Search results for: robust H-infinity control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11946

Search results for: robust H-infinity control

11166 Sensitivity Analysis for 14 Bus Systems in a Distribution Network with Distribution Generators

Authors: Lakshya Bhat, Anubhav Shrivastava, Shivarudraswamy

Abstract:

There has been a formidable interest in the area of Distributed Generation in recent times. A wide number of loads are addressed by Distributed Generators and have better efficiency too. The major disadvantage in Distributed Generation is voltage control- is highlighted in this paper. The paper addresses voltage control at buses in IEEE 14 Bus system by regulating reactive power. An analysis is carried out by selecting the most optimum location in placing the Distributed Generators through load flow analysis and seeing where the voltage profile rises. Matlab programming is used for simulation of voltage profile in the respective buses after introduction of DG’s. A tolerance limit of +/-5% of the base value has to be maintained.To maintain the tolerance limit , 3 methods are used. Sensitivity analysis of 3 methods for voltage control is carried out to determine the priority among the methods.

Keywords: distributed generators, distributed system, reactive power, voltage control, sensitivity analysis

Procedia PDF Downloads 587
11165 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 181
11164 Performance Analysis of Permanent Magnet Synchronous Motor Using Direct Torque Control Based ANFIS Controller for Electric Vehicle

Authors: Marulasiddappa H. B., Pushparajesh Viswanathan

Abstract:

Day by day, the uses of internal combustion engines (ICE) are deteriorating because of pollution and less fuel availability. In the present scenario, the electric vehicle (EV) plays a major role in the place of an ICE vehicle. The performance of EVs can be improved by the proper selection of electric motors. Initially, EV preferred induction motors for traction purposes, but due to complexity in controlling induction motor, permanent magnet synchronous motor (PMSM) is replacing induction motor in EV due to its advantages. Direct torque control (DTC) is one of the known techniques for PMSM drive in EV to control the torque and speed. However, the presence of torque ripple is the main drawback of this technique. Many control strategies are followed to reduce the torque ripples in PMSM. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) controller technique is proposed to reduce torque ripples and settling time. Here the performance parameters like torque, speed and settling time are compared between conventional proportional-integral (PI) controller with ANFIS controller.

Keywords: direct torque control, electric vehicle, torque ripple, PMSM

Procedia PDF Downloads 164
11163 Perspectives of Healthcare Workers on Healthcare-Associated Infections and Infection Control in a Tertiary Care Hospital in Abha, Saudi Arabia

Authors: Esther Paul, Ibrahim A. M. Alzaydani, Al Hakami, Caryl Beynon

Abstract:

Research Objectives and Goal: The main aim of the current study was to explore the perspectives of healthcare workers on Healthcare-associated infections (HAI) and infection control measures in a tertiary care Hospital in Abha, Saudi Arabia. As per our knowledge, this is perhaps the first qualitative study on HAI to be done in Saudi Arabia. The goal of the study was to understand the perspectives of the healthcare workers on the current protocol and guidelines for HAI and infections control measures in the hospital, the effectiveness of the current protocol for HAI and infection control measures and ways of reducing the incidence of HAI and improve infection control measures. Methods used: A qualitative research design was used to collect the data from 25 healthcare workers consisting of doctors and nurses, recruited by Snowball strategy via semi-structured interviews which were audio-recorded and transcribed verbatim immediately. An interview guide consisting of open-ended questions about the existing HAI and infection control practices in the healthcare facility, the awareness of the healthcare workers about HAI and the need for safe infection control measures were used to collect the data. The transcribed data were analyzed using the thematic analysis method. Results: Using thematic analysis four themes were identified.1.Knowledge of HAI and infection control 2. Infection control measures in practice 3. The gap in infection control measures and HAI 4. Required Implementations. The first theme covered the participants' knowledge on HAI, its definition, the types of HAI and the infection control measures.Most of the participants were aware of HAI and had some idea of the definition of HAI, its significance and the dangers posed by HAI, but few residents had no idea of the types of HAI. The second theme was focussed on the infection control measures in practice. Most of the participants were aware of the importance of infection control measures like hand hygiene, catheter care, and waste disposal. The nurses were responsible for most of the disinfection and sterilization measures and practiced it effectively. However, some doctors and residents had no inkling about these measures. The third theme emphasized that although most of the participants were aware of HAI and infection control measures and were in practice. There were some lacunae regarding their knowledge of the different types of HAI, Personal Protective Equipment practices, communication among the healthcare personnel and the hospital administrations and the means of waste disposal. The fourth and the final theme identified that most of the participants felt the need for implementations of changes regarding existing protocols, workshops/seminars, methods of waste disposal and sterilization and disinfection practices. Conclusion: The current qualitative study concluded that there is a need for better educational programs and hands-on training for all the healthcare personnel including the paramedical staff as well. The residents should have adequate knowledge of infection control practices to guide the nurses and should share the responsibility with the nurses in the practice of effective infection control measures

Keywords: healthcare-associated infections, infection control measures, perspectives, qualitative

Procedia PDF Downloads 218
11162 Improving the Quantification Model of Internal Control Impact on Banking Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Risk management in banking sector is a key issue linked to financial system stability and its importance has been elevated by technological developments and emergence of new financial instruments. In this paper, we improve the model previously defined for quantifying internal control impact on banking risks by automatizing the residual criticality estimation step of FMECA. For this, we defined three equations and a maturity coefficient to obtain a mathematical model which is tested on all banking processes and type of risks. The new model allows an optimal assessment of residual criticality and improves the correlation rate that has become 98%.

Keywords: risk, control, banking, FMECA, criticality

Procedia PDF Downloads 334
11161 Developing and Shake Table Testing of Semi-Active Hydraulic Damper as Active Interaction Control Device

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

Semi-active control system for structure under excitation of earthquake provides with the characteristics of being adaptable and requiring low energy. DSHD (Displacement Semi-Active Hydraulic Damper) was developed by our research team. Shake table test results of this DSHD installed in full scale test structure demonstrated that this device brought its energy-dissipating performance into full play for test structure under excitation of earthquake. The objective of this research is to develop a new AIC (Active Interaction Control Device) and apply shake table test to perform its dissipation of energy capability. This new proposed AIC is converting an improved DSHD (Displacement Semi-Active Hydraulic Damper) to AIC with the addition of an accumulator. The main concept of this energy-dissipating AIC is to apply the interaction function of affiliated structure (sub-structure) and protected structure (main structure) to transfer the input seismic force into sub-structure to reduce the structural deformation of main structure. This concept is tested using full-scale multi-degree of freedoms test structure, installed with this proposed AIC subjected to external forces of various magnitudes, for examining the shock absorption influence of predictive control, stiffness of sub-structure, synchronous control, non-synchronous control and insufficient control position. The test results confirm: (1) this developed device is capable of diminishing the structural displacement and acceleration response effectively; (2) the shock absorption of low precision of semi-active control method did twice as much seismic proof efficacy as that of passive control method; (3) active control method may not exert a negative influence of amplifying acceleration response of structure; (4) this AIC comes into being time-delay problem. It is the same problem of ordinary active control method. The proposed predictive control method can overcome this defect; (5) condition switch is an important characteristics of control type. The test results show that synchronism control is very easy to control and avoid stirring high frequency response. This laboratory results confirm that the device developed in this research is capable of applying the mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

Keywords: DSHD (Displacement Semi-Active Hydraulic Damper), AIC (Active Interaction Control Device), shake table test, full scale structure test, sub-structure, main-structure

Procedia PDF Downloads 519
11160 4-DOFs Parallel Mechanism for Minimally Invasive Robotic Surgery

Authors: Khalil Ibrahim, Ahmed Ramadan, Mohamed Fanni, Yo Kobayashi, Ahmed Abo-Ismail, Masakatus G. Fujie

Abstract:

This paper deals with the design process and the dynamic control simulation of a new type of 4-DOFs parallel mechanism that can be used as an endoscopic surgical manipulator. The proposed mechanism, 2-PUU_2-PUS, is designed based on the screw theory and the parallel virtual chain type synthesis method. Based on the structure analysis of the 4-DOF parallel mechanism, the inverse position equation is studied using the inverse analysis theory of kinematics. The design and the stress analysis of the mechanism are investigated using SolidWorks software. The virtual prototype of the parallel mechanism is constructed, and the dynamic simulation is performed using ADAMS TM software. The system model utilizing PID and PI controllers has been built using MATLAB software. A more realistic simulation in accordance with a given bending angle and point to point control is implemented by the use of both ADAMS/MATLAB software. The simulation results showed that this control method has solved the coordinate control for the 4-DOF parallel manipulator so that each output is feedback to the four driving rods. From the results, the tracking performance is achieved. Other control techniques, such as intelligent ones, are recommended to improve the tracking performance and reduce the numerical truncation error.

Keywords: parallel mechanisms, medical robotics, tracjectory control, virtual chain type synthesis method

Procedia PDF Downloads 468
11159 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed

Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy

Abstract:

Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.

Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control

Procedia PDF Downloads 266
11158 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances

Authors: Shabnam Pashaei, Mohammadali Badamchizadeh

Abstract:

This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.

Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization

Procedia PDF Downloads 411
11157 Indoor Air Pollution Control Using a Soil Biofilter

Authors: Daisy B. Badilla, Peter A. Gostomski

Abstract:

Abstract: Biofiltration may be used to control indoor air pollution. In biofiltration, microorganisms break down harmful contaminants in air or water, transforming them into non-toxic substances like carbon dioxide, water, and biomass. In this study, the CO₂ production and the elimination capacity (EC) of toluene at inlet concentrations between 20 and 80 ppm were investigated using three biofilters operated separately with soil as bed material. Results showed soil, with its rich microflora taken to full advantage without inoculants and additional nutrients, biodegraded toluene at removal rates comparable to those in other studies at higher concentrations. The amount of CO₂ generated corresponds to the amount of toluene removed, indicating efficient biodegradation and suggesting stable long-term performance at these low concentrations. Although the concentrations in this study differ from typical indoor toluene levels (ppb), the findings suggest that biofiltration could be effective for indoor air pollution control with appropriate design, taking into account biomass growth or biofilm structure, concentration, and gas flow rate.

Keywords: biofiltration, air pollution control, soil, toluene

Procedia PDF Downloads 13
11156 Impact of Pulmonary Rehabilitation on Respiratory Parameters in Interstitial Lung Disease Patients: A Tertiary Care Hospital Study

Authors: Vivek Ku, A. K. Janmeja, D. Aggarwal, R. Gupta

Abstract:

Purpose: Pulmonary rehabilitation plays a key role in management of chronic lung diseases. However, pulmonary rehabilitation is an underused modality in the management of interstitial lung disease (ILD). This is because limited information is available in literature and no data is available from India on this issue so far. The study was carried out to evaluate the role of pulmonary rehabilitation on respiratory parameters in ILD patients. Methods: The present study was a prospective randomized non-blind case control study. Total of 40 ILD patients were randomized into 2 groups of 20 patients each viz ‘pulmonary rehabilitation group’ and ‘control group’. Pulmonary rehabilitation group underwent 8 weeks pulmonary rehabilitation (PR) along with medical management as per guidelines and the control group was advised only medical management. Results: Mean age in case group was 59.15 ± 10.39 years and in control group was 62.10 ± 14.54 years. The case and the control groups were matched for age and sex. Mean MRC grading at the end of 8 weeks showed significant improvement in the case group as compared to control group (p= 0.011 vs p = 0.655). Similarly, mean St. George Respiratory Questionnaire (SGRQ) score also showed significant improvement in pulmonary rehabilitation group at the end of the study (p= 0.001 vs p= 0.492). However, FEV1 and FVC had no significant change in the case and control group. Similarly, blood gases also did not show any significant difference in the group. Conclusion: Pulmonary rehabilitation improves breathlessness and thereby improves quality of life in the patients suffering from ILD. However, the pulmonary function values and blood gases are unaffected by pulmonary rehabilitation. Clinical Implications: Further large scale multicentre study is needed to ascertain the association.

Keywords: ILD, pulmonary rehabilitation, quality of life, pulmonary functions

Procedia PDF Downloads 270
11155 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control

Procedia PDF Downloads 520
11154 Association of Daily Physical Activity with Diabetes Control in Patients with Type II Diabetes

Authors: Chia-Hsun Chang

Abstract:

Background: Combination of drug treatment, dietary management, and regular exercise can effectively control type II diabetes mellitus (T2DM). Performing daily physical activities other than structured exercise is much easier and whether daily physical activities including work, walking, housework, gardening, leisure exercise, or transportation have a similar effect on diabetes control is not well studied.Aims and Objectives: This study aims to determine whether daily physical activity undertaken by patients with T2DM is associated with their diabetes control. Design: A correlation study with prospective design. Methods: Purposive sampling of 206 patients with T2DM was recruited from a medical center in Central Taiwan. The International Physical Activity Questionnaire was used to assess daily levels of physical activities, and the Diabetes Compliance Questionnaire was used to assess medication and dietary compliance. Data of diabetes control (hemoglobin A1c, HbA1c)were followed up every three months for one year after recruitment. Results: In this study, the average age of the participants was 62.5 years (±10.4 years), and the average duration of diabetes since diagnosis was 13.2 years (±7.8), 112 of the participants were women (54.4%) and 94 of the participants were men (45.6%). The mean HbA1c level was 7.8% (±1.4), and 78.2% of the participants presented with unsatisfactory diabetes control. Because the participants were distributed across a wide age range, and their physical health, activity levels, and comorbidities might have varied with age, the participants were divided into two groups: 121 participants who were younger than 65 years (58.7%) and 85 participants who were older than 65 years (41.3%). Both younger (< 65 years) and older (> 65 years) patients with diabetes engaged in more moderate and low levels of physical activity (89.3% and 87%, respectively). Results showed that the levels of daily physical activity were not significantly associated with diabetes control after adjustment for medication and dietary compliance in both groups. Conclusion: Performing daily physical activity is not significantly correlated with diabetes control. Daily physical activity cannot completely replace exercise. Relevance to Clinical Practice: Health personnel must encourage patients to engage in exercise that is planned, structured, and repetitive for improving diabetes control.

Keywords: daily physical activity, diabetes control, international physical activity questionnaire (IPAQ), type II diabetes mellitus (T2DM)

Procedia PDF Downloads 169
11153 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, Rüdiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: damping coefficients, finite element analysis, super-element, state-space model

Procedia PDF Downloads 320
11152 Predictors of Behavior Modification Prior to Bariatric Surgery

Authors: Rosemarie Basile, Maria Loizos, John Pallarino, Karen Gibbs

Abstract:

Given that complications can be significant following bariatric surgery and with rates of long-term success measured in excess weight loss varying as low as 33% after five years, an understanding of the psychological factors that may mitigate findings and increase success and result in better screening and supports prior to surgery are critical. An internally oriented locus of control (LOC) has been identified as a predictor for success in obesity therapy, but has not been investigated within the context of bariatric surgery. It is hypothesized that making behavioral changes prior to surgery which mirror those that are required post-surgery may ultimately predict long-term success. 122 subjects participated in a clinical interview and completed self-report measures including the Multidimensional Health Locus of Control Scale, Overeating Questionnaire (OQ), and Lifestyle Questionnaire (LQ). Pearson correlations were computed between locus of control orientation and likelihood to make behavior changes prior to surgery. Pearson correlations revealed a positive correlation between locus of control and likelihood to make behavior changes r = 0.23, p < .05. As hypothesized, there was a significant correlation between internal locus of control and likelihood to make behavior changes. Participants with a higher LOC believe that they are able to make decisions about their own health. Future research will focus on whether this positive correlation is a predictor for future bariatric surgery success.

Keywords: bariatric surgery, behavior modification, health locus of control, overeating questionnaire

Procedia PDF Downloads 313
11151 Bandwidth Control Using Reconfigurable Antenna Elements

Authors: Sudhina H. K, Ravi M. Yadahalli, N. M. Shetti

Abstract:

Reconfigurable antennas represent a recent innovation in antenna design that changes from classical fixed-form, Fixed function antennas to modifiable structures that can be adapted to fit the requirements of a time varying system. The ability to control the operating band of an antenna system can have many useful applications. Systems that operate in an acquire-and-track configuration would see a benefit from active bandwidth control. In such systems a wide band search mode is first employed to find a desired signal, Then a narrow band track mode is used to follow only that signal. Utilizing active antenna bandwidth control, A single antenna would function for both the wide band and narrow band configurations providing the rejection of unwanted signals with the antenna hardware. This ability to move a portion of the RF filtering out of the receiver and onto the antenna itself will also aid in reducing the complexity of the often expensive RF processing subsystems.

Keywords: designing methods, mems, stack, reconfigurable elements

Procedia PDF Downloads 272
11150 Field Application of Trichoderma Harzianum for Biological Control of Root-Knot Nematodes in Summer Tomatoes

Authors: Baharullah Khattak, Saifullah

Abstract:

To study the efficacy of the selected Trichoderma isolates, field trials were conducted in the root-knot nematode-infested areas of Dargai and Swat, Pakistan. Four isolates of T. harzianum viz, Th-1, Th-2, Th-9 and Th-15 were tested against root knot nematodes on summer tomatoes under field conditions. The T. harzianum isolates, grown on wheat grains substrate, were applied @ 8 g plant-1, either alone or in different combinations. Root weight of tomato plants was reduced Th-9 as compared to 26.37 g in untreated control. Isolate Th-1 was found to enhance shoot and root lengths to the maximum levels of 78.76 cm and 19.59 cm, respectively. Tomato shoot weight was significantly increased (65.36g) in Th-1-treated plots as compared to 49.66 g in control. Maximum (156) number of flowers plant-1 and highest (48.18%) fruit set plant-1 was observed in Th-1 treated plots, while there were 87 flowers and 35.50% fruit set in the untreated control. Maximum fruit weight (70.97 g) plant-1 and highest (17.99 t ha-1) marketable yield were recorded in the treatments where T. harzianum isolate Th-1 was used, in comparison to 51.33 g tomato fruit weight and 9.90 t ha-1 yield was noted in the control plots. It was observed that T. harzianum isolates significantly reduced the nematode populations. The fungus enhanced plant growth and yield in all the treated plots. Jabban isolate (Th-1) was found as the most effective in nematode suppression followed by Shamozai (Th-9) isolate. It was concluded from the present findings that T. harzianum has a potential bio control capability against root-knot nematodes.

Keywords: biological control, Trichoderma harzianum, root-knot nematode, meloidogyne

Procedia PDF Downloads 497
11149 Implementation of a Predictive DTC-SVM of an Induction Motor

Authors: Chebaani Mohamed, Gplea Amar, Benchouia Mohamed Toufik

Abstract:

Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to the motor parameters variations. This paper proposes the implementation of DTC-SVM of an induction motor drive using Predictive controller. The principle of the method is explained and the system mathematical description is provided. The derived control algorithm is implemented both in the simulation software MatLab/Simulink and on the real induction motor drive with dSPACE control system. Simulated and measured results in steady states and transients are presented.

Keywords: induction motor, DTC-SVM, predictive controller, implementation, dSPACE, Matlab, Simulink

Procedia PDF Downloads 518
11148 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 195
11147 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism

Authors: Bin Bian, Liang Wang

Abstract:

A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.

Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking

Procedia PDF Downloads 105
11146 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models

Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park

Abstract:

Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.

Keywords: display-control layout design, interactive layout design system, mental model, train drivers

Procedia PDF Downloads 306
11145 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things

Authors: Wei Hu, Wenguang Chen, Chong Dong

Abstract:

In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.

Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management

Procedia PDF Downloads 123
11144 Integrative Transcriptomic Profiling of NK Cells and Monocytes: Advancing Diagnostic and Therapeutic Strategies for COVID-19

Authors: Salma Loukman, Reda Benmrid, Najat Bouchmaa, Hicham Hboub, Rachid El Fatimy, Rachid Benhida

Abstract:

In this study, it use integrated transcriptomic datasets from the GEO repository with the purpose of investigating immune dysregulation in COVID-19. Thus, in this context, we decided to be focused on NK cells and CD14+ monocytes gene expression, considering datasets GSE165461 and GSE198256, respectively. Other datasets with PBMCs, lung, olfactory, and sensory epithelium and lymph were used to provide robust validation for our results. This approach gave an integrated view of the immune responses in COVID-19, pointing out a set of potential biomarkers and therapeutic targets with special regard to standards of physiological conditions. IFI27, MKI67, CENPF, MBP, HBA2, TMEM158, THBD, HBA1, LHFPL2, SLA, and AC104564.3 were identified as key genes from our analysis that have critical biological processes related to inflammation, immune regulation, oxidative stress, and metabolic processes. Consequently, such processes are important in understanding the heterogeneous clinical manifestations of COVID-19—from acute to long-term effects now known as 'long COVID'. Subsequent validation with additional datasets consolidated these genes as robust biomarkers with an important role in the diagnosis of COVID-19 and the prediction of its severity. Moreover, their enrichment in key pathophysiological pathways presented them as potential targets for therapeutic intervention.The results provide insight into the molecular dynamics of COVID-19 caused by cells such as NK cells and other monocytes. Thus, this study constitutes a solid basis for targeted diagnostic and therapeutic development and makes relevant contributions to ongoing research efforts toward better management and mitigation of the pandemic.

Keywords: SARS-COV-2, RNA-seq, biomarkers, severity, long COVID-19, bio analysis

Procedia PDF Downloads 12
11143 Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment

Authors: V. Sankaranarayanan, V. Amrita Sundari, Sunit P. Gopal

Abstract:

This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system.

Keywords: mobile inverted pendulum, switched control, nonlinear systems, lyapunov stability

Procedia PDF Downloads 328
11142 Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain

Authors: Radwa Elshorbagy, Alaa Elden Balbaa, Khaled Ayad, Waleed Reda

Abstract:

Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare between and within group differences, in group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to rely more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury.

Keywords: hip strategy, ankle strategy, postural control, dynamic balance

Procedia PDF Downloads 338
11141 Low Intake of Aspartame Induced Weight Gain and Damage of Brain and Liver Cells in Weanling Syrian Hamsters

Authors: Magda I. Hassan

Abstract:

This paper aims to investigate the health effects of aspartame on weanling male hamsters. 20 Golden Syrian hamsters drank only water (control) or water with 6, 11, and 18 mg aspartame/kg of body weight per day for 42 days. Food intake, weight gain, glucose blood level, and lipid profile were determined at the end of the experiment. The animals were sacrificed and histopathological examination of organs (liver, brain and heart) was done. Results revealed that animals in Asp.groups consumed significantly larger amount of food than the control (13.4±5.9, 8.6±2.5 and 8.8±3.0 vs 4.2±2.5 g/day, in succession). Hamsters in the control group showed higher total cholesterol and HDL levels than hamsters in aspartame 6, 11, 18 groups (160±19 vs 101±13, 130±22, 141±15 mg/dl & 144±9 vs 120±12, 118±13, 99±17 respectively (P<0•05)). The control group showed a glucose concentration below those of aspartame groups, indicating no effect of aspartame on glucose blood level. While, there were no significant differences in the triglycerides and LDL levels between control group and Asp.groups. Histopathological changes were observed, especially in brain and liver cells. Aspartame increases appetite and weight gain of young hamsters. Therefore, FDA should reconsider the acceptable daily intake (ADI) of aspartame for children.

Keywords: aspartame, brain, food intake, hamsters

Procedia PDF Downloads 285
11140 Detection of Clipped Fragments in Speech Signals

Authors: Sergei Aleinik, Yuri Matveev

Abstract:

In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.

Keywords: clipping, clipped signal, speech signal processing, digital signal processing

Procedia PDF Downloads 393
11139 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: vehicle auto-parking, parking space detection, parking path tracking control, intelligent fuzzy controller

Procedia PDF Downloads 244
11138 Active Learning Role on Strategic I-Map Thinking in Developing Reasoning Thinking and the Intrinsic-Motivation Orientation

Authors: Khaled Alotaibi

Abstract:

This paper deals with developing reasoning thinking and the intrinsic-extrinsic motivation for learning, and enhancing the academic achievement of a sample of students at Teachers' College in King Saud University. The study sample included 58 students who were divided randomly into two groups; one was an experimental group with 20 students and the other was a control group with 22 students. The following tools were used: e-courses by using I-map, Reasoning Thinking Tes, questionnaire to measure the intrinsic-extrinsic motivation for learning and an academic achievement test. Experimental group was taught using e-courses by using I-map, while the control group was taught by using traditional education. The results showed that: - There were no statistically significant differences between the experimental group and the control group in Reasoning thinking skills. - There were statistically significant differences between the experimental group and the control group in the intrinsic-extrinsic motivation for learning in favor of the experimental group. - There were statistically significant differences between the experimental group and the control group in academic achievement in favor of the experimental group.

Keywords: reasoning, thinking, intrinsic motivation, active learning

Procedia PDF Downloads 419
11137 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes

Authors: Ivanka Valova

Abstract:

This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.

Keywords: multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation

Procedia PDF Downloads 87