Search results for: model reference adaptive system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31414

Search results for: model reference adaptive system

30634 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 240
30633 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume

Authors: Jisong Zhang, Yinghua Zhao

Abstract:

The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.

Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete

Procedia PDF Downloads 407
30632 Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination

Authors: Djamel Saba, Fatima Zohra Laallam, Brahim Berbaoui

Abstract:

This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management.

Keywords: communications protocols, control process, energy management, hybrid energy system, modelization, multi-agents system, simulation

Procedia PDF Downloads 323
30631 The Influence of Directionality on the Giovanelli Illusion

Authors: Michele Sinico

Abstract:

In the Giovanelli illusion, some collinear dots appear misaligned, when each dot lies within a circle and the circles are not collinear. In this illusion, the role of the frame of reference, determined by the circles, is considered a crucial factor. Three experiments were carried out to study the influence of directionality of the circles on the misalignment. The adjustment method was used. Participants changed the orthogonal position of each dot, from the left to the right of the sequence, until a collinear sequence of dots was achieved. The first experiment verified the illusory effect of the misalignment. In the second experiment, the influence of two different directionalities of the circles (-0.58° and +0.58°) on the misalignment was tested. The results show an over-normalization on the sequences of the dots. The third experiment tested the misalignment of the dots without any inclination of the sequence of circles (0°). Only a local illusory effect was found. These results demonstrate that the directionality of the circles, as a global factor, can increase the misalignment. The findings also indicate that directionality and the frame of reference are independent factors in explaining the Giovanelli illusion.

Keywords: Giovannelli illusion, visual illusion, directionality, misalignment, the frame of reference

Procedia PDF Downloads 176
30630 Evaluating Problems Arose Due to Adoption of Dual Legal Framework in Regulating the Transactions under Islamic Capital Market with Special Reference to Malaysia

Authors: Rafikoddin Kazi

Abstract:

Almost all the major religions of the world condemn the transactions based on interest which promotes self-centered and materialistic thinking. Still, it is amazing to note that it has become the tradition of transaction at world level hence it is called traditional financial system. The main feature of this system is that it considers economic aspects of the transaction only. This system supports the economic development and not the welfare of humankind. However, it is worth mentioning the fact that, except Islamic financial system no other financial system stood in front of it as a viable alternative system. Although many countries have tried to create financial infrastructure and system, still the Malaysian Islamic financial system has got its own peculiarity. It has made tremendous progress in creating sound Islamic Financial system. However, the historical aspect of this country which has passed through Islamic and traditional financial system has got its own advantages and disadvantages. The advantageous factor is that, despite having mix and heterogeneous culture, it has succeeded in creating Islamic Financial System based on the dual legal system to satisfy the needs of multi-cultural factors. This fact has proved that Islamic Financial System does not need purely Muslim population. However, due to adoption of the dual legal system, several legal issues have been taken place. According to this system, the application of Islamic Law has been limited only up to some family and religious matters. The rest of the matters are being dealt with under the traditional laws, the principles and practices of which are different from that of the Islamic Legal System. The matter becomes all the more complicated when the cases are partially or simultaneously concerned with traditional vis-à-vis Islamic Laws as it requires expertise in both the legal systems. However, the educational principles and systems are different in respect of both the systems. To face this problem, Shariah Advisory Council has been established. But the Multiplicity of Shariah authorities without judicial power has created confusion at various levels. Therefore, some experts have stressed the need for improving, empowering the Islamic financial, legal system to make it more integrated and holistic. In view of the above, an endeavor has been made in this paper to throw some light on the matters related to the adoption of the dual legal system. The paper is conceptual in nature and the method adopted is the intensive survey of literature thereby all the information has been gathered from the secondary sources.

Keywords: Islamic financial system, Islamic legal system, Islamic capital market (ICM) , traditional financial system

Procedia PDF Downloads 192
30629 Analysis of the Unreliable M/G/1 Retrial Queue with Impatient Customers and Server Vacation

Authors: Fazia Rahmoune, Sofiane Ziani

Abstract:

Retrial queueing systems have been extensively used to stochastically model many problems arising in computer networks, telecommunication, telephone systems, among others. In this work, we consider a $M/G/1$ retrial queue with an unreliable server with random vacations and two types of primary customers, persistent and impatient. This model involves the unreliability of the server, which can be subject to physical breakdowns and takes into account the correctives maintenances for restoring the service when a failure occurs. On the other hand, we consider random vacations, which can model the preventives maintenances for improving system performances and preventing breakdowns. We give the necessary and sufficient stability condition of the system. Then, we obtain the joint probability distribution of the server state and the number of customers in orbit and derive the more useful performance measures analytically. Moreover, we also analyze the busy period of the system. Finally, we derive the stability condition and the generating function of the stationary distribution of the number of customers in the system when there is no vacations and impatient customers, and when there is no vacations, server failures and impatient customers.

Keywords: modeling, retrial queue, unreliable server, vacation, stochastic analysis

Procedia PDF Downloads 179
30628 Color-Based Emotion Regulation Model: An Affective E-Learning Environment

Authors: Sabahat Nadeem, Farman Ali Khan

Abstract:

Emotions are considered as a vital factor affecting the process of information handling, level of attention, memory capacity and decision making. Latest e-Learning systems are therefore taking into consideration the effective state of learners to make the learning process more effective and enjoyable. One such use of user’s affective information is in the systems that tend to regulate users’ emotions to a state optimally desirable for learning. So for, this objective has been tried to be achieved with the help of teaching strategies, background music, guided imagery, video clips and odors. Nevertheless, we know that colors can affect human emotions. Relationship between color and emotions has a strong influence on how we perceive our environment. Similarly, the colors of the interface can also affect the user positively as well as negatively. This affective behavior of color and its use as emotion regulation agent is not yet exploited. Therefore, this research proposes a Color-based Emotion Regulation Model (CERM), a new framework that can automatically adapt its colors according to user’s emotional state and her personality type and can help in producing a desirable emotional effect, aiming at providing an unobtrusive emotional support to the users of e-learning environment. The evaluation of CERM is carried out by comparing it with classical non-adaptive, static colored learning management system. Results indicate that colors of the interface, when carefully selected has significant positive impact on learner’s emotions.

Keywords: effective learning, e-learning, emotion regulation, emotional design

Procedia PDF Downloads 301
30627 Development of Adaptive Proportional-Integral-Derivative Feeding Mechanism for Robotic Additive Manufacturing System

Authors: Andy Alubaidy

Abstract:

In this work, a robotic additive manufacturing system (RAMS) that is capable of three-dimensional (3D) printing in six degrees of freedom (DOF) with very high accuracy and virtually on any surface has been designed and built. One of the major shortcomings in existing 3D printer technology is the limitation to three DOF, which results in prolonged fabrication time. Depending on the techniques used, it usually takes at least two hours to print small objects and several hours for larger objects. Another drawback is the size of the printed objects, which is constrained by the physical dimensions of most low-cost 3D printers, which are typically small. In such cases, large objects are produced by dividing them into smaller components that fit the printer’s workable area. They are then glued, bonded or otherwise attached to create the required object. Another shortcoming is material constraints and the need to fabricate a single part using different materials. With the flexibility of a six-DOF robot, the RAMS has been designed to overcome these problems. A feeding mechanism using an adaptive Proportional-Integral-Derivative (PID) controller is utilized along with a national instrument compactRIO (NI cRIO), an ABB robot, and off-the-shelf sensors. The RAMS have the ability to 3D print virtually anywhere in six degrees of freedom with very high accuracy. It is equipped with an ABB IRB 120 robot to achieve this level of accuracy. In order to convert computer-aided design (CAD) files to digital format that is acceptable to the robot, Hypertherm Robotic Software Inc.’s state-of-the-art slicing software called “ADDMAN” is used. ADDMAN is capable of converting any CAD file into RAPID code (the programing language for ABB robots). The robot uses the generated code to perform the 3D printing. To control the entire process, National Instrument (NI) compactRIO (cRio 9074), is connected and communicated with the robot and a feeding mechanism that is designed and fabricated. The feeding mechanism consists of two major parts, cold-end and hot-end. The cold-end consists of what is conventionally known as an extruder. Typically, a stepper-motor is used to control the push on the material, however, for optimum control, a DC motor is used instead. The hot-end consists of a melt-zone, nozzle, and heat-brake. The melt zone ensures a thorough melting effect and consistent output from the nozzle. Nozzles are made of brass for thermo-conductivity while the melt-zone is comprised of a heating block and a ceramic heating cartridge to transfer heat to the block. The heat-brake ensures that there is no heat creep-up effect as this would swell the material and prevent consistent extrusion. A control system embedded in the cRio is developed using NI Labview which utilizes adaptive PID to govern the heating cartridge in conjunction with a thermistor. The thermistor sends temperature feedback to the cRio, which will issue heat increase or decrease based on the system output. Since different materials have different melting points, our system will allow us to adjust the temperature and vary the material.

Keywords: robotic, additive manufacturing, PID controller, cRIO, 3D printing

Procedia PDF Downloads 212
30626 Understanding Strategic Engagement on the Conversation Table: Countering Terrorism in Nigeria

Authors: Anisah Ari

Abstract:

Effects of organized crime permeate all facets of life, including public health, socio-economic endeavors, and human security. If any element of this is affected, it impacts large-scale national and global interest. Seeking to address terrorist networks through technical thinking is like trying to kill a weed by just cutting off its branches. It will re-develop and expand in proportions beyond one’s imagination, even in horrific ways that threaten human security. The continent of Africa has been bedeviled by this menace, with little or no solution to the problem. Nigeria is dealing with a protracted insurgency that is perpetrated by a sect against any form of westernization. Reimagining approaches to dealing with pressing issues like terrorism may require engaging the right set of people in the conversation for any sustainable change. These are people who have lived through the daily effects of the violence that ensues from the activities of terrorist activities. Effective leadership is required for an inclusive process, where spaces are created for diverse voices to be heard, and multiple perspectives are listened to, and not just heard, that supports a determination of the realistic outcome. Addressing insurgency in Nigeria has experienced a lot of disinformation and uncertainty. This may be in part due to poor leadership or an iteration of technical solutions to adaptive challenge peacemaking efforts in Nigeria has focused on behaviors, attitudes and practices that contribute to violence. However, it is important to consider the underlying issues that build-up, ignite and fan the flames of violence—looking at conflict as a complex system, issues like climate change, low employment rates, corruption and the impunity of discrimination due to ethnicity and religion. This article will be looking at an option of the more relational way of addressing insurgency through adaptive approaches that embody engagement and solutions with the people rather than for the people. The construction of a local turn in peacebuilding is informed by the need to create a locally driven and sustained peace process that embodies the culture and practices of the people in enacting an everyday peace beyond just a perennial and universalist outlook. A critical analysis that explores the socially identified individuals and situations will be made, considering the more adaptive approach to a complex existential challenge rather than a universalist frame. Case Study and Ethnographic research approach to understand what other scholars have documented on the matter and also a first-hand understanding of the experiences and viewpoints of the participants.

Keywords: terrorism, adaptive, peace, culture

Procedia PDF Downloads 99
30625 Examination of the Self-Expression Model with Reference to Luxury Watches with Particular Regard of the Buying-Reasons

Authors: Christopher Benedikt Jakob

Abstract:

Human beings are intrigued by luxury watches for decades. It is fascinating that customers pay an enormous amount of money for specific wristwatch models. It is fascinating that customers of the luxury watch industry accept a yearly price increase. This behavior increases their desirability even more. Luxury watches are perceived as status symbols, but they are additionally accepted as a currency without the disadvantage of currency fluctuations. It is obvious that the symbolic value is more important as the functional value with reference to the buying-reasons as regards luxury watches. Nowadays human beings do not need a wristwatch to read the time. Tablets, notebooks, smartphones, the watch in the car and watches on public places are used to inform people about the current time. This is one of the reasons why there is a trend that people do not wear wristwatches anymore. Due to these facts, this study has the intention to give answers to the question why people invest an enormous amount of money on the consumption of luxury watches and why those watches are seen as a status symbol. The study examines why the luxury watch industry records significant growth rates. The self-expression model is used as an appropriate methodology to find reasons why human beings purchase specific luxury watches. This evaluative approach further discusses if human beings are aware of their current self and their ideal self and how they express them. Furthermore, the research critically evaluates the people’s social self and their ideal social self. One of the goals is to identify if customers know why they like specific luxury watches and dislike others although they have the same quality and cost comparable prices.

Keywords: luxury watch, brand awareness, buying-behaviour, consumer, self-expression

Procedia PDF Downloads 156
30624 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 123
30623 Simulation Approach for Analyzing Transportation Energy System in South Korea

Authors: Sungjun Hong, Youah Lee, Jongwook Kim

Abstract:

In the last COP21 held in Paris on 2015, Korean government announced that Intended Nationally Determined Contributions (INDC) was 37% based on BAU by 2030. The GHG reduction rate of the transportation sector is the strongest among all sectors by 2020. In order to cope with Korean INDC, Korean government established that 3rd eco-friendly car deployment national plans at the end of 2015. In this study, we make the energy system model for estimating GHG emissions using LEAP model.

Keywords: INDC, greenhouse gas, LEAP, transportation

Procedia PDF Downloads 202
30622 Study of Gait Stability Evaluation Technique Based on Linear Inverted Pendulum Model

Authors: Kang Sungjae

Abstract:

This research proposes a gait stability evaluation technique based on the linear inverted pendulum model and moving support foot Zero Moment Point. With this, an improvement towards the gait analysis of the orthosis walk is validated. The application of Lagrangian mechanics approximation to the solutions of the dynamics equations for the linear inverted pendulum does not only simplify the solution, but it provides a smooth Zero Moment Point for the double feet support phase. The Zero Moment Point gait analysis techniques mentioned above validates reference trajectories for the center of mass of the gait orthosis, the timing of the steps and landing position references for the swing feet. The stability evaluation technique are tested with a 6 DOF powered gait orthosis. The results obtained are promising for implementations.

Keywords: locomotion, center of mass, gait stability, linear inverted pendulum model

Procedia PDF Downloads 511
30621 Autoantibodies against Central Nervous System Antigens and the Serum Levels of IL-32 in Patients with Schizophrenia

Authors: Fatemeh Keshavarz

Abstract:

Background: Schizophrenia is a disease of the nervous system, and immune system disorders can affect its pathogenesis. Activation of microglia, proinflammatory cytokines, disruption of the blood-brain barrier (BBB) due to inflammation, activation of autoreactive B cells, and consequently the production of autoantibodies against system antigens are among the immune processes involved in neurological diseases. interleukin 32 (IL-32) a proinflammatory cytokine that important player in the activation of the innate and adaptive immune responses. This study aimed to measure the serum level of IL-32 as well as the frequency of autoantibody positivity against several nervous system antigens in patients with schizophrenia. Material and Methods: This study was conducted on 40 patients with schizophrenia and 40 healthy individuals in the control group. Serum IL-32 levels were measured by ELISA. The frequency of autoantibodies against Hu, Ri, Yo, Tr, CV2, Amphiphysin, SOX1, Zic4, ITPR1, CARP, GAD, Recoverin, Titin, and Ganglioside antigens were measured by indirect immunofluorescence method. Results: Serum IL-32 levels in patients with schizophrenia were significantly higher compared to the control group. Autoantibodies were positive in 8 patients for GAD antigen and 5 patients for Ri antigen, which showed a significant relationship compared to the control group. Autoantibodies were also positive in 2 patients for CV2, in 1 patient for Hu, and in 1 patient for CARP. Negative results were reported for other antigens. Conclusion: Our findings suggest that elevated the serum IL-32 level and autoantibody positivity against several nervous system antigens may be involved in the pathogenesis of schizophrenia.

Keywords: schizophrenia, microglia, autoantibodies, IL-32

Procedia PDF Downloads 121
30620 Development of Fault Diagnosis Technology for Power System Based on Smart Meter

Authors: Chih-Chieh Yang, Chung-Neng Huang

Abstract:

In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.

Keywords: ANFIS, fault diagnosis, power system, smart meter

Procedia PDF Downloads 130
30619 An Integrated Assessment (IA) of Water Resources in the Speightstown Catchment, Barbados Using a GIS-Based Decision Support System

Authors: Anuradha Maharaj, Adrian Cashman

Abstract:

The cross-cutting nature of water as a resource translates into the need for a better understanding of its movement, storage and loss at all points in the hydro-socioeconomic cycle. An integrated approach to addressing the issue of sustainability means quantitatively understanding: the linkages within this cycle, the role of water managers in resource allocation, and the critical factors influencing its scarcity. The Water Evaluation and Planning Tool (WEAP) is an integrative model that combines the catchment-scale hydrologic processes with a water management model, driven by environmental requirements and socioeconomic demands. The concept of demand priorities is included to represent the areas of greatest use within a given catchment. Located on Barbados’ West Coast, Speightstown and the surrounding areas encompass a well-developed tourist, residential and agricultural area. The main water resource for this area, and the rest of the island, is that of groundwater. The availability of groundwater in Barbados may be adversely affected by the projected changes in climate, such as reduced wet season rainfall. Economic development and changing sector priorities together with climate related changes have the potential to affect water resource abundance and by extension the allocation of resources for example in the Speightstown area. In order to investigate the potential impacts on the Speightstown area specifically, a WEAP Model of the study area was developed to estimate the present available water (baseline reference scenario 2000-2010). From this baseline scenario, it is envisioned that an exploration into projected changes in availability in the near term (2035-2045) and medium/long term (2065-2075) time frames will be undertaken. The generated estimations can assist water managers to better evaluate the status of and identify trends in water use and formulate adaptation measures to offset future deficits.

Keywords: water evaluation and planning system (WEAP), water availability, demand and supply, water allocation

Procedia PDF Downloads 341
30618 Broadcasting Stabilization for Dynamical Multi-Agent Systems

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded:stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper.

Keywords: broadcasting control, multi-agent system, transfer function, stabilization

Procedia PDF Downloads 376
30617 Fault Prognostic and Prediction Based on the Importance Degree of Test Point

Authors: Junfeng Yan, Wenkui Hou

Abstract:

Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.

Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate

Procedia PDF Downloads 373
30616 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence

Procedia PDF Downloads 321
30615 Number Variation of the Personal Pronoun We in American Spoken English

Authors: Qiong Hu, Ming Yue

Abstract:

Language variation signals the newest usage of language community, which might become the developmental trend of that language. The personal pronoun we is prescribed as a plural pronoun in grammar, but its number value is more flexible in actual use. Based on the homemade Friends corpus, the present research explores the number value of the first person pronoun we in nowadays American spoken English. With consideration of the subjectivity of we, this paper used ‘we+ PCU (Perception-cognation-utterance) verbs’ collocations and ‘we+ plural categories’ as the parameters. Results from corpus data and manual annotation show that: 1) the overall frequency of we has been increasing; 2) we has been increasingly used with other plural categories, indicating a weakening of its plural reference; and 3) we has been increasingly used with PCU (perception-cognition-utterance) verbs of strong subjectivity, indicating a strengthening of its singular reference. All these seem to support our hypothesis that we is undergoing the process of further grammaticalization towards a singular reference, though future evidence is needed to attest the bold prediction.

Keywords: number, PCU verbs, personal pronoun we,

Procedia PDF Downloads 227
30614 The Design of a Mixed Matrix Model for Activity Levels Extraction and Sub Processes Classification of a Work Project (Case: Great Tehran Electrical Distribution Company)

Authors: Elham Allahmoradi, Bahman Allahmoradi, Ali Bonyadi Naeini

Abstract:

Complex systems have many aspects. A variety of methods have been developed to analyze these systems. The most efficient of these methods should not only be simple, but also provide useful and comprehensive information about many aspects of the system. Matrix methods are considered the most commonly methods used to analyze and design systems. Each matrix method can examine a particular aspect of the system. If these methods are combined, managers can access to more comprehensive and broader information about the system. This study was conducted in four steps. In the first step, a process model of a real project has been extracted through IDEF3. In the second step, activity levels have been attained by writing a process model in the form of a design structure matrix (DSM) and sorting it through triangulation algorithm (TA). In the third step, sub-processes have been obtained by writing the process model in the form of an interface structure matrix (ISM) and clustering it through cluster identification algorithm (CIA). In the fourth step, a mixed model has been developed to provide a unified picture of the project structure through the simultaneous presentation of activities and sub-processes. Finally, the paper is completed with a conclusion.

Keywords: integrated definition for process description capture (IDEF3) method, design structure matrix (DSM), interface structure matrix (ism), mixed matrix model, activity level, sub-process

Procedia PDF Downloads 488
30613 Soft Computing Approach for Diagnosis of Lassa Fever

Authors: Roseline Oghogho Osaseri, Osaseri E. I.

Abstract:

Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.

Keywords: anfis, lassa fever, medical diagnosis, soft computing

Procedia PDF Downloads 260
30612 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 124
30611 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 269
30610 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay, and signal noise were added to a simulation model of an active-controlled vibration isolation system to regulate the movement of the exercise platform. Previous simulation work was conducted primarily via MATLAB/Simulink. Two additional simulation tools used in this study were Trick and MBDyn, NASA co-developed software simulation environments. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active-controlled vibration isolation system outperforms a passive-controlled system even with the addition of feedback delay and signal noise to the active-controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from a squat exercise was calculated from the motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active-controlled system than the passive-controlled system.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 99
30609 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 157
30608 The University of California at Los Angeles-Young Autism Project: A Systematic Review of Replication Studies

Authors: Michael Nicolosi, Karola Dillenburger

Abstract:

The University of California at Los Angeles-Young Autism Project (UCLA-YAP) provides one of the best-known and most researched comprehensive applied behavior analysis-based intervention models for young children on the autism spectrum. This paper reports a systematic literature review of replication studies over more than 30 years. The data show that the relatively high-intensity UCLA-YAP model can be greatly beneficial for children on the autism spectrum, particularly with regard to their cognitive functioning and adaptive behavior. This review concludes that, while more research is always welcome, the impact of the UCLA-YAP model on autism interventions is justified by more than 30 years of outcome evidence.

Keywords: ABA, applied behavior analysis, autism, California at Los Angeles Young Autism project, intervention, Lovaas, UCLA-YAP

Procedia PDF Downloads 93
30607 GUI Design of Mathematical Model of Cardiovascular-Respiratory System

Authors: Ntaganda J.M., Maniraguha J.D., Mukeshimana S., Harelimana D, Bizimungu T., Ruataganda E.

Abstract:

This paper presents the design of Graphic User Interface (GUI) in Matlab as interaction tool between human and machine. The designed GUI can be used by medical doctors and other experts particularly the physiologists. Matlab packages and estimated parameters of the mathematical model of cardiovascular-respiratory system developed in Rwandan context are used in GUI. The ordinary differential equations (ODE’s) govern a mathematical model in designing GUI in Matlab and a window that sets model estimated parameters and the measured parameters by any user. For healthy subject, these measured parameters include heart rate, systolic blood and diastolic blood pressure, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide in arterial blood, concentration of bound and dissolved oxygen in the mixed venous blood entering the lungs, and concentration of bound and dissolved carbon dioxide in the mixed venous blood entering the lungs. The results of numerical test give a consistent appearance as empirically known results.

Keywords: Graphic User Interface, mathematical model, cardiovascur-respiratory system, walking physical activity, blood pressure, oxygen

Procedia PDF Downloads 115
30606 Fuzzy Logic Based Sliding Mode Controller for a New Soft Switching Boost Converter

Authors: Azam Salimi, Majid Delshad

Abstract:

This paper presents a modified design of a sliding mode controller based on fuzzy logic for a New ZVThigh step up DC-DC Converter . Here a proportional - integral (PI)-type current mode control is employed and a sliding mode controller is designed utilizing fuzzy algorithm. Sliding mode controller guarantees robustness against all variations and fuzzy logic helps to reduce chattering phenomenon due to sliding controller, in that way efficiency increases and error, voltage and current ripples decreases. The proposed system is simulated using MATLAB / SIMULINK. This model is tested under variations of input and reference voltages and it was found that in comparison with conventional sliding mode controllers they perform better.

Keywords: switching mode power supplies, DC-DC converters, sliding mode control, robustness, fuzzy control, current mode control, non-linear behavior

Procedia PDF Downloads 533
30605 A Concept for Design of Road Super-Elevation Based on Horizontal Radius, Vertical Gradient and Accident Rate

Authors: U. Chattaraj, D. Meena

Abstract:

Growth of traffic brings various negative effects, such as road accidents. To avoid such problems, a model is developed for the purpose of highway safety. In such areas, fuzzy logic is the most well-known simulation in the larger field. A model is accomplished for hilly and steep terrain based on Fuzzy Inference System (FIS), for which output is super elevation and input data is horizontal radius, vertical gradient, accident rate (AR). This result shows that the system can be efficaciously applied as for highway safety tool distinguishing hazards components correlated to the characteristics of the highway and has a great influence to the making of decision for accident precaution in transportation models. From this model, a positive relationship between geometric elements, accident rate, and super elevation is also identified.

Keywords: accident rate, fuzzy inference system, fuzzy logic, gradient, radius, super elevation

Procedia PDF Downloads 210