio

Procedia PDF Downloads 163
2020 Competing Risks Modeling Using within Node Homogeneity Classification Tree

Authors: Kazeem Adesina Dauda, Waheed Babatunde Yahya

Abstract:

To design a tree that maximizes within-node homogeneity, there is a need for a homogeneity measure that is appropriate for event history data with multiple risks. We consider the use of Deviance and Modified Cox-Snell residuals as a measure of impurity in Classification Regression Tree (CART) and compare our results with the results of Fiona (2008) in which homogeneity measures were based on Martingale Residual. Data structure approach was used to validate the performance of our proposed techniques via simulation and real life data. The results of univariate competing risk revealed that: using Deviance and Cox-Snell residuals as a response in within node homogeneity classification tree perform better than using other residuals irrespective of performance techniques. Bone marrow transplant data and double-blinded randomized clinical trial, conducted in other to compare two treatments for patients with prostate cancer were used to demonstrate the efficiency of our proposed method vis-à-vis the existing ones. Results from empirical studies of the bone marrow transplant data showed that the proposed model with Cox-Snell residual (Deviance=16.6498) performs better than both the Martingale residual (deviance=160.3592) and Deviance residual (Deviance=556.8822) in both event of interest and competing risks. Additionally, results from prostate cancer also reveal the performance of proposed model over the existing one in both causes, interestingly, Cox-Snell residual (MSE=0.01783563) outfit both the Martingale residual (MSE=0.1853148) and Deviance residual (MSE=0.8043366). Moreover, these results validate those obtained from the Monte-Carlo studies.

Keywords: within-node homogeneity, Martingale residual, modified Cox-Snell residual, classification and regression tree

Procedia PDF Downloads 272
2019 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine

Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.

Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup

Procedia PDF Downloads 265
2018 Run-Time Customisation of Soft-Core CPUs on Field Programmable Gate Array

Authors: Rehab Abdullah Shendi

Abstract:

The use of customised soft-core processors in which instructions can be integrated into a system in application hardware is increasing in the Field Programmable Gate Array (FPGA) field. Specifically, the partial run-time reconfiguration of FPGAs in specialised processors for a particular domain can be very beneficial. In this report, the design and implementation for the customisation of a soft-core MIPS processor using an FPGA and partial reconfiguration (PR) of FPGA technology will be addressed to achieve efficient resource use. This can be achieved using a PR design flow that helps the design fit into a smaller device. Moreover, the impact of static power consumption could be reduced due to runtime reconfiguration. This will be done by configurable custom instructions implemented in the hardware as an extension on the MIPS CPU. The aim of this project is to investigate the PR of FPGAs for run-time adaptations of the instruction set of a soft-core CPU, including the integration of custom instructions and the exploration of the potential to use the MultiBoot feature available in Xilinx FPGAs to carry out the PR process. The system will be evaluated and tested on a Nexus 3 development board featuring a Xilinx Spartran-6 FPGA. The system will be able to load reconfigurable custom instructions dynamically into user programs with the help of the trap handler when the custom instruction is called by the MIPS CPU. The results of this experiment demonstrate that custom instructions in hardware can speed up a certain function and many instructions can be saved when compared to a software implementation of the same function. Implementing custom instructions in hardware is perfectly possible and worth exploring.

Keywords: customisation, FPGA, MIPS, partial reconfiguration, PR

Procedia PDF Downloads 267
2017 Seismic Reflection Highlights of New Miocene Deep Aquifers in Eastern Tunisia Basin (North Africa)

Authors: Mourad Bédir, Sami Khomsi, Hakim Gabtni, Hajer Azaiez, Ramzi Gharsalli, Riadh Chebbi

Abstract:

Eastern Tunisia is a semi-arid area; located in the northern Africa plate; southern Mediterranean side. It is facing water scarcity, overexploitation, and decreasing of water quality of phreatic water table. Water supply and storage will not respond to the demographic and economic growth and demand. In addition, only 5 109 m3 of rainwater from 35 109 m3 per year renewable rain water supply can be retained and remobilized. To remediate this water deficiency, researches had been focused to near new subsurface deep aquifers resources. Among them, Upper Miocene sandstone deposits of Béglia, Saouaf, and Somaa Formations. These sandstones are known for their proven Hydrogeologic and hydrocarbon reservoir characteristics in the Tunisian margin. They represent semi-confined to confined aquifers. This work is based on new integrated approaches of seismic stratigraphy, seismic tectonics, and hydrogeology, to highlight and characterize these reservoirs levels for aquifer exploitation in semi-arid area. As a result, five to six third order sequence deposits had been highlighted. They are composed of multi-layered extended sandstones reservoirs; separated by shales packages. These reservoir deposits represent lowstand and highstand system tracts of these sequences, which represent lowstand and highstand system tracts of these sequences. They constitute important strategic water resources volumes for the region.

Keywords: Tunisia, Hydrogeology, sandstones, basin, seismic, aquifers, modeling

Procedia PDF Downloads 178
2016 Crowdsensing Project in the Brazilian Municipality of Florianópolis for the Number of Visitors Measurement

Authors: Carlos Roberto De Rolt, Julio da Silva Dias, Rafael Tezza, Luca Foschini, Matteo Mura

Abstract:

The seasonal population fluctuation presents a challenge to touristic cities since the number of inhabitants can double according to the season. The aim of this work is to develop a model that correlates the waste collected with the population of the city and also allow cooperation between the inhabitants and the local government. The model allows public managers to evaluate the impact of the seasonal population fluctuation on waste generation and also to improve planning resource utilization throughout the year. The study uses data from the company that collects the garbage in Florianópolis, a Brazilian city that presents the profile of a city that attracts tourists due to numerous beaches and warm weather. The fluctuations are caused by the number of people that come to the city throughout the year for holidays, summer time vacations or business events. Crowdsensing will be accomplished through smartphones with access to an app for data collection, with voluntary participation of the population. Crowdsensing participants can access information collected in waves for this portal. Crowdsensing represents an innovative and participatory approach which involves the population in gathering information to improve the quality of life. The management of crowdsensing solutions plays an essential role given the complexity to foster collaboration, establish available sensors and collect and process the collected data. Practical implications of this tool described in this paper refer, for example, to the management of seasonal tourism in a large municipality, whose public services are impacted by the floating of the population. Crowdsensing and big data support managers in predicting the arrival, permanence, and movement of people in a given urban area. Also, by linking crowdsourced data to databases from other public service providers - e.g., water, garbage collection, electricity, public transport, telecommunications - it is possible to estimate the floating of the population of an urban area affected by seasonal tourism. This approach supports the municipality in increasing the effectiveness of resource allocation while, at the same time, increasing the quality of the service as perceived by citizens and tourists.

Keywords: big data, dashboards, floating population, smart city, urban management solutions

Procedia PDF Downloads 287
2015 Managing Food Waste Behaviour in Saudi Arabia: Investigating the Role of Social Marketing

Authors: Suliman Al Balawi

Abstract:

Food waste is a significant problem in the Kingdom of Saudi Arabia (KSA). About SR13 billion worth of food is wasted per year in the KSA. From moral, social, and economic perspectives, it is essential to reduce the wastage of food. Although studies have identified the amount of food waste in the KSA, there is a lack of research on why people in the KSA waste food; thus, it is difficult to design efficient intervention programs to reduce food waste. This research investigates the key factors that influence the food waste behavior of the people of the KSA. A food waste behavior model is proposed in this study that has moral disengagement at the center of the model. Following a literature survey, it is hypothesised that religiosity, hedonic value, frugality, and trait cynicism are the antecedents of moral disengagement that are likely to impact the food waste behavior of the people of the KSA. The study further posits that an intervention strategy in the form of a social marketing campaign that focuses on lowering the level of moral disengagement could reduce the food waste behavior of the people of the KSA. This study will apply a pre-test/post-test experimental design (control group). A random sampling method will be used to select participants from the (employees of a chosen firm) in the KSA. The social marketing campaign will be run for six months through the Corporate Social Responsibility Department of the Company, and to analyse the experimental data, structural equation modeling (SEM) will be used. The outcomes of the study will demonstrate the effectiveness of a social marketing campaign for improving the food waste behavior of the people of the KSA and will ultimately lay the foundation for designing efficient intervention programs in the future. This study will contribute to the knowledge on food waste behavior by testing a newly proposed food waste behavior model in the KSA.

Keywords: food waste, social marketing, Saudi Arabia, moral disengagement

Procedia PDF Downloads 182
2014 Assessment of the Physical and Chemical Characteristics of Ugbogui River, Edo State, Nigeria

Authors: Iyagbaye O. Rich, Omoigberale O. Michael, Iyagbaye A. Louis

Abstract:

The physical, chemical parameters and some trace contents of Ugbogui in Edo State, Nigeria were investigated from August 2015 to April 2016. Four stations were studied from upstream to downstream using standard methods. A total of thirty-three (33) physical and chemical characteristics and trace metal contents were examined; Air and water temperatures, depth, transparency, colour, turbidity, flow velocity, pH, total alkalinity, conductivity and dissolved solids etc. Other includes dissolved oxygen, oxygen saturation, biochemical oxygen demand, chloride, phosphate, sodium, nitrate, sulphate, potassium, calcium, magnesium, iron, lead, copper, zinc, nickel, cadmium, vanadium and chromium. Eleven (11) parameters exhibited clear seasonal variations. However, there were high significant differences (p < 0.01) in the values of depth, colour, total suspended solid, biochemical oxygen demand, chemical oxygen demand, chloride, bicarbonate, phosphate, sulphate, iron, manganese, zinc, copper, chromium and cadmium among the stations. The anthropogenic activities had negatively impacted at station 3 of the river, although most of the recorded values were still within permissible limits.

Keywords: anthropogenic activities, Nigeria, permissible limits, physical and chemical parameters, trace metal, water quality

Procedia PDF Downloads 126
2013 Morphological, Mechanical, and Tribological Properties Investigations of CMTed Parts of Al-5356 Alloy

Authors: Antar Bouhank, Youcef Beellal, Samir Adjel, Abdelmadjid Ababsa

Abstract:

This paper investigates the impact of 3D printing parameters using the cold metal transfer (CMT) technique on the morphological, mechanical, and tribological properties of walls and massive parts made from aluminum alloy. The parameters studied include current intensity, torch movement speed, printing increment, and the flow rate of shielding gas. The manufactured parts, using the technique mentioned above, are walls and massive parts with different filling strategies, using grid and zigzag patterns and at different current intensities. The main goal of the article is to find out the welding parameters suitable for having parts with low defects and improved properties from the previously mentioned properties point of view. It has been observed from the results thus obtained that the high current intensity causes rapid solidification, resulting in high porosity and low hardness values. However, the high current intensity can cause very rapid solidification, which increases the melting point, and the part remains in the most stable shape. Furthermore, the results show that there is an evident relationship between hardness, coefficient of friction and wear test where the high intensity is, the low hardness is. The same note is for the coefficient of friction. The micrography of the walls shows a random granular structure with fine grain boundaries with a different grain size. Some interesting results are presented in this paper.

Keywords: aluminum alloy, porosity, microstructures, hardness

Procedia PDF Downloads 46
2012 Estimation of Noise Barriers for Arterial Roads of Delhi

Authors: Sourabh Jain, Parul Madan

Abstract:

Traffic noise pollution has become a challenging problem for all metro cities of India due to rapid urbanization, growing population and rising number of vehicles and transport development. In Delhi the prime source of noise pollution is vehicular traffic. In Delhi it is found that the ambient noise level (Leq) is exceeding the standard permissible value at all the locations. Noise barriers or enclosures are definitely useful in obtaining effective deduction of traffic noise disturbances in urbanized areas. US’s Federal Highway Administration Model (FHWA) and Calculation of Road Traffic Noise (CORTN) of UK are used to develop spread sheets for noise prediction. Spread sheets are also developed for evaluating effectiveness of existing boundary walls abutting houses in mitigating noise, redesigning them as noise barriers. Study was also carried out to examine the changes in noise level due to designed noise barrier by using both models FHWA and CORTN respectively. During the collection of various data it is found that receivers are located far away from road at Rithala and Moolchand sites and hence extra barrier height needed to meet prescribed limits was less as seen from calculations and most of the noise diminishes by propagation effect.On the basis of overall study and data analysis, it is concluded that FHWA and CORTN models under estimate noise levels. FHWA model predicted noise levels with an average percentage error of -7.33 and CORTN predicted with an average percentage error of -8.5. It was observed that at all sites noise levels at receivers were exceeding the standard limit of 55 dB. It was seen from calculations that existing walls are reducing noise levels. Average noise reduction due to walls at Rithala was 7.41 dB and at Panchsheel was 7.20 dB and lower amount of noise reduction was observed at Friend colony which was only 5.88. It was observed from analysis that Friends colony sites need much greater height of barrier. This was because of residential buildings abutting the road. At friends colony great amount of traffic was observed since it is national highway. At this site diminishing of noise due to propagation effect was very less.As FHWA and CORTN models were developed in excel programme, it eliminates laborious calculations of noise. There was no reflection correction in FHWA models as like in CORTN model.

Keywords: IFHWA, CORTN, Noise Sources, Noise Barriers

Procedia PDF Downloads 133
2011 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 552
2010 Determination of the Quantity of Water Absorbed by the Plant When Irrigating by Infiltration in Arid Regions (Case of Ouargla in Algeria)

Authors: Mehdi Benlarbi, Dalila Oulhaci

Abstract:

Several physical, human and economic factors come into play in the choice of an irrigation system for developing arid and semi-arid regions. Since it is impossible to define or weight quantitatively all the relevant factors in each case, the choice of the system is often based on subjective preferences rather than explicit analysis. Over the past decade, irrational irrigation in the Ouargla region has evolved to a certain extent based largely on water wastage and which may pose risks to the environment both off-site and at the site. In the whole region, the environment is damaged by excess water because the water tables that tend to be high form swamps that pollute nature on the surface. The purpose of our work is a comparison between sprinkler irrigation and drip irrigation using bottles. By irrigating with the aid of the bottle and giving a volume of 4 liters with a flow rate of one (1) liter per hour, the watering dose received varies between 6 and 7 mm without infiltration losses. And for the case of sprinkler irrigation, the dose received may not exceed 2.5mm. E in some cases, we have a quantity of water lost by infiltration. This shows that irrigation using the bottle is much more efficient than sprinkling. Because, on the one hand, a large amount of water is absorbed by the plant and on the other hand, there is no loss by infiltration. The results obtained are very significant because, on the one hand, we reuse local products, and on the other hand, as the bottles are buried, we avoid water losses by evaporation, especially in dry periods and salinization.

Keywords: resources, water, arid, evaporation, infiltration

Procedia PDF Downloads 76
2009 Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia

Authors: Gebremedhin Kiros, Amba Shetty, Lakshman Nandagiri

Abstract:

Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region.

Keywords: Ethiopia, Geba catchment, MUSLE, sediment yield, SWAT Model

Procedia PDF Downloads 313
2008 Biomimetic Systems to Reveal the Action Mode of Epigallocatechin-3-Gallate in Lipid Membrane

Authors: F. Pires, V. Geraldo, O. N. Oliveira Jr., M. Raposo

Abstract:

Catechins are powerful antioxidants which have attractive properties useful for tumor therapy. Considering their antioxidant activity, these molecules can act as a scavenger of the reactive oxygen species (ROS), alleviating the damage of cell membrane induced by oxidative stress. The complexity and dynamic nature of the cell membrane compromise the analysis of the biophysical interactions between drug and cell membrane and restricts the transport or uptake of the drug by intracellular targets. To avoid the cell membrane complexity, we used biomimetic systems as liposomes and Langmuir monolayers to study the interaction between catechin and membranes at the molecular level. Liposomes were formed after the dispersion of anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) phospholipids in an aqueous solution, which mimic the arrangement of lipids in natural cell membranes and allows the entrapment of catechins. Langmuir monolayers were formed after dropping amphiphilic molecules, DPPG phospholipids, dissolved in an organic solvent onto the water surface. In this work, we mixed epigallocatechin-3-gallate (EGCG) with DPPG liposomes and exposed them to ultra-violet radiation in order to evaluate the antioxidant potential of these molecules against oxidative stress induced by radiation. The presence of EGCG in the mixture decreased the rate of lipid peroxidation, proving that EGCG protects membranes through the quenching of the reactive oxygen species. Considering the high amount of hydroxyl groups (OH groups) on structure of EGCG, a possible mechanism to these molecules interact with membrane is through hydrogen bonding. We also investigated the effect of EGCG at various concentrations on DPPG Langmuir monolayers. The surface pressure isotherms and infrared reflection-absorption spectroscopy (PM-IRRAS) results corroborate with absorbance results preformed on liposome-model, showing that EGCG interacts with polar heads of the monolayers. This study elucidates the physiological action of EGCG which can be incorporated in lipid membrane. These results are also relevant for the improvement of the current protocols used to incorporate catechins in drug delivery systems.

Keywords: catechins, lipid membrane, anticancer agent, molecular interactions

Procedia PDF Downloads 233
2007 Design of Microwave Building Block by Using Numerical Search Algorithm

Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Qing Fang, Mingbin Yu, Guoqiang Lo

Abstract:

With the development of technology, countries gradually allocated more and more frequency spectrums for civilization and commercial usage, especially those high radio frequency bands indicating high information capacity. The field effect becomes more and more prominent in microwave components as frequency increases, which invalidates the transmission line theory and complicate the design of microwave components. Here a modeling approach based on numerical search algorithm is proposed to design various building blocks for microwave circuits to avoid complicated impedance matching and equivalent electrical circuit approximation. Concretely, a microwave component is discretized to a set of segments along the microwave propagation path. Each of the segment is initialized with random dimensions, which constructs a multiple-dimension parameter space. Then numerical searching algorithms (e.g. Pattern search algorithm) are used to find out the ideal geometrical parameters. The optimal parameter set is achieved by evaluating the fitness of S parameters after a number of iterations. We had adopted this approach in our current projects and designed many microwave components including sharp bends, T-branches, Y-branches, microstrip-to-stripline converters and etc. For example, a stripline 90° bend was designed in 2.54 mm x 2.54 mm space for dual-band operation (Ka band and Ku band) with < 0.18 dB insertion loss and < -55 dB reflection. We expect that this approach can enrich the tool kits for microwave designers.

Keywords: microwave component, microstrip and stripline, bend, power division, the numerical search algorithm.

Procedia PDF Downloads 379