Search results for: learning approaches
9647 Differences Choosing Closed Approach or Open Approach in Rhinoplasty Outcomes
Authors: Alessandro Marano
Abstract:
Aim: The author describes a strategy for choosing between two different rhinoplasty approaches for outcomes treatment. Methods: Series of the case study. There are advantages and disadvantages on both approaches for rhinoplasty. On the side of the open approach, we are be able to better manage the techniques for shaping and restoring nasal structures in rhinoplasty outcomes; on the other side, the closed approach requires more practice and experience to achieve good results. Results: Author’s choice is the closed approach on rhinoplasty outcomes. Anyway, the open approach is most commonly preferred due to superior management and better vision on nasal structures. Conclusions: Both approaches are valid for the treatment of rhinoplasty outcomes, author's preferred approach is closed, with minimally invasive modification focused on restoring outcomes in nasal function and aesthetics.Keywords: rhinoplasty, aesthetic, face, outcomes
Procedia PDF Downloads 1089646 Teachers’ Involvement in their Designed Play Activities in a Chinese Context
Authors: Shu-Chen Wu
Abstract:
This paper will present a study by the author which investigates Chinese teachers’ perspectives on learning at play and their teaching activities in the designed play activities. It asks the question of how Chinese teachers understand learning at play and how they design play activities in the classroom. Six kindergarten teachers in Hong Kong were invited to select and record exemplary play episodes which contain the largest amount of learning elements in their own classrooms. Applying video-stimulated interview, eight teachers in two focus groups were interviewed to elicit their perspectives on designing play activity and their teaching activities. The findings reveal that Chinese teachers have a very structured representation of learning at play, and the phenomenon of uniformity of teachers’ act was found. The contributions of which are important and useful for professional practices and curricular policies.Keywords: learning at play, teacher involvement, video-stimulated interview, uniformity
Procedia PDF Downloads 1409645 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University
Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M.Anandhavalli, K. Gauthaman
Abstract:
Social Media (SM) are websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly college students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.Keywords: social media, Web 2.0, perceived ease of use, perceived usefulness, collaborative Learning
Procedia PDF Downloads 5069644 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems
Authors: Robert Höttger, Lukas Krawczyk, Burkhard Igel
Abstract:
This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Further- more, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.Keywords: partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis
Procedia PDF Downloads 6199643 The Use of Webquests in Developing Inquiry Based Learning: Views of Teachers and Students in Qatar
Authors: Abdullah Abu-Tineh, Carol Murphy, Nigel Calder, Nasser Mansour
Abstract:
This paper reports on an aspect of e-learning in developing inquiry-based learning (IBL). We present data on the views of teachers and students in Qatar following a professional development programme intended to help teachers implement IBL in their science and mathematics classrooms. Key to this programme was the use of WebQuests. Views of the teachers and students suggested that WebQuests helped students to develop technical skills, work collaboratively and become independent in their learning. The use of WebQuests also enabled a combination of digital and non-digital tools that helped students connect ideas and enhance their understanding of topics.Keywords: digital technology, inquiry-based learning, mathematics and science education, professional development
Procedia PDF Downloads 1409642 Effective Learning and Testing Methods in School-Aged Children
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi
Abstract:
When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning
Procedia PDF Downloads 2019641 Learning Motivation Factors for Pre-Cadets in Armed Forces Academies Preparatory School, Ministry of Defense
Authors: Prachya Kamonphet
Abstract:
The purposes of this research were to study the learning motivation factors for Pre-cadets in Armed Forces Academies Preparatory School, Ministry of Defense. The subjects were 320 Pre-cadets (from all 3-year classes of Pre-cadets, the academic year 2015). The research instruments were questionnaires. The collected data were analyzed by means of Descriptive Statistic and One-Way Analysis of Variance. The results of this study were as follows: The relation between the Pre-cadets’ average grade and the motivation in studying was significance.In the aspect of the environment related to Pre-cadets’ families and the motivation in studying.In the aspect of the environment related to Pre-cadets’ studying, it was found that teaching method, learning place, educational media, relationship between teachers and Pre-cadets, relationship between Pre-cadets and their friends, and relationship between Pre-cadets and the commanders were significant.Keywords: learning motivation factors, learning motivation, armed forces academies preparatory school, learning
Procedia PDF Downloads 2409640 Differential Approach to Technology Aided English Language Teaching: A Case Study in a Multilingual Setting
Authors: Sweta Sinha
Abstract:
Rapid evolution of technology has changed language pedagogy as well as perspectives on language use, leading to strategic changes in discourse studies. We are now firmly embedded in a time when digital technologies have become an integral part of our daily lives. This has led to generalized approaches to English Language Teaching (ELT) which has raised two-pronged concerns in linguistically diverse settings: a) the diverse linguistic background of the learner might interfere/ intervene with the learning process and b) the differential level of already acquired knowledge of target language might make the classroom practices too easy or too difficult for the target group of learners. ELT needs a more systematic and differential pedagogical approach for greater efficiency and accuracy. The present research analyses the need of identifying learner groups based on different levels of target language proficiency based on a longitudinal study done on 150 undergraduate students. The learners were divided into five groups based on their performance on a twenty point scale in Listening Speaking Reading and Writing (LSRW). The groups were then subjected to varying durations of technology aided language learning sessions and their performance was recorded again on the same scale. Identifying groups and introducing differential teaching and learning strategies led to better results compared to generalized teaching strategies. Language teaching includes different aspects: the organizational, the technological, the sociological, the psychological, the pedagogical and the linguistic. And a facilitator must account for all these aspects in a carefully devised differential approach meeting the challenge of learner diversity. Apart from the justification of the formation of differential groups the paper attempts to devise framework to account for all these aspects in order to make ELT in multilingual setting much more effective.Keywords: differential groups, English language teaching, language pedagogy, multilingualism, technology aided language learning
Procedia PDF Downloads 3909639 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 2289638 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 899637 Holistic Simulation-Based Impact Analysis Framework for Sustainable Manufacturing
Authors: Mijoh A. Gbededo, Kapila Liyanage, Sabuj Mallik
Abstract:
The emerging approaches to sustainable manufacturing are considered to be solution-oriented with the aim of addressing the environmental, economic and social issues holistically. However, the analysis of the interdependencies amongst the three sustainability dimensions has not been fully captured in the literature. In a recent review of approaches to sustainable manufacturing, two categories of techniques are identified: 1) Sustainable Product Development (SPD), and 2) Sustainability Performance Assessment (SPA) techniques. The challenges of the approaches are not only related to the arguments and misconceptions of the relationships between the techniques and sustainable development but also to the inability to capture and integrate the three sustainability dimensions. This requires a clear definition of some of the approaches and a road-map to the development of a holistic approach that supports sustainability decision-making. In this context, eco-innovation, social impact assessment, and life cycle sustainability analysis play an important role. This paper deployed an integrative approach that enabled amalgamation of sustainable manufacturing approaches and the theories of reciprocity and motivation into a holistic simulation-based impact analysis framework. The findings in this research have the potential to guide sustainability analysts to capture the aspects of the three sustainability dimensions into an analytical model. Additionally, the research findings presented can aid the construction of a holistic simulation model of a sustainable manufacturing and support effective decision-making.Keywords: life cycle sustainability analysis, sustainable manufacturing, sustainability performance assessment, sustainable product development
Procedia PDF Downloads 1729636 Strategies for Incorporating Intercultural Intelligence into Higher Education
Authors: Hyoshin Kim
Abstract:
Most post-secondary educational institutions have offered a wide variety of professional development programs and resources in order to advance the quality of education. Such programs are designed to support faculty members by focusing on topics such as course design, behavioral learning objectives, class discussion, and evaluation methods. These are based on good intentions and might help both new and experienced educators. However, the fundamental flaw is that these ‘effective methods’ are assumed to work regardless of what we teach and whom we teach. This paper is focused on intercultural intelligence and its application to education. It presents a comprehensive literature review on context and cultural diversity in terms of beliefs, values and worldviews. What has worked well with a group of homogeneous local students may not work well with more diverse and international students. It is because students hold different notions of what is means to learn or know something. It is necessary for educators to move away from certain sets of generic teaching skills, which are based on a limited, particular view of teaching and learning. The main objective of the research is to expand our teaching strategies by incorporating what students bring to the course. There have been a growing number of resources and texts on teaching international students. Unfortunately, they tend to be based on the deficiency model, which treats diversity not as strengths, but as problems to be solved. This view is evidenced by the heavy emphasis on assimilationist approaches. For example, cultural difference is negatively evaluated, either implicitly or explicitly. Therefore the pressure is on culturally diverse students. The following questions reflect the underlying assumption of deficiencies: - How can we make them learn better? - How can we bring them into the mainstream academic culture?; and - How can they adapt to Western educational systems? Even though these questions may be well-intended, there seems to be something fundamentally wrong as the assumption of cultural superiority is embedded in this kind of thinking. This paper examines how educators can incorporate intercultural intelligence into the course design by utilizing a variety of tools such as pre-course activities, peer learning and reflective learning journals. The main goal is to explore ways to engage diverse learners in all aspects of learning. This can be achieved by activities designed to understand their prior knowledge, life experiences, and relevant cultural identities. It is crucial to link course material to students’ diverse interests thereby enhancing the relevance of course content and making learning more inclusive. Internationalization of higher education can be successful only when cultural differences are respected and celebrated as essential and positive aspects of teaching and learning.Keywords: intercultural competence, intercultural intelligence, teaching and learning, post-secondary education
Procedia PDF Downloads 2109635 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 949634 Integrating Technology into Foreign Language Teaching: A Closer Look at Arabic Language Instruction at the Australian National University
Authors: Kinda Alsamara
Abstract:
Foreign language education is a complex endeavor that often presents educators with a range of challenges and difficulties. This study shed light on the specific challenges encountered in the context of teaching Arabic as a foreign language at the Australian National University (ANU). Drawing from real-world experiences and insights, we explore the multifaceted nature of these challenges and discuss strategies that educators have employed to address them. The challenges in teaching the Arabic language encompass various dimensions, including linguistic intricacies, cultural nuances, and diverse learner backgrounds. The complex Arabic script, grammatical structures, and pronunciation patterns pose unique obstacles for learners. Moreover, the cultural context embedded within the language demands a nuanced understanding of cultural norms and practices. The diverse backgrounds of learners further contribute to the challenge of tailoring instruction to meet individual needs and proficiency levels. This study also underscores the importance of technology in tackling these challenges. Technological tools and platforms offer innovative solutions to enhance language acquisition and engagement. Online resources, interactive applications, and multimedia content can provide learners with immersive experiences, aiding in overcoming barriers posed by traditional teaching methods. Furthermore, this study addresses the role of instructors in mitigating challenges. Educators often find themselves adapting teaching approaches to accommodate different learning styles, abilities, and motivations. Establishing a supportive learning environment and fostering a sense of community can contribute significantly to overcoming challenges related to learner diversity. In conclusion, this study provides a comprehensive overview of the challenges faced in teaching Arabic as a foreign language at ANU. By recognizing these challenges and embracing technological and pedagogical advancements, educators can create more effective and engaging learning experiences for students pursuing Arabic language proficiency.Keywords: Arabic, Arabic online, blended learning, teaching and learning, Arabic language, educational aids, technology
Procedia PDF Downloads 619633 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology
Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar
Abstract:
Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.Keywords: data privacy, distributed system, federated learning, machine learning
Procedia PDF Downloads 1309632 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems
Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi
Abstract:
There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.Keywords: knowledge management systems, ontologies, semantic web, open educational resources
Procedia PDF Downloads 4979631 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities
Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia
Abstract:
There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy
Procedia PDF Downloads 1629630 Educational Practices and Brain Based Language Learning
Authors: Dur-E- Shahwar
Abstract:
Much attention has been given to ‘bridging the gap’ between neuroscience and educational practice. In order to gain a better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on boundary-spanning actors, boundary objects, and boundary work. In 26 semi-structured interviews, neuroscientists and education professionals were asked about their perceptions in regard to the gap between science and practice and the role they play in creating, managing, and disrupting this boundary. Neuroscientists and education professionals often hold conflicting views and expectations of both brain-based learning and of each other. This leads us to argue that there are increased prospects for a neuro-scientifically informed learning practice if science and practice work together as equal stakeholders in developing and implementing neuroscience research.Keywords: language learning, explore, educational practices, mentalist, practice
Procedia PDF Downloads 3359629 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms
Authors: Eman Ayman, Gehan Nagy
Abstract:
The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.Keywords: flexibility, learning space, immersive technology, learning environment, interior design
Procedia PDF Downloads 909628 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 1489627 Structuring Taiwanese Elementary School English Teachers' Professional Dialogue about Teaching and Learning through Protocols
Authors: Chin-Wen Chien
Abstract:
Protocols are tools that help teachers inquire into the teaching and professional learning during the professional dialogue. This study focused on the integration of protocols into elementary school English teachers’ professional dialogue and discussed the influence of protocols on teachers’ teaching and learning. Based on the analysis of documents, observations, and interviews, this study concluded that with the introduction of protocols to elementary school English teachers, three major protocols were used during their professional dialogue. These protocols led the teachers to gain professional learning in content knowledge and pedagogical content knowledge. However, the facilitators’ lack of experience in using protocols led to interruptions during the professional dialogue. Suggestions for effective protocol-based professional dialogue are provided.Keywords: protocols, professional learning, professional dialogue, classroom practice
Procedia PDF Downloads 3809626 Students’ Perspectives on Learning Science Education amidst COVID-19
Authors: Rajan Ghimire
Abstract:
One of the diseases caused by the coronavirus shook the whole world. This situation challenged the education system across the world and compelled educators to shift to an online mode of teaching. Many academic institutions that were persistent to keep their traditional pedagogical approach were also forced to change their teaching methods. This study aims to assess science education students' experiences and perceptions of this global issue, especially on the science teaching and learning process. The study is based on qualitative research and through in-depth interviews with respondents and data is analyzed. Online distance teaching and learning processes meet the requirements of students who cannot or prefer not to participate in conventional classroom settings. But there are some challenges for the students and teachers in the science teaching learning process. This study recommends some points to all stakeholders.Keywords: electronic devices, internet, online and distance learning, science education, educational policy
Procedia PDF Downloads 499625 Investigation of Learning Challenges in Building Measurement Unit
Authors: Argaw T. Gurmu, Muhammad N. Mahmood
Abstract:
The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.Keywords: building measurement, construction management, learning challenges, evaluate survey
Procedia PDF Downloads 1369624 Application of Learning Media Based Augmented Reality on Molecular Geometry Concept
Authors: F. S. Irwansyah, I. Farida, Y. Maulana
Abstract:
Studying chemistry requires the ability to understand three levels of understanding in the form of macroscopic, submicroscopic and symbolic, but the lack of emphasis on the submicroscopic level leads to the understanding of chemical concepts becoming incomplete, due to the limitations of the tools capable of providing visualization of submicroscopic concepts. The purpose of this study describes the stages of making augmented reality learning media on the concept of molecular geometry and analyze the feasibility test result of augmented reality learning media on the concept of molecular geometry. This research uses Research and Development (R & D) method which produces a product of AR learning media on molecular geometry concept and test the effectiveness of the product. Research stages include concept analysis and learning indicators, design development, validation, feasibility, and limited testing. The stages of validation and limited trial are aimed to get feedback in the form of assessment, suggestion and improvement on learning aspect, material substance aspect, visual communication aspect and software engineering aspects and media feasibility in terms of media creation purpose to be used in learning. The results of the overall feasibility test obtained r-calculation 0,7-0,9 with the interpretation of high feasibility value, whereas the result of limited trial got the percentage of eligibility with the average value equal to 70,83-92,5%. This percentage indicates that AR's learning media product on the concept of molecular geometry, deserves to be used as a learning resource.Keywords: android, augmented reality, chemical learning, geometry
Procedia PDF Downloads 2059623 Engaging Mature Learners through Video Case Studies
Authors: Jacqueline Mary Jepson
Abstract:
This article provides a case study centred on the development of 13 video episodes which have been created to enhance student engagement with a post graduate online course in Project Management. The student group was unique as their online course needed to provide for asynchronistic learning and an adult learning pedagogy. In addition, students had come from a wide range professional backgrounds, with some having no Project Management experience, while others had 20 years or more. Students had to gain an understanding of an advanced body of knowledge and the course needed to achieve the academic requirements to qualify individuals to apply their learning in a range of contexts for professional practice and scholarship. To achieve this, a 13 episode case study was developed along with supportive learning materials based on the relocation of a zoo. This unique project provided a learning environment where the project could evolve over each video episode demonstrating the application of Project Management methodology which was then tied into the learning outcomes for the course and the assessment tasks. Discussion forums provided a way for students to converse and demonstrate their own understanding of content and how Project Management methodology can be applied.Keywords: project management, adult learning, video case study, asynchronistic education
Procedia PDF Downloads 3379622 Implementation of Problem-Based Learning (PBL) in the Classroom
Authors: Jarmon Sirigunna
Abstract:
The objective of this study were to investigate the success of the implementation of problem-based learning in classroom and to evaluate the level of satisfaction of Suan Sunandra Rajabhat University’s students who participated in the study. This paper aimed to study and focus on a university students survey conducted in Suan Sunandha Rajabhat University during January to March of 2014. The quota sampling was utilized to obtain the sample which included 60 students, 50 percent male and 50 percent female students. The pretest and posttest method was utilized. The findings revealed that the majority of respondents had gained higher knowledge after the posttest significantly. The respondents’ knowledge increased about 40 percent after the experiment. Also, the findings revealed the top three highest level of satisfaction as follows: 1) the proper roles of teacher and students, 2) the knowledge gained from the method of the problem-based learning, 3) the activities of the problem-based learning, 4) the interaction of students from the problem-based learning, and 5) the problem-based learning model. Also, the mean score of all categories was 4.22 with a standard deviation of 0.7435 which indicated that the level of satisfaction was high.Keywords: implement, problem-based learning, satisfaction, university students
Procedia PDF Downloads 3679621 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores
Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi
Abstract:
In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.Keywords: drug synergy, clustering, prediction, machine learning., deep learning
Procedia PDF Downloads 769620 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students
Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek
Abstract:
This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.Keywords: academic achievement, learning emotion, learning flow, major satisfaction
Procedia PDF Downloads 2689619 Designing the Lesson Instructional Plans for Exploring the STEM Education and Creative Learning Processes to Students' Logical Thinking Abilities with Different Learning Outcomes in Chemistry Classes
Authors: Pajaree Naramitpanich, Natchanok Jansawang, Panwilai Chomchid
Abstract:
The aims of this are compared between the students’ logical thinking abilities of their learning for designing the 5-lesson instructional plans of the 2-instructional methods, namely; the STEM Education and the Creative Learning Process (CLP) for developing students’ logical thinking abilities that a sample consisted of 90 students from two chemistry classes of different learning outcomes in Wapi Phathum School with the cluster random sampling technique was used at the 11th grade level. To administer of their learning environments with the 45-experimenl student group by the STEM Education method and the 45-controlling student group by the Creative Learning Process. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of the STEM Education and the Creative Learning Process to enhance the logical thinking tests on Mineral issue were used. The efficiency of the Creative Learning Processes (CLP) Model and the STEM Education’s innovations of these each five instructional lesson plans based on criteria are higher than of 80/80 standard level with the IOC index from the expert educators. The averages mean scores of students’ learning achievement motives were assessed with the Pre and Post Techniques and Logical Thinking Ability Test (LTAT) and dependent t-test analysis were differentiated between the CLP and the STEM, significantly. Students’ perceptions of their chemistry classroom environment inventories with the MCI with the CLP and the STEM methods also were found, differently. Associations between students’ perceptions of their chemistry classroom learning environment inventories on the CLP Model and the STEM Education learning designs toward their logical thinking abilities toward chemistry, the predictive efficiency of R2 values indicate that 68% and 76% of the variances in students’ logical thinking abilities toward chemistry to their controlling and experimental chemistry classroom learning environmental groups with the MCI were correlated at .05 levels, significantly. Implementations of this result are showed the students’ learning by the CLP of the potential thinking life-changing roles in most their logical thinking abilities that it is revealed that the students perceive their abilities to be highly learning achievement in chemistry group are differentiated with the STEM education of students’ outcomes.Keywords: design, the lesson instructional plans, the stem education, the creative learning process, logical thinking ability, different, learning outcome, student, chemistry class
Procedia PDF Downloads 3199618 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review
Authors: Ng Liang Shen, Hau Yuan Wen
Abstract:
Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS
Procedia PDF Downloads 374