Search results for: Sustainable Energy
3847 Methodology of the Turkey’s National Geographic Information System Integration Project
Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa
Abstract:
With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.Keywords: data specification, geoportal, GIS, INSPIRE, Turkish National Geographic Information System, TUCBS, Turkey's national geographic information system
Procedia PDF Downloads 1443846 Block-Chain Land Administration Technology in Nigeria: Opportunities and Challenges
Authors: Babalola Sunday Oyetayo, Igbinomwanhia Uyi Osamwonyi, Idowu T. O., Herbert Tata
Abstract:
This paper explores the potential benefits of adopting blockchain technology in Nigeria's land administration systems while also addressing the challenges and implications of its implementation in the country's unique context. Through a comprehensive literature review and analysis of existing research, the paper delves into the key attributes of blockchain that can revolutionize land administration practices, with a particular focus on simplifying land registration procedures, expediting land title issuance, and enhancing data transparency and security. The decentralized and immutable nature of blockchain offers unique advantages, instilling trust and confidence in land transactions, which are especially crucial in Nigeria's land governance landscape. However, integrating blockchain in Nigeria's land administration ecosystem presents specific challenges, necessitating a critical evaluation of technical, socio-economic, and infrastructural barriers. These challenges encompass data privacy concerns, scalability, interoperability with outdated systems, and gaining acceptance from various stakeholders. By synthesizing these insights, the paper proposes strategies tailored to Nigeria's context to optimize the benefits of blockchain adoption while addressing the identified challenges. The research findings contribute significantly to the ongoing discourse on blockchain technology in Nigeria's land governance, offering evidence-based recommendations to policymakers, land administrators, and stakeholders. Ultimately, the paper aims to promote the effective utilization of blockchain, fostering efficiency, transparency, and trust in Nigeria's land administration systems to drive sustainable development and societal progress.Keywords: block-chain, technology, stakeholders, land registration
Procedia PDF Downloads 733845 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants
Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi
Abstract:
The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment
Procedia PDF Downloads 2673844 Privatization and Ensuring Accountability in the Provision of Essential Services: A Case of Water in South Africa
Authors: Odufu Ifakachukwu Clifford
Abstract:
Developing country governments are struggling to meet the basic needs and demands of citizens, especially so for the rural poor. With tightly constrained budgets, these governments have followed the lead of developed countries that have sought to restructure public service delivery through privatization, contracting out, public-private partnerships, and similar reforms. Such reforms in service delivery are generally welcomed when it is believed that private sector partners are better equipped to provide certain services than are governments. With respect to basic and essential services, however, a higher degree of uncertainty and apprehension exists as the focus shifts from simply minimizing the costs of delivering services to broadening access to all citizens. The constitution stipulates that everyone has the right to have access to sufficient food and water. Affordable and/or subsidized water, then, is not a privilege but a basic right of all citizens. Citizens elect political representatives to serve in office, with their sole mandate being to provide for the needs of the citizenry. As governments pass on some amount of responsibility for service delivery to private businesses, these governments must be able to exercise control in order to account to the people for the work done by private partners. This paper examines the legislative and policy frameworks as well as the environment within which PPPs take place in South Africa and the extent to which accountability can be strengthened in this environment. Within the aforementioned backdrop of PPPs and accountability, the constricted focus area of the paper aims to assess the extent to which the provision of clean and safe consumable water in South Africa is sustainable, cost-effective in terms of provision, and affordable to all.Keywords: privatisation, accountability, essential services, government
Procedia PDF Downloads 663843 Determination of the Water Needs of Some Crops Irrigated with Treated Water from the Sidi Khouiled Wastewater Treatment Plant in Ouargla, Algeria
Authors: Dalila Oulhaci, Mehdi Benlarbi, Mohammed Zahaf
Abstract:
The irrigation method is fundamental for maintaining a wet bulb around the roots of the crop. This is the case with localized irrigation, where soil moisture can be maintained permanently around the root system between the two water content extremes. Also, one of the oldest methods used since Roman times throughout North Africa and the Near East is based on the frequent dumping of water into porous pottery vases buried in the ground. In this context, these two techniques have been combined by replacing the pottery vase with plastic bottles filled with sand that discharge water through their perforated walls into the surrounding soil. The first objective of this work is the theoretical determination using CLIMWAT and CROPWAT software of the irrigation doses of some crops (palm, wheat, and onion) and experimental by measuring the humidity of the soil before and after watering. The second objective is to determine the purifying power of the sand filter in the bottle. Based on the CROPWAT software results, the date palm needs 18.5 mm in the third decade of December, 57.2 mm in January, and 73.7 mm in February, whereas the doses received by experimentally determined by means of soil moisture before and after irrigation are 19.5 mm respectively, 79.66 mm and 95.66 mm. The onion needs 14.3 mm in the third decade of December of, 59.1 mm in January, and 80 mm in February, whereas the experimental dose received is 15.07 mm, respectively, 64.54 and 86.8 mm. The total requirements for the vegetative period are estimated at 1642.6 mm for date palms, 277.4 mm for wheat, and 193.5 mm for onions. The removal rate of the majority of pollutants from the bottle is 80%. This work covers, on the one hand, the context of water conservation, sustainable development, and protection of the environment, and on the other, the agricultural field.Keywords: irrigation, sand, filter, humidity, bottle
Procedia PDF Downloads 663842 Accelerated Carbonation of Construction Materials by Using Slag from Steel and Metal Production as Substitute for Conventional Raw Materials
Authors: Karen Fuchs, Michael Prokein, Nils Mölders, Manfred Renner, Eckhard Weidner
Abstract:
Due to the high CO₂ emissions, the energy consumption for the production of sand-lime bricks is of great concern. Especially the production of quicklime from limestone and the energy consumption for hydrothermal curing contribute to high CO₂ emissions. Hydrothermal curing is carried out under a saturated steam atmosphere at about 15 bar and 200°C for 12 hours. Therefore, we are investigating the opportunity to replace quicklime and sand in the production of building materials with different types of slag as calcium-rich waste from steel production. We are also investigating the possibility of substituting conventional hydrothermal curing with CO₂ curing. Six different slags (Linz-Donawitz (LD), ferrochrome (FeCr), ladle (LS), stainless steel (SS), ladle furnace (LF), electric arc furnace (EAF)) provided by "thyssenkrupp MillServices & Systems GmbH" were ground at "Loesche GmbH". Cylindrical blocks with a diameter of 100 mm were pressed at 12 MPa. The composition of the blocks varied between pure slag and mixtures of slag and sand. The effects of pressure, temperature, and time on the CO₂ curing process were studied in a 2-liter high-pressure autoclave. Pressures between 0.1 and 5 MPa, temperatures between 25 and 140°C, and curing times between 1 and 100 hours were considered. The quality of the CO₂-cured blocks was determined by measuring the compressive strength by "Ruhrbaustoffwerke GmbH & Co. KG." The degree of carbonation was determined by total inorganic carbon (TIC) and X-ray diffraction (XRD) measurements. The pH trends in the cross-section of the blocks were monitored using phenolphthalein as a liquid pH indicator. The parameter set that yielded the best performing material was tested on all slag types. In addition, the method was scaled to steel slag-based building blocks (240 mm x 115 mm x 60 mm) provided by "Ruhrbaustoffwerke GmbH & Co. KG" and CO₂-cured in a 20-liter high-pressure autoclave. The results show that CO₂ curing of building blocks consisting of pure wetted LD slag leads to severe cracking of the cylindrical specimens. The high CO₂ uptake leads to an expansion of the specimens. However, if LD slag is used only proportionally to replace quicklime completely and sand proportionally, dimensionally stable bricks with high compressive strength are produced. The tests to determine the optimum pressure and temperature show 2 MPa and 50°C as promising parameters for the CO₂ curing process. At these parameters and after 3 h, the compressive strength of LD slag blocks reaches the highest average value of almost 50 N/mm². This is more than double that of conventional sand-lime bricks. Longer CO₂ curing times do not result in higher compressive strengths. XRD and TIC measurements confirmed the formation of carbonates. All tested slag-based bricks show higher compressive strengths compared to conventional sand-lime bricks. However, the type of slag has a significant influence on the compressive strength values. The results of the tests in the 20-liter plant agreed well with the results of the 2-liter tests. With its comparatively moderate operating conditions, the CO₂ curing process has a high potential for saving CO₂ emissions.Keywords: CO₂ curing, carbonation, CCU, steel slag
Procedia PDF Downloads 1043841 Experimental Characterization of Anisotropic Mechanical Properties of Textile Woven Fabric
Authors: Rym Zouari, Sami Ben Amar, Abdelwaheb Dogui
Abstract:
This paper presents an experimental characterization of the anisotropic mechanical behavior of 4 textile woven fabrics with different weaves (Twill 3, Plain, Twill4 and Satin 4) by off-axis tensile testing. These tests are applied according seven directions oriented by 15° increment with respect to the warp direction. Fixed and articulated jaws are used. Analysis of experimental results is done through global (Effort/Elongation curves) and local scales. Global anisotropy was studied from the Effort/Elongation curves: shape, breaking load (Frup), tensile elongation (EMT), tensile energy (WT) and linearity index (LT). Local anisotropy was studied from the measurement of strain tensor components in the central area of the specimen as a function of testing orientation and effort: longitudinal strain ɛL, transverse strain ɛT and shearing ɛLT. The effect of used jaws is also analyzed.Keywords: anisotropy, off-axis tensile test, strain fields, textile woven fabric
Procedia PDF Downloads 3593840 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines
Authors: Cristobal García
Abstract:
The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.Keywords: SHM, vibrations, connections, floating offshore platform
Procedia PDF Downloads 1253839 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: model predictive control, optimal control, process control, crystal growth
Procedia PDF Downloads 3593838 Strategies for a Sustainable Future of Forest and Tribal Peoples on This Planet
Authors: Dharmpal Singh
Abstract:
The objective of this proposed project is to relocation and resettlement of carnivores tribal communities who are currently residing in the protected forest land in all over the world just like resettlement project of the carnivores tribal families of Mongia who at past were residing in Ranthambhore Tiger Reserve (RTR) and had caused excess damage of endangered species of wildlife including Tigers. At present several tribal communities are residing in the another national parks and they not only consuming the wild animals but also involved in illegal trading of vital organs, skin and bones with National and international traders. Tribal are ideally suited for the job because they are highly skilled game trackers and due to having had a definite source of income over the years, they easily drawn in to the illegal wildlife trade and slaughter of wild animals. Their income is increasing but wild animals are on the brink of extinction. For the conservation of flora and fauna the rehabilitation process should be thought out according to the RTR project (which not only totally change the quality of life of mongia tribal community but also increased the conopy cover of forest and grass due to reduced the biotic pressure on protected land of forest in Rajasthan state) with appropriate understanding of the sociology of the people involved, their culture, education standard and the need of different skills to be acquired by them for sustenance such as agriculture, dairy, poultry, social forestry, job as forest guard and others eco-development programmes. Perhaps, the dimensions presented by me may generate discussion among the international wild life lovers and conservationists and remedies may be result oriented in the field of management of forest and conservation of wildlife on this planet.Keywords: strategies, rehablety of tribals, conservation of forest, eco-development Programmes, wildlife
Procedia PDF Downloads 4363837 Competition in Kenya: The Legal and Institutional Framework and an Appraisal of Key Market Players
Authors: Edwin Njoroge Kimani, Alan M. Munyao
Abstract:
Despite Kenya’s status as a regional economic powerhouse, it struggles with economic shocks that expose the consumers. This, however, seems not to affect major cooperates such as those in the telecommunication and energy sectors. Through their operations, they have not only been able to fluctuate prices at will but also they have been accused of curtailing their rivals from penetrating the market. This study, through literature review of the legal and institutional framework, reports and publications interrogates the law and uncovers the following; i) failings of the legal framework to define market dominance and abuse of such positions, ii) the participation of the state, iii) the inertia of the government to prosecute corporations that abuse their market dominance, iv) the role of the state as a market player and as a regulator through the Competition Authority of Kenya. This study concludes that the market distortion is as a result of weak legal and institutional framework as well as conflict of interest by the government. Not much has been researched in the field of competition law the greater East Africa. This research is intended to form part of the growing research in the field and inform legal reform.Keywords: competition law, economic power, dominance, Kenya
Procedia PDF Downloads 2283836 Concrete Cracking Simulation Using Vector Form Intrinsic Finite Element Method
Authors: R. Z. Wang, B. C. Lin, C. H. Huang
Abstract:
This study proposes a new method to simulate the crack propagation under mode-I loading using Vector Form Intrinsic Finite Element (VFIFE) method. A new idea which is expected to combine both VFIFE and J-integral is proposed to calculate the stress density factor as the crack critical in elastic crack. The procedure of implement the cohesive crack propagation in VFIFE based on the fictitious crack model is also proposed. In VFIFIE, the structure deformation is described by numbers of particles instead of elements. The strain energy density and the derivatives of the displacement vector of every particle is introduced to calculate the J-integral as the integral path is discrete by particles. The particle on the crack tip separated into two particles once the stress on the crack tip satisfied with the crack critical and then the crack tip propagates to the next particle. The internal force and the cohesive force is applied to the particles.Keywords: VFIFE, crack propagation, fictitious crack model, crack critical
Procedia PDF Downloads 3353835 Sunflower Irrigation with Two Different Types of Soil Moisture Sensors
Authors: C. D. Papanikolaou, V. A. Giouvanis, E. A. Karatasiou, D. S. Dimakas, M. A. Sakellariou-Makrantonaki
Abstract:
Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM).Keywords: irrigation, energy production, soil moisture sensor, sunflower, water saving
Procedia PDF Downloads 1803834 Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Washwater
Authors: Syazwani Idrus, S. Charles J. Banks, Sonia Heaven
Abstract:
The study compared the performance of upflow anaerobic sludge blanket (UASB) reactors and anaerobic filters (AF) for the treatment of wheat straw washwater (WSW) which has a high concentration of Potassium ions. The trial was conducted at mesophilic temperatures (37 °C). The digesters were started up over a 48-day period using a synthetic wastewater feed and reached an organic loading rate (OLR) of 6 g COD L^-1 day^-1 with a specific methane production (SMP) of 0.333 L CH4 g^-1 COD. When the feed was switched to WSW it was not possible to maintain the same loading rate as the SMP in all reactors fell sharply to less than 0.1 L CH4 g^-1 COD, with the AF affected more than the UASB. On reducing the OLR to 3 g COD L^-1 day^-1 the reactors recovered to produce 0.21 L CH4 g^-1 CODadded and gave 82% COD removal. A discrepancy between the COD consumed and the methane produced could be accounted for through increased maintenance energy requirement of the microbial community for osmo-regulation as K+ was found to accumulate in the sludge and in the UASB reached a concentration of 4.5 mg K g^-1 wet weight of granules.Keywords: anaerobic digestion, osmotic stress, chemical oxygen demand, specific methane production
Procedia PDF Downloads 6553833 Numerical Computation of Generalized Rosenau Regularized Long-Wave Equation via B-Spline Over Butcher’s Fifth Order Runge-Kutta Approach
Authors: Guesh Simretab Gebremedhin, Saumya Rajan Jena
Abstract:
In this work, a septic B-spline scheme has been used to simplify the process of solving an approximate solution of the generalized Rosenau-regularized long-wave equation (GR-RLWE) with initial boundary conditions. The resulting system of first-order ODEs has dealt with Butcher’s fifth order Runge-Kutta (BFRK) approach without using finite difference techniques for discretizing the time-dependent variables at each time level. Here, no transformation or any kind of linearization technique is employed to tackle the nonlinearity of the equation. Two test problems have been selected for numerical justifications and comparisons with other researchers on the basis of efficiency, accuracy, and results of the two invariants Mᵢ (mass) and Eᵢ (energy) of some motion that has been used to test the conservative properties of the proposed scheme.Keywords: septic B-spline scheme, Butcher's fifth order Runge-Kutta approach, error norms, generalized Rosenau-RLW equation
Procedia PDF Downloads 663832 Asia Pacific University of Technology and Innovation
Authors: Esther O. Adebitan, Florence Oyelade
Abstract:
The Millennium Development Goals (MDGs) was initiated by the UN member nations’ aspiration for the betterment of human life. It is expressed in a set of numerical and time-bound targets. In more recent time, the aspiration is shifting away from just the achievement to the sustainability of achieved MDGs beyond the 2015 target. The main objective of this study was assessing how much the hotel industry within the Nigerian Federal Capital Territory (FCT) as a member of the global community is involved in the achievement of sustainable MDGs within the FCT. The study had two population groups consisting of 160 hotels and the communities where these are located. Stratified random sampling technique was adopted in selecting 60 hotels based on large, medium and small hotels categorisation, while simple random sampling technique was used to elicit information from 30 residents of three of the hotels host communities. The study was guided by tree research questions and two hypotheses aimed to ascertain if hotels see the need to be involved in, and have policies in pursuit of achieving sustained MDGs, and to determine public opinion regarding hotels contribution towards the achievement of the MDGs in their communities. A 22 item questionnaire was designed and administered to hotel managers while 11 item questionnaire was designed and administered to hotels’ host communities. Frequency distribution and percentage as well as Chi-square were used to analyse data. Results showed no significant involvement of the hotel industry in achieving sustained MDGs in the FCT and that there was disconnect between the hotels and their immediate communities. The study recommended that hotels should, as part of their Corporate Social Responsibility pick at least one of the goals to work on in order to be involved in the attainment of enduring Millennium Development Goals.Keywords: MDGs, hotels, FCT, host communities, corporate social responsibility
Procedia PDF Downloads 4173831 Durability Enhancement of CaSO4 in Repetitive Operation of Chemical Heat Pump
Authors: Y. Shiren, M. Masuzawa, H. Ohkura, T. Yamagata, Y. Aman, N. Kobayashi
Abstract:
An important problem for the CaSO4/CaSO4・1/2H2O Chemical heat pump (CHP) is that the material is deactivated through repetitive reaction between hydration and dehydration in which the crystal phase of the material is transformed from III-CaSO4 to II-CaSO4. We investigated suppression on the phase change by adding a sulfated compound. The most effective material was MgSO4. MgSO4 doping increased the durability of CaSO4 in the actual CHP repetitive cycle of hydration/dehydration to 3.6 times that of undoped CaSO4. The MgSO4-doped CaSO4 showed a higher phase transition temperature and activation energy for crystal transformation from III-CaSO4 to II-CaSO4. MgSO4 doping decreased the crystal lattice size of CaSO4・1/2H2O and II-CaSO4 to smaller than that of undoped CaSO4. Modification of the crystal structure is considered to be related to the durability change in CaSO4 resulting from MgSO4 doping.Keywords: CaSO4, chemical heat pump, durability of chemical heat storage material, heat storage
Procedia PDF Downloads 5793830 Access to Sexual Reproductive Health (SRH) Education and Services to Deaf Adolescents in Wakiso, Uganda - The Ugandan Perspective
Authors: Racheal Ayanga, Nancy Katumba Muwangala, Jane Babirye, Harriet Kivumbi
Abstract:
Background: Deaf adolescents are vulnerable. Deafness limits their access to resources that are accessed by their hearing peers. There is minimal attention placed on the SRH needs of persons with disabilities, especially in developing countries. We sought to assess barriers to access of SRH education and services for deaf adolescents in Uganda. Methods: We performed a cross sectional study using a questionnaire on knowledge of and access to SRH education and services from a selected sample of deaf adolescents aged 13-19 years at Wakiso Secondary school for the deaf. A consecutive sample of eligible participants was asked to join the study after obtaining informed consent until the target sample size was reached. Results: From 01 Jul 2022 to 30 Jan 2023, 70 quantitative interviews were conducted. Participants’ mean age was 17 years, and 66% were female. 89% had heard about several components of SRH. 99% reported a need for education and services but had challenges with access 85% of the time. 54% reported receipt of education and services from government or private facilities, and the rest from friends, parents, siblings, teachers and the internet. Conclusion: Government needs to look into availing tailored, sustainable SRH education/services to deaf adolescents at health facilities and teach health workers sign language. SRH education to parents, teachers and communities of deaf adolescents improves access in hard-to-reach areas. Integration of services into routine health care is key in creating and improving models of access to wider communities of persons with disabilities to improve their mental health.Keywords: sexual and reproductive health, deaf, adolescents, education, services, disabilities, mental health, hard-to-reach areas
Procedia PDF Downloads 853829 Existing International Cooperation Mechanisms and Proposals to Enhance Their Effectiveness for Marine-Based Geoengineering Governance
Authors: Aylin Mohammadalipour Tofighi
Abstract:
Marine-based geoengineering methods, proposed to mitigate climate change, operate primarily through two mechanisms: reducing atmospheric carbon dioxide levels and diminishing solar absorption by the oceans. While these approaches promise beneficial outcomes, they are fraught with environmental, legal, ethical, and political challenges, necessitating robust international governance. This paper underscores the critical role of international cooperation within the governance framework, offering a focused analysis of existing international environmental mechanisms applicable to marine-based geoengineering governance. It evaluates the efficacy and limitations of current international legal structures, including treaties and organizations, in managing marine-based geoengineering, noting significant gaps such as the absence of specific regulations, dedicated international entities, and explicit governance mechanisms such as monitoring. To rectify these problems, the paper advocates for concrete steps to bolster international cooperation. These include the formulation of dedicated marine-based geoengineering guidelines within international agreements, the establishment of specialized supervisory entities, and the promotion of transparent, global consensus-building. These recommendations aim to foster governance that is environmentally sustainable, ethically sound, and politically feasible, thereby enhancing knowledge exchange, spurring innovation, and advancing the development of marine-based geoengineering approaches. This study emphasizes the importance of collaborative approaches in managing the complexities of marine-based geoengineering, contributing significantly to the discourse on international environmental governance in the face of rapid climate and technological changes.Keywords: climate change, environmental law, international cooperation, international governance, international law, marine-based geoengineering, marine law, regulatory frameworks
Procedia PDF Downloads 743828 Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method
Authors: Mai M. Khalaf, Hany M. Abd El-Lateef
Abstract:
A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively.Keywords: dip-coatings, corrosion protection, sol gel, TiO2 films, PEG
Procedia PDF Downloads 4293827 Assessment of the Road Safety Performance in National Scale
Authors: Abeer K. Jameel, Harry Evdorides
Abstract:
The Assessment of the road safety performance is a challengeable issue. This is not only because of the ineffective and unreliability of road and traffic crash data system but also because of its systematic character. Recent strategic plans and interventions implemented in some of the developed countries where a significant decline in the rate of traffic and road crashes considers that the road safety is a system. This system consists of four main elements which are: road user, road infrastructure, vehicles and speed in addition to other supporting elements such as the institutional framework and post-crash care system. To assess the performance of a system, it is required to assess all its elements. To present an understandable results of the assessment, it is required to present a unique term representing the performance of the overall system. This paper aims to develop an overall performance indicator which may be used to assess the road safety system. The variables of this indicators are the main elements of the road safety system. The data regarding these variables will be collected from the World Health Organization report. Multi-criteria analysis method is used to aggregate the four sub-indicators for the four variables. Two weighting methods will be assumed, equal weights and different weights. For the different weights method, the factor analysis method is used. The weights then will be converting to scores. The total score will be the overall indicator for the road safety performance in a national scale. This indicator will be used to compare and rank countries according to their road safety performance indicator. The country with the higher score is the country which provides most sustainable and effective interventions for successful road safety system. These indicator will be tested by comparing them with the aggregate real crash rate for each country.Keywords: factor analysis, Multi-criteria analysis, road safety assessment, safe system indicator
Procedia PDF Downloads 2703826 Influence of Geometrical Parameters of a Wind Turbine on the Optimal Tip-Speed Ratio
Authors: Zdzislaw Piotr Kaminski, Miroslaw Wendeker, Zbigniew Czyz
Abstract:
The paper describes the geometric model, calculation algorithm and results of the CFD simulation of the airflow around a rotor in the vertical axis wind turbine (VAWT) with the ANSYS Fluent computational solver. The CFD method enables creating aerodynamic characteristics of forces acting on rotor working surfaces and determining parameters such as torque or power generated by the rotor assembly. The object of the research was a rotor whose construction is based on patent no.PL219985. The conducted tests enabled a mathematical model with a description of the generation of aerodynamic forces acting on each rotor blade. Additionally, this model was compared to the results of the wind tunnel tests. The analysis also focused on the influence of the blade angle on turbine power and the TSR. The research has shown that the turbine blade angle has a significant impact on the optimal value of the TSR.Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine
Procedia PDF Downloads 1533825 Isolation and Characterization of Chromium Tolerant Staphylococcus aureus from Industrial Wastewater and Their Potential Use to Bioremediate Environmental Chromium
Authors: Muhammad Tariq, Muhammad Waseem, Muhammad Hidayat Rasool
Abstract:
Isolation and characterization of chromium tolerant Staphylococcus aureus from industrial wastewater and their potential use to bioremediate environmental chromium. Objectives: Chromium with its great economic importance in industrial use is major metal pollutant of the environment. Chromium are used in different industries for various applications such as textile, dyeing and pigmentation, wood preservation, manufacturing pulp and paper, chrome plating, steel and tanning. The release of untreated chromium in industrial effluents causes serious threat to environment and human health, therefore, the current study designed to isolate chromium tolerant Staphylococcus aureus for removal of chromium prior to their final discharge into the environment due to its cost effective and beneficial advantage over physical and chemical methods. Methods: Wastewater samples were collected from discharge point of different industries. Heavy metal analysis by atomic absorption spectrophotometer and microbiological analysis such as total viable count, total coliform, fecal coliform and Escherichia coli were conducted. Staphylococcus aureus was identified through gram’s staining, biomeriux vitek 2 microbial identification system and 16S rRNA gene amplification by polymerase chain reaction. Optimum growth conditions with respect to temperature, pH, salt concentrations and effect of chromium on the growth of bacteria, resistance to other heavy metal ions, minimum inhibitory concentration and chromium uptake ability of Staphylococcus aureus strain K1 was determined by spectrophotometer. Antibiotic sensitivity pattern was also determined by disc diffusion method. Furthermore, chromium uptake ability was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope equipped with Oxford Energy Dipersive X-ray (EDX) micro analysis system. Results: The results presented that optimum temperature was 35ᵒC, pH was 8.0 and salt concentration was 0.5% for growth of Staphylococcus aureus K1. The maximum uptake ability of chromium by bacteria was 20mM than other heavy metal ions. The antibiotic sensitivity pattern revealed that Staphylococcus aureus was vancomycin and methicillin sensitive. Non hemolytic activity on blood agar and negative coagulase reaction showed that it was non-pathogenic. Furthermore, the growth of bacteria decreases in the presence of chromium and maximum chromium uptake by bacteria observed at optimum growth conditions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and Energy dispersive X-ray (EDX) analysis confirmed the presence of chromium uptake by Staphylococcus aureus K1. Conclusion: The study revealed that Staphylococcus aureus K1 have the potential to bio-remediate chromium toxicity from wastewater. Gradually, this biological treatment becomes more important due to its advantage over physical and chemical methods to protect environment and human health.Keywords: wastewater, staphylococcus, chromium, bioremediation
Procedia PDF Downloads 1693824 Towards Resilient and Sustainable Integrated Agro-ecosystems Through Appropriate Climate-smart Farming Practices in Morocco Rainfed Agriculture
Authors: Abdelali Laamari, Morad Faiz, Ali Amamou And Mohamed Elkoudrim
Abstract:
This research seeks to develop multi-disciplinary, multi-criteria, and multi-institutional approaches that consider the three main pillars of sustainability (environmental, economic, and social aspects) at the level of decision making regarding the adoption of improved technologies in the targeted case study region in Morocco. The study is aimed at combining sound R&I with extensive skills in applied research and policy evaluation. The intention is to provide new simple, and transferable tools and agricultural practices that will enable the uptake of sustainability and the resiliency of agro-ecosystems. The study will understand the state-of-the-art of the impact of climate change and identify the core bottlenecks and climate change’s impact on crop and livestock productivity of the targeted value chains in Morocco. Studies conducted during 2021-2022 showed that most of the farmers are using since 2010 the direct seeding and the system can be improved by adopting new fertilizer and varieties of wheat. The alley-cropping technology is based on Atriplex plant or olive trees. The introduction of new varieties of oat and quinoa has improved biomass and grain production in a dry season. The research is targeting other issues, such as social enterprises, to diversify women’s income resources and create new job opportunities through diversification of end uses of durum wheat and barley grains. Women’s local knowledge is rich on the different end uses of durum and barley grains that can improve their added value if they are transformed as couscous, pasta, or any other products.Keywords: agriculture, climate, production system, integration
Procedia PDF Downloads 763823 Thermodynamically Predicting the Impact of Temperature on the Performance of Drilling Bits as a Function of Time
Authors: Talal Al-Bazali
Abstract:
Air drilling has recently received increasing acceptance by the oil and gas industry due to its unique advantages. The main advantages of air drilling include the higher rate of penetration, less formation damage, lower risk of loss of circulation. However, these advantages cannot be fully realized if thermal effects in air drilling are not well understood and minimized. Due to its high frictional coefficient, low heat conductivity, and high compressibility, air can impact the temperature distribution of bit and thus affect its bit performances. Based on energy and mass balances, a transient thermal model that predicts bit temperature is presented along with numerical solutions in this paper. In addition, several important parameters that influence bit temperature distribution are analyzed. Simulation results show that the bit temperature increases with increasing weight on bit and rotary speed but decreases as the standpipe pressure and flow rate increase. These results can be used to optimize drilling operations and flow parameters for an improved bit performance as shown in this paper.Keywords: air drilling, rate of penetration, temperature, rotary speed
Procedia PDF Downloads 2853822 An Analytical and Numerical Solutions for the Thermal Analysis of a Mechanical Draft Wet Cooling Tower
Authors: Hamed Djalal
Abstract:
The thermal analysis of the mechanical draft wet cooling tower is performed in this study by the heat and mass transfer modelization in the packing zone. After combining the heat and mass transfer laws, the mass and energy balances and by involving the Merkel assumptions; firstly, an ordinary differential equations system is derived and solved numerically by the Runge-Kutta method to determine the water and air temperatures, the humidity, and also other properties variation along the packing zone. Secondly, by making some linear assumptions for the air saturation curve, an analytical solution is formed, which is developed for the air washer calculation, but in this study, it is applied for the cooling tower to express also the previous parameters mathematically as a function of the packing height. Finally, a good agreement with experimental data is achieved by both solutions, but the numerical one seems to be the more accurate for modeling the heat and mass transfer process in the wet cooling tower.Keywords: evaporative cooling, cooling tower, air washer, humidification, moist air, heat, and mass transfer
Procedia PDF Downloads 1013821 Ultrasonic Atomizer for Turbojet Engines
Authors: Aman Johri, Sidhant Sood, Pooja Suresh
Abstract:
This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations
Procedia PDF Downloads 2403820 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine
Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu
Abstract:
Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization
Procedia PDF Downloads 1613819 Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery
Authors: Sreeparna Majee, G. C. Shit
Abstract:
Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines.Keywords: magnetohydrodynamics, blood flow, stenosis, energy dissipation
Procedia PDF Downloads 2753818 Integration of Edible Insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria: Teachers’ Perception
Authors: Ali Christian Chinedu, Asogwa Vincent Chidindu, Ejiofor Toochukwu Eleazar, Okadi Ashagwu Ojang
Abstract:
The increasing rate of Boko Haram insurgency, farmer-herder clashes, and kidnapping in Nigeria has resulted in food shortages and high cost of protein sources like beef and fish. This challenge could be curbed with the production of edible insects, which contain several nutritional benefits like calories, protein, fat, vitamins, and minerals, depending on their species, metamorphic stage, and diet. Unfortunately, the benefits and competencies in producing, preserving, and marketing edible insects are still unknown to the public, including prospective farmers in Nigeria. Hence, this study determined teachers’ perception of integrating edible insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria to equip the future generation with the relevant competencies for alternative sustainable protein supply. The study was carried out in Enugu State, Nigeria. The participants for the study comprised 162 agricultural science teachers. A questionnaire titled: Edible Insects Integration in Animal Husbandry Curriculum Questionnaire (EIIAHCQ) was used to collect data using a descriptive survey research design. We conducted data collection with the help of six research assistants. The study identified 11 objectives, 11 contents, 10 teaching methods, and 9 evaluation methods that could be integrated into the existing curriculum of animal husbandry in Nigeria. Among others, the Ministry of Education should integrate the finding of this study into the curriculum of Animal Husbandry in Nigeria to enhance the protein supply and curb food insecurity now and in the future.Keywords: animal husbandry curriculum, edible insects, entomophagy, integration, secondary school, Nigeria
Procedia PDF Downloads 92