Search results for: optimal operating parameters
12160 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 3812159 Pressure Regulator Optimization in LPG Fuel Injection Systems
Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner
Abstract:
LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.Keywords: temperature, pressure regulator, LPG, PID
Procedia PDF Downloads 51612158 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method
Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain
Abstract:
The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR
Procedia PDF Downloads 31812157 X-Ray Analysis and Grain Size of CuInx Ga1-X Se2 Solar Cells
Authors: A. I. Al-Bassam, A. M. El-Nggar
Abstract:
Polycrystalline Cu In I-x GaxSe2 thin films have been fabricated. Some physical properties such as lattice parameters, crystal structure and microstructure of Cu In I-x GaxSe2 were determined using X-ray diffractometry and scanning electron microscopy. X-ray diffraction analysis showed that the films with x ≥ 0.5 have a chalcopyrite structure and the films with x ≤ 0.5 have a zinc blende structure. The lattice parameters were found to vary linearly with composition over a wide range from x = 0 to x =1.0. The variation of lattice parameters with composition was found to obey Vegard's law. The variation of the c/a with composition was also linear. The quality of a wide range of Cu In I-xGaxSe2 thin film absorbers from CuInSe to CuGaSe was evaluated by Photoluminescence (PL) measurements.Keywords: grain size, polycrystalline, solar cells, lattice parameters
Procedia PDF Downloads 50412156 Testing of Gas Turbine KingTech with Biodiesel
Authors: Nicolas Lipchak, Franco Aiducic, Santiago Baieli
Abstract:
The present work is a part of the research project called ‘Testing of gas turbine KingTech with biodiesel’, carried out by the Department of Industrial Engineering of the National Technological University at Buenos Aires. The research group aims to experiment with biodiesel in a gas turbine Kingtech K-100 to verify the correct operation of it. In this sense, tests have been developed to obtain real data of parameters inherent to the work cycle, to be used later as parameters of comparison and performance analysis. In the first instance, the study consisted in testing the gas turbine with a mixture composition of 50% Biodiesel and 50% Diesel. The parameters arising from the measurements made were compared with the parameters of the gas turbine with a composition of 100% Diesel. In the second instance, the measured parameters were used to calculate the power generated and the thermal efficiency of the Kingtech K-100 turbine. The turbine was also inspected to verify the status of the internals due to the use of biofuels. The conclusions obtained allow empirically demonstrate that it is feasible to use biodiesel in this type of gas turbines, without the use of this fuel generates a loss of power or degradation of internals.Keywords: biodiesel, efficiency, KingTech, turbine
Procedia PDF Downloads 24512155 Optimization of the Co-Precipitation of Industrial Waste Metals in a Continuous Reactor System
Authors: Thomas S. Abia II, Citlali Garcia-Saucedo
Abstract:
A continuous copper precipitation treatment (CCPT) system was conceived at Intel Chandler Site to serve as a first-of-kind (FOK) facility-scale waste copper (Cu), nickel (Ni), and manganese (Mn) co-precipitation facility. The process was designed to treat highly variable wastewater discharged from a substrate packaging research factory. The paper discusses metals co-precipitation induced by internal changes for manufacturing facilities that lack the capacity for hardware expansion due to real estate restrictions, aggressive schedules, or budgetary constraints. Herein, operating parameters such as pH and oxidation reduction potential (ORP) were examined to analyze the ability of the CCPT System to immobilize various waste metals. Additionally, influential factors such as influent concentrations and retention times were investigated to quantify the environmental variability against system performance. A total of 2,027 samples were analyzed and statistically evaluated to measure the performance of CCPT that was internally retrofitted for Mn abatement to meet environmental regulations. In order to enhance the consistency of the influent, a separate holding tank was cannibalized from another system to collect and slow-feed the segregated Mn wastewater from the factory into CCPT. As a result, the baseline influent Mn decreased from 17.2+18.7 mg1L-1 at pre-pilot to 5.15+8.11 mg1L-1 post-pilot (70.1% reduction). Likewise, the pre-trial and post-trial average influent Cu values to CCPT were 52.0+54.6 mg1L-1 and 33.9+12.7 mg1L-1, respectively (34.8% reduction). However, the raw Ni content of 0.97+0.39 mg1L-1 at pre-pilot increased to 1.06+0.17 mg1L-1 at post-pilot. The average Mn output declined from 10.9+11.7 mg1L-1 at pre-pilot to 0.44+1.33 mg1L-1 at post-pilot (96.0% reduction) as a result of the pH and ORP operating setpoint changes. In similar fashion, the output Cu quality improved from 1.60+5.38 mg1L-1 to 0.55+1.02 mg1L-1 (65.6% reduction) while the Ni output sustained a 50% enhancement during the pilot study (0.22+0.19 mg1L-1 reduced to 0.11+0.06 mg1L-1). pH and ORP were shown to be significantly instrumental to the precipitative versatility of the CCPT System.Keywords: copper, co-precipitation, industrial wastewater treatment, manganese, optimization, pilot study
Procedia PDF Downloads 26912154 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium
Authors: Piotr Ciuman, Barbara Lipska
Abstract:
The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.Keywords: experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations CFD, thermal and humidity conditions, ventilation
Procedia PDF Downloads 41112153 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)
Authors: Vassilios Moussas, Dimos N. Pantazis, Panagioths Stratakis
Abstract:
The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.Keywords: coastal transport, modeling, optimization
Procedia PDF Downloads 49912152 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect
Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara
Abstract:
This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.Keywords: air viscosity, design parameters, loudspeaker, optimization
Procedia PDF Downloads 51312151 Experimental Modeling and Simulation of Zero-Surface Temperature of Controlled Water Jet Impingement Cooling System for Hot-Rolled Steel Plates
Authors: Thomas Okechukwu Onah, Onyekachi Marcel Egwuagu
Abstract:
Zero-surface temperature, which controlled the cooling profile, was modeled and used to investigate the effect of process parameters on the hot-rolled steel plates. The parameters include impingement gaps of 40mm to 70mm; pipe diameters of 20mm to 45mm feeding jet nozzle with 30 holes of 8mm diameters each; and flow rates within 2.896x10-⁶m³/s and 3.13x10-⁵m³/s. The developed simulation model of the Zero-Surface Temperature, upon validation, showed 99% prediction accuracy with dimensional homogeneity established. The evaluated Zero-Surface temperature of Controlled Water Jet Impingement Steel plates showed a high cooling rate of 36.31 Celsius degree/sec at an optimal cooling nozzle diameter of 20mm, impingement gap of 70mm and a flow rate of 1.77x10-⁵m³/s resulting in Reynold's number 2758.586, in the turbulent regime was obtained. It was also deduced that as the nozzle diameter was increasing, the impingement gap was reducing. This achieved a faster rate of cooling to an optimum temperature of 300oC irrespective of the starting surface cooling temperature. The results additionally showed that with a tested-plate initial temperature of 550oC, a controlled cooling temperature of about 160oC produced a film and nucleated boiling heat extraction that was particularly beneficial at the end of controlled cooling and influenced the microstructural properties of the test plates.Keywords: temperature, mechanistic-model, plates, impingements, dimensionless-numbers
Procedia PDF Downloads 4612150 Numerical Investigation of a Supersonic Ejector for Refrigeration System
Authors: Karima Megdouli, Bourhan Taschtouch
Abstract:
Supersonic ejectors have many applications in refrigeration systems. And improving ejector performance is the key to improve the efficiency of these systems. One of the main advantages of the ejector is its geometric simplicity and the absence of moving parts. This paper presents a theoretical model for evaluating the performance of a new supersonic ejector configuration for refrigeration system applications. The relationship between the flow field and the key parameters of the new configuration has been illustrated by analyzing the Mach number and flow velocity contours. The method of characteristics (MOC) is used to design the supersonic nozzle of the ejector. The results obtained are compared with those obtained by CFD. The ejector is optimized by minimizing exergy destruction due to irreversibility and shock waves. The optimization converges to an efficient optimum solution, ensuring improved and stable performance over the whole considered range of uncertain operating conditions.Keywords: supersonic ejector, theoretical model, CFD, optimization, performance
Procedia PDF Downloads 7612149 The Gasification of Fructose in Supercritical Water
Authors: Shyh-Ming Chern, H. Y. Cheng
Abstract:
Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.Keywords: biomass, fructose, gasification, supercritical water
Procedia PDF Downloads 35312148 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization
Authors: Silas A. Ihedioha
Abstract:
In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle
Procedia PDF Downloads 22512147 An Optimal and Efficient Family of Fourth-Order Methods for Nonlinear Equations
Authors: Parshanth Maroju, Ramandeep Behl, Sandile S. Motsa
Abstract:
In this study, we proposed a simple and interesting family of fourth-order multi-point methods without memory for obtaining simple roots. This family requires only three functional evaluations (viz. two of functions f(xn), f(yn) and third one of its first-order derivative f'(xn)) per iteration. Moreover, the accuracy and validity of new schemes is tested by a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal fourth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, the dynamic study of these methods also supports the theoretical aspect.Keywords: basins of attraction, nonlinear equations, simple roots, Newton's method
Procedia PDF Downloads 31212146 Comparative Studies and Optimization of Biodiesel Production from Oils of Selected Seeds of Nigerian Origin
Authors: Ndana Mohammed, Abdullahi Musa Sabo
Abstract:
The oils used in this work were extracted from seeds of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcasby solvent extraction method using n-hexane, and gave the yield of 48.00±0.00%, 44.30±0.52%, 45.50±0.64%, 47.60±0.51%, 41.50±0.32% and 46.50±0.71% respectively. However these feed stocks are highly challenging to trans-esterification reaction because they were found to contain high amount of free fatty acids (FFA) (6.37±0.18, 17.20±0.00, 6.14±0.05, 8.60±0.14, 5.35±0.07, 4.24±0.02mgKOH/g) in order of the above. As a result, two-stage trans-esterification reactions process was used to produce biodiesel; Acid esterification was used to reduce high FFA to 1% or less, and the second stage involve the alkaline trans-esterification/optimization of process condition to obtain high yield quality biodiesel. The salient features of this study include; characterization of oils using AOAC, AOCS standard methods to reveal some properties that may determine the viability of sample seeds as potential feed stocks for biodiesel production, such as acid value, saponification value, Peroxide value, Iodine value, Specific gravity, Kinematic viscosity, and free fatty acid profile. The optimization of process parameters in biodiesel production was investigated. Different concentrations of alkaline catalyst (KOH) (0.25, 0.5, 0.75, 1.0 and 1.50w/v, methanol/oil molar ratio (3:1, 6:1, 9:1, 12:1, and 15:1), reaction temperature (500 C, 550 C, 600 C, 650 C, 700 C), and the rate of stirring (150 rpm,225 rpm,300 rpm and 375 rpm) were used for the determination of optimal condition at which maximum yield of biodiesel would be obtained. However, while optimizing one parameter other parameters were kept fixed. The result shows the optimal biodiesel yield at a catalyst concentration of 1%, methanol/oil molar ratio of 6:1, except oil from ricinuscommunis which was obtained at 9:1, the reaction temperature of 650 C was observed for all samples, similarly the stirring rate of 300 rpm was also observed for all samples except oil from ricinuscommunis which was observed at 375 rpm. The properties of biodiesel fuel were evaluated and the result obtained conformed favorably to ASTM and EN standard specifications for fossil diesel and biodiesel. Therefore biodiesel fuel produced can be used as substitute for fossil diesel. The work also reports the result of the study on the evaluation of the effect of the biodiesel storage on its physicochemical properties to ascertain the level of deterioration with time. The values obtained for the entire samples are completely out of standard specification for biodiesel before the end of the twelve months test period, and are clearly degraded. This suggests the biodiesels from oils of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcascannot be stored beyond twelve months.Keywords: biodiesel, characterization, esterification, optimization, transesterification
Procedia PDF Downloads 42112145 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method
Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh
Abstract:
This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.Keywords: bath parameters, coatings, design of experiment, fracture toughness, impact strength
Procedia PDF Downloads 35112144 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D
Authors: Nima E. Gorji
Abstract:
The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling
Procedia PDF Downloads 33012143 Active Vibration Reduction for a Flexible Structure Bonded with Sensor/Actuator Pairs on Efficient Locations Using a Developed Methodology
Authors: Ali H. Daraji, Jack M. Hale, Ye Jianqiao
Abstract:
With the extensive use of high specific strength structures to optimise the loading capacity and material cost in aerospace and most engineering applications, much effort has been expended to develop intelligent structures for active vibration reduction and structural health monitoring. These structures are highly flexible, inherently low internal damping and associated with large vibration and long decay time. The modification of such structures by adding lightweight piezoelectric sensors and actuators at efficient locations integrated with an optimal control scheme is considered an effective solution for structural vibration monitoring and controlling. The size and location of sensor and actuator are important research topics to investigate their effects on the level of vibration detection and reduction and the amount of energy provided by a controller. Several methodologies have been presented to determine the optimal location of a limited number of sensors and actuators for small-scale structures. However, these studies have tackled this problem directly, measuring the fitness function based on eigenvalues and eigenvectors achieved with numerous combinations of sensor/actuator pair locations and converging on an optimal set using heuristic optimisation techniques such as the genetic algorithms. This is computationally expensive for small- and large-scale structures subject to optimise a number of s/a pairs to suppress multiple vibration modes. This paper proposes an efficient method to determine optimal locations for a limited number of sensor/actuator pairs for active vibration reduction of a flexible structure based on finite element method and Hamilton’s principle. The current work takes the simplified approach of modelling a structure with sensors at all locations, subjecting it to an external force to excite the various modes of interest and noting the locations of sensors giving the largest average percentage sensors effectiveness measured by dividing all sensor output voltage over the maximum for each mode. The methodology was implemented for a cantilever plate under external force excitation to find the optimal distribution of six sensor/actuator pairs to suppress the first six modes of vibration. It is shown that the results of the optimal sensor locations give good agreement with published optimal locations, but with very much reduced computational effort and higher effectiveness. Furthermore, it is shown that collocated sensor/actuator pairs placed in these locations give very effective active vibration reduction using optimal linear quadratic control scheme.Keywords: optimisation, plate, sensor effectiveness, vibration control
Procedia PDF Downloads 23212142 Optimal Management of Forest Stands under Wind Risk in Czech Republic
Authors: Zohreh Mohammadi, Jan Kaspar, Peter Lohmander, Robert Marusak, Harald Vacik, Ljusk Ola Eriksson
Abstract:
Storms are important damaging agents in European forest ecosystems. In the latest decades, significant economic losses in European forestry occurred due to storms. This study investigates the problem of optimal harvest planning when forest stands risk to be felled by storms. One of the most applicable mathematical methods which are being used to optimize forest management is stochastic dynamic programming (SDP). This method belongs to the adaptive optimization class. Sequential decisions, such as harvest decisions, can be optimized based on sequential information about events that cannot be perfectly predicted, such as the future storms and the future states of wind protection from other forest stands. In this paper, stochastic dynamic programming is used to maximize the expected present value of the profits from an area consisting of several forest stands. The region of analysis is the Czech Republic. The harvest decisions, in a particular time period, should be simultaneously taken in all neighbor stands. The reason is that different stands protect each other from possible winds. The optimal harvest age of a particular stand is a function of wind speed and different wind protection effects. The optimal harvest age often decreases with wind speed, but it cannot be determined for one stand at a time. When we consider a particular stand, this stand also protects other stands. Furthermore, the particular stand is protected by neighbor stands. In some forest stands, it may even be rational to increase the harvest age under the influence of stronger winds, in order to protect more valuable stands in the neighborhood. It is important to integrate wind risk in forestry decision-making.Keywords: Czech republic, forest stands, stochastic dynamic programming, wind risk
Procedia PDF Downloads 14712141 Anaerobic Co-Digestion of Sewage Sludge and Bagasse for Biogas Recovery
Authors: Raouf Ahmed Mohamed Hassan
Abstract:
In Egypt, the excess sewage sludge from wastewater Treatment Plants (WWTPs) is rapidly increasing due to the continuous increase of population, urban planning and industrial developments. Also, cane bagasses constitute an important component of Urban Solid Waste (USW), especially at the south of Egypt, which are difficult to degrade under normal composting conditions. These wastes need to be environmentally managed to reduce the negative impacts of its application or disposal. In term of biogas recovery, the anaerobic digestion of sewage sludge or bagasse separately is inefficient, due to the presence of nutrients and minerals. Also, the Carbone-Nitrogen Ratio (C/N) play an important role, sewage sludge has a ratio varies from 6-16, where cane bagasse has a ratio around 150, whereas the suggested optimum C/N ratio for anaerobic digestion is in the range of 20 to 30. The anaerobic co-digestion is presented as a successful methodology that combines several biodegradable organic substrates able to decrease the amount of output wastes by biodegradation, sharing processing facilities, reducing operating costs, while enabling recovery of biogas. This paper presents the study of co-digestion of sewage sludge from wastewater treatment plants as a type of organic wastes and bagasse as agriculture wastes. Laboratory-scale mesophilic and thermophilic digesters were operated with varied hydraulic retention times. Different percentage of sludge and bagasse are investigated based on the total solids (TS). Before digestion, the bagasse was subjected to grinding pretreatment and soaked in distilled water (water pretreatment). The effect of operating parameters (mixing, temperature) is investigated in order to optimize the process in the biogas production. The yield and the composition of biogas from the different experiments were evaluated and the cumulative curves were estimated. The conducted tests did show that there is a good potential to using the co-digestion of wastewater sludge and bagasse for biogas production.Keywords: co-digestion, sewage sludge, bagasse, mixing, mesophilic, thermophilic
Procedia PDF Downloads 51212140 ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine
Authors: Joseph Soliman, Youssef Attia, Khairy Megalla
Abstract:
The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum.Keywords: stirling engine, solar energy, new energy, dynamic motion
Procedia PDF Downloads 42312139 Impact of Machining Parameters on the Surface Roughness of Machined PU Block
Authors: Louis Denis Kevin Catherine, Raja Aziz Raja Ma’arof, Azrina Arshad, Sangeeth Suresh
Abstract:
Machining parameters are very important in determining the surface quality of any material. In the past decade, some new engineering materials were developed for the manufacturing industry which created a need to conduct an investigation on the impact of the said parameters on their surface roughness. The polyurethane (PU) block is widely used in the automotive industry to manufacture parts such as checking fixtures that are used to verify the dimensional accuracy of automotive parts. In this paper, the design of experiment (DOE) was used to investigate the effect of the milling parameters on the PU block. Furthermore, an analysis of the machined surface chemical composition was done using scanning electron microscope (SEM). It was found that the surface roughness of the PU block is severely affected when PU undergoes a flood machining process instead of a dry condition. In addition, the step over and the silicon content were found to be the most significant parameters that influence the surface quality of the PU block.Keywords: polyurethane (PU), design of experiment (DOE), scanning electron microscope (SEM), surface roughness
Procedia PDF Downloads 52112138 Role of Self-Concept in the Relationship between Emotional Abuse and Mental Health of Employees in the North West Province, South Africa
Authors: L. Matlawe, E. S. Idemudia
Abstract:
The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modeling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they were designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.Keywords: emotional abuse, employees, mental health, self-concept
Procedia PDF Downloads 25612137 The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters
Authors: Ayat Adnan Atwah, Muhammad A. Khan
Abstract:
Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials.Keywords: 3D printing, self-cleaning fabric, microscopic features, printing parameters, fabrication
Procedia PDF Downloads 9012136 Biodiesel Production from Palm Oil Using an Oscillatory Baffled Reactor
Authors: Malee Santikunaporn, Tattep Techopittayakul, Channarong Asavatesanupap
Abstract:
Biofuel production especially that of biodiesel has gained tremendous attention during the last decade due to environmental concerns and shortage in petroleum oil reservoir. This research aims to investigate the influences of operating parameters, such as the alcohol-to-oil molar ratio (4:1, 6:1, and 9:1) and the amount of catalyst (1, 1.5, and 2 wt.%) on the trans esterification of refined palm oil (RPO) in a medium-scale oscillatory baffle reactor. It has been shown that an increase in the methanol-to-oil ratio resulted in an increase in fatty acid methyl esters (FAMEs) content. The amount of catalyst has an insignificant effect on the FAMEs content. Engine testing was performed on B0 (100 v/v% diesel) and blended fuel or B50 (50 v/v% diesel). Combustion of B50 was found to give lower torque compared to pure diesel. Exhaust gas from B50 was found to contain lower concentration of CO and CO2.Keywords: biodiesel, palm oil, transesterification, oscillatory baffled reactor
Procedia PDF Downloads 17712135 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata
Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen
Abstract:
This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.Keywords: composite, blending, optimization, lamination parameters
Procedia PDF Downloads 22712134 Performance Assessment of Ventilation Systems for Operating Theatres
Authors: Clemens Bulitta, Sasan Sadrizadeh, Sebastian Buhl
Abstract:
Introduction: Ventilation technology in operating theatres (OT)is internationally regulated by dif-ferent standards, which define basic specifications for technical equipment and many times also the necessary operating and performance parameters. This confronts the operators of healthcare facilities with the question of finding the best ventilation and air conditioning system for the OT in order to achieve the goal of a large and robust surgicalworkzone with appropriate air quality and climate for patient safety and occupational health. Additionally, energy consumption and the potential need for clothing that limits transmission of bacteria must be considered as well as the total life cycle cost. However, the evaluation methodology of ventilation systems regarding these matters are still a topic of discussion. To date, there are neither any uniform standardized specifications nor any common validation criteria established. Thus, this study aimed to review data in the literature and add ourown research results to compare and assess the performance of different ventilations systems regarding infection preventive effects, energy efficiency, and staff comfort. Methods: We have conducted a comprehensive literature review on OT ventilation-related topics to understand the strengths and limitations of different ventilation systems. Furthermore, data from experimental assessments on OT ventilation systems at the University of Amberg-Weidenin Germany were in-cluded to comparatively assess the performance of Laminar Airflow (LAF), Turbulent Mixing Air-flow(TMA), and Temperature-controlled Airflow (TcAF) with regards to patient and occupational safety as well as staff comfort including indoor climate.CFD simulations from the Royal Institute of Technology in Sweden (KTH) were also studied to visualize the differences between these three kinds of ventilation systems in terms of the size of the surgical workzone, resilience to obstacles in the airflow, and energy use. Results: A variety of ventilation concepts are in use in the OT today. Each has its advantages and disadvantages, and thus one may be better suited than another depend-ing on the built environment and clinical workflow. Moreover, the proper functioning of OT venti-lation is also affected by multiple external and internal interfering factors. Based on the available data TcAF and LAF seem to provide the greatest effects regarding infection control and minimizing airborne risks for surgical site infections without the need for very tight surgical clothing systems. Resilience to obstacles, staff comfort, and energy efficiency seem to be favourable with TcAF. Conclusion: Based on literature data in current publications and our studies at the Technical Uni-versity of Applied Sciences Amberg-Weidenand the Royal Institute of Technoclogy, LAF and TcAF are more suitable for minimizing the risk for surgical site infections leading to improved clin-ical outcomes. Nevertheless, regarding the best management of thermal loads, atmosphere, energy efficiency, and occupational safety, overall results and data suggest that TcAF systems could pro-vide the economically most efficient and clinically most effective solution under routine clinical conditions.Keywords: ventilation systems, infection control, energy efficiency, operating theatre, airborne infection risks
Procedia PDF Downloads 9712133 Modelling Optimal Control of Diabetes in the Workplace
Authors: Eunice Christabel Chukwu
Abstract:
Introduction: Diabetes is a chronic medical condition which is characterized by high levels of glucose in the blood and urine; it is usually diagnosed by means of a glucose tolerance test (GTT). Diabetes can cause a range of health problems if left unmanaged, as it can lead to serious complications. It is essential to manage the condition effectively, particularly in the workplace where the impact on work productivity can be significant. This paper discusses the modelling of optimal control of diabetes in the workplace using a control theory approach. Background: Diabetes mellitus is a condition caused by too much glucose in the blood. Insulin, a hormone produced by the pancreas, controls the blood sugar level by regulating the production and storage of glucose. In diabetes, there may be a decrease in the body’s ability to respond to insulin or a decrease in insulin produced by the pancreas which will lead to abnormalities in the metabolism of carbohydrates, proteins, and fats. In addition to the health implications, the condition can also have a significant impact on work productivity, as employees with uncontrolled diabetes are at risk of absenteeism, reduced performance, and increased healthcare costs. While several interventions are available to manage diabetes, the most effective approach is to control blood glucose levels through a combination of lifestyle modifications and medication. Methodology: The control theory approach involves modelling the dynamics of the system and designing a controller that can regulate the system to achieve optimal performance. In the case of diabetes, the system dynamics can be modelled using a mathematical model that describes the relationship between insulin, glucose, and other variables. The controller can then be designed to regulate the glucose levels to maintain them within a healthy range. Results: The modelling of optimal control of diabetes in the workplace using a control theory approach has shown promising results. The model has been able to predict the optimal dose of insulin required to maintain glucose levels within a healthy range, taking into account the individual’s lifestyle, medication regimen, and other relevant factors. The approach has also been used to design interventions that can improve diabetes management in the workplace, such as regular glucose monitoring and education programs. Conclusion: The modelling of optimal control of diabetes in the workplace using a control theory approach has significant potential to improve diabetes management and work productivity. By using a mathematical model and a controller to regulate glucose levels, the approach can help individuals with diabetes to achieve optimal health outcomes while minimizing the impact of the condition on their work performance. Further research is needed to validate the model and develop interventions that can be implemented in the workplace.Keywords: mathematical model, blood, insulin, pancreas, model, glucose
Procedia PDF Downloads 6112132 The Reduction of CO2 Emissions Level in Malaysian Transportation Sector: An Optimization Approach
Authors: Siti Indati Mustapa, Hussain Ali Bekhet
Abstract:
Transportation sector represents more than 40% of total energy consumption in Malaysia. This sector is a major user of fossils based fuels, and it is increasingly being highlighted as the sector which contributes least to CO2 emission reduction targets. Considering this fact, this paper attempts to investigate the problem of reducing CO2 emission using linear programming approach. An optimization model which is used to investigate the optimal level of CO2 emission reduction in the road transport sector is presented. In this paper, scenarios have been used to demonstrate the emission reduction model: (1) utilising alternative fuel scenario, (2) improving fuel efficiency scenario, (3) removing fuel subsidy scenario, (4) reducing demand travel, (5) optimal scenario. This study finds that fuel balancing can contribute to the reduction of the amount of CO2 emission by up to 3%. Beyond 3% emission reductions, more stringent measures that include fuel switching, fuel efficiency improvement, demand travel reduction and combination of mitigation measures have to be employed. The model revealed that the CO2 emission reduction in the road transportation can be reduced by 38.3% in the optimal scenario.Keywords: CO2 emission, fuel consumption, optimization, linear programming, transportation sector, Malaysia
Procedia PDF Downloads 42312131 Evaluation of Parameters of Subject Models and Their Mutual Effects
Authors: A. G. Kovalenko, Y. N. Amirgaliyev, A. U. Kalizhanova, L. S. Balgabayeva, A. H. Kozbakova, Z. S. Aitkulov
Abstract:
It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given.Keywords: dispersed systems, models, hydraulic network, algorithms
Procedia PDF Downloads 284