Search results for: forest ecosystem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1777

Search results for: forest ecosystem

997 Governing External Innovation: Lessons from Apple’s iOS and Google’s Android

Authors: Amir Mohagheghzadeh, Solaleh Salimi, Ramin Tafazzoli

Abstract:

Ecosystem and networks plays significant roles in product innovation. External innovation within developing firms can bring a wide range of advantages for a firm in a competitive market. Using external innovation can be mentioned as one of the most significant concepts regarding the firm’s transition phase into openness. Derivative concepts such as open or shared platform and app stores are the main result of this thinking within the firms. However, adopting this concept and leverage the defined advantages of external innovation should be aligned with other strategies and policies of a firm. Consequently, one of the key aspects that have been raised while using external innovation is how to govern external innovation within a developing firm. This paper describes the frameworks that two pioneer companies in mobile operating system development have used in order to control and govern external innovation through platform.

Keywords: external innovation, open innovation, governance, governance mechanisms, innovation, Apple, iOS, Google, Android

Procedia PDF Downloads 514
996 Preliminary Result on the Impact of Anthropogenic Noise on Understory Bird Population in Primary Forest of Gaya Island

Authors: Emily A. Gilbert, Jephte Sompud, Andy R. Mojiol, Cynthia B. Sompud, Alim Biun

Abstract:

Gaya Island of Sabah is known for its wildlife and marine biodiversity. It has marks itself as one of the hot destinations of tourists from all around the world. Gaya Island tourism activities have contributed to Sabah’s economy revenue with the high number of tourists visiting the island. However, it has led to the increased anthropogenic noise derived from tourism activities. This may greatly interfere with the animals such as understory birds that rely on acoustic signals as a tool for communication. Many studies in other parts of the regions reveal that anthropogenic noise does decrease species richness of avian community. However, in Malaysia, published research regarding the impact of anthropogenic noise on the understory birds is still very lacking. This study was conducted in order to fill up this gap. This study aims to investigate the anthropogenic noise’s impact towards understory bird population. There were three sites within the Primary forest of Gaya Island that were chosen to sample the level of anthropogenic noise in relation to the understory bird population. Noise mapping method was used to measure the anthropogenic noise level and identify the zone with high anthropogenic noise level (> 60dB) and zone with low anthropogenic noise level (< 60dB) based on the standard threshold of noise level. The methods that were used for this study was solely mist netting and ring banding. This method was chosen as it can determine the diversity of the understory bird population in Gaya Island. The preliminary study was conducted from 15th to 26th April and 5th to 10th May 2015 whereby there were 2 mist nets that were set up at each of the zones within the selected site. The data was analyzed by using the descriptive analysis, presence and absence analysis, diversity indices and diversity t-test. Meanwhile, PAST software was used to analyze the obtain data. The results from this study present a total of 60 individuals that consisted of 12 species from 7 families of understory birds were recorded in three of the sites in Gaya Island. The Shannon-Wiener index shows that diversity of species in high anthropogenic noise zone and low anthropogenic noise zone were 1.573 and 2.009, respectively. However, the statistical analysis shows that there was no significant difference between these zones. Nevertheless, based on the presence and absence analysis, it shows that the species at the low anthropogenic noise zone was higher as compared to the high anthropogenic noise zone. Thus, this result indicates that there is an impact of anthropogenic noise on the population diversity of understory birds. There is still an urgent need to conduct an in-depth study by increasing the sample size in the selected sites in order to fully understand the impact of anthropogenic noise towards the understory birds population so that it can then be in cooperated into the wildlife management for a sustainable environment in Gaya Island.

Keywords: anthropogenic noise, biodiversity, Gaya Island, understory bird

Procedia PDF Downloads 365
995 Changes in Fish and Shellfish in Thondamanaru Lagoon, Jaffna, Sri Lanka

Authors: S. Piratheepa, G. Rajendramani, T. Eswaramohan

Abstract:

Current study was conducted for one year from June 2014 to May 2015, with an objective of identification of fish and shellfish diversity in the Thondamanaru lagoon ecosystem. In this study, 11 species were identified from Thondamanaru lagoon, Jaffna, Sri Lanka. There are four fishes, Chanos chanos, Hemirhamphus sp., Nematalosa sp. and Mugil cephalus and seven shell fishes, Penaeus indicus, Penaeus monodon, Penaeus latisulcatus, Penaeus semisulcatus, Metapenaeus monoceros, Portunus pelagicus and Scylla serrata. Species composition of Mugil cephalus, Penaeus indicus and Metapenaeus monoceros was high during rainy seasons. However, lagoon is being subjected to adverse environmental conditions that threaten its fish and shellfish biodiversity due to lack of saline water availability and changes in rainfall pattern.

Keywords: diversity, shell fish, shrimp, Thondamanaru lagoon

Procedia PDF Downloads 311
994 Integrating Multiple Types of Value in Natural Capital Accounting Systems: Environmental Value Functions

Authors: Pirta Palola, Richard Bailey, Lisa Wedding

Abstract:

Societies and economies worldwide fundamentally depend on natural capital. Alarmingly, natural capital assets are quickly depreciating, posing an existential challenge for humanity. The development of robust natural capital accounting systems is essential for transitioning towards sustainable economic systems and ensuring sound management of capital assets. However, the accurate, equitable and comprehensive estimation of natural capital asset stocks and their accounting values still faces multiple challenges. In particular, the representation of socio-cultural values held by groups or communities has arguably been limited, as to date, the valuation of natural capital assets has primarily been based on monetary valuation methods and assumptions of individual rationality. People relate to and value the natural environment in multiple ways, and no single valuation method can provide a sufficiently comprehensive image of the range of values associated with the environment. Indeed, calls have been made to improve the representation of multiple types of value (instrumental, intrinsic, and relational) and diverse ontological and epistemological perspectives in environmental valuation. This study addresses this need by establishing a novel valuation framework, Environmental Value Functions (EVF), that allows for the integration of multiple types of value in natural capital accounting systems. The EVF framework is based on the estimation and application of value functions, each of which describes the relationship between the value and quantity (or quality) of an ecosystem component of interest. In this framework, values are estimated in terms of change relative to the current level instead of calculating absolute values. Furthermore, EVF was developed to also support non-marginalist conceptualizations of value: it is likely that some environmental values cannot be conceptualized in terms of marginal changes. For example, ecological resilience value may, in some cases, be best understood as a binary: it either exists (1) or is lost (0). In such cases, a logistic value function may be used as the discriminator. Uncertainty in the value function parameterization can be considered through, for example, Monte Carlo sampling analysis. The use of EVF is illustrated with two conceptual examples. For the first time, EVF offers a clear framework and concrete methodology for the representation of multiple types of value in natural capital accounting systems, simultaneously enabling 1) the complementary use and integration of multiple valuation methods (monetary and non-monetary); 2) the synthesis of information from diverse knowledge systems; 3) the recognition of value incommensurability; 4) marginalist and non-marginalist value analysis. Furthermore, with this advancement, the coupling of EVF and ecosystem modeling can offer novel insights to the study of spatial-temporal dynamics in natural capital asset values. For example, value time series can be produced, allowing for the prediction and analysis of volatility, long-term trends, and temporal trade-offs. This approach can provide essential information to help guide the transition to a sustainable economy.

Keywords: economics of biodiversity, environmental valuation, natural capital, value function

Procedia PDF Downloads 194
993 Telehealth Ecosystem: Challenge and Opportunity

Authors: Rattakorn Poonsuph

Abstract:

Technological innovation plays a crucial role in virtual healthcare services. A growing number of telehealth platforms are concentrating on using digital tools to improve the quality and availability of care. As a result, telehealth represents an opportunity to redesign the way health services are delivered. The research objective is to discover a new business model for digital health services and related industries to participate with telehealth solutions. The business opportunity is valuable for healthcare investors as a startup company to further investigations or implement the telehealth platform. The paper presents a digital healthcare business model and business opportunities to related industries. These include digital healthcare services extending from a traditional business model and use cases of business opportunities to related industries. Although there are enormous business opportunities, telehealth is still challenging due to the patient adaption and digital transformation process within a healthcare organization.

Keywords: telehealth, Internet hospital, HealthTech, InsurTech

Procedia PDF Downloads 168
992 Effect of Financial and Institutional Ecosystems on Startup Mergers and Acquisitions

Authors: Saurabh Ahluwalia, Sul Kassicieh

Abstract:

The conventional wisdom has maintained that being in proximity to entrepreneurial ecosystems helps startups to raise financing, develop and grow. In this paper, we examine the effect of a major component of an entrepreneurial ecosystem- financial or venture capital clusters on the exit of a startup through mergers and acquisitions (M&A). We find that the presence of a venture capitalist in a venture capital (VC) cluster is a major success factor for M&A exits. The location of startups in the top VC clusters did not turn out to be significant for success. Our results are robust to different specifications of the model that use different time periods, types of success, the reputation of VC, industry and the quality of the startup company. Our results provide evidence for VCs, startups and policymakers who want to better understand the components of entrepreneurial ecosystems and their relation to the M&A exits of startups.

Keywords: financial institution, mergers and acquisitions, startup financing, venture capital

Procedia PDF Downloads 200
991 Fire Risk Information Harmonization for Transboundary Fire Events between Portugal and Spain

Authors: Domingos Viegas, Miguel Almeida, Carmen Rocha, Ilda Novo, Yolanda Luna

Abstract:

Forest fires along the more than 1200km of the Spanish-Portuguese border are more and more frequent, currently achieving around 2000 fire events per year. Some of these events develop to large international wildfire requiring concerted operations based on shared information between the two countries. The fire event of Valencia de Alcantara (2003) causing several fatalities and more than 13000ha burnt, is a reference example of these international events. Currently, Portugal and Spain have a specific cross-border cooperation protocol on wildfires response for a strip of about 30km (15 km for each side). It is recognized by public authorities the successfulness of this collaboration however it is also assumed that this cooperation should include more functionalities such as the development of a common risk information system for transboundary fire events. Since Portuguese and Spanish authorities use different approaches to determine the fire risk indexes inputs and different methodologies to assess the fire risk, sometimes the conjoint firefighting operations are jeopardized since the information is not harmonized and the understanding of the situation by the civil protection agents from both countries is not unique. Thus, a methodology aiming the harmonization of the fire risk calculation and perception by Portuguese and Spanish Civil protection authorities is hereby presented. The final results are presented as well. The fire risk index used in this work is the Canadian Fire Weather Index (FWI), which is based on meteorological data. The FWI is limited on its application as it does not take into account other important factors with great effect on the fire appearance and development. The combination of these factors is very complex since, besides the meteorology, it addresses several parameters of different topics, namely: sociology, topography, vegetation and soil cover. Therefore, the meaning of FWI values is different from region to region, according the specific characteristics of each region. In this work, a methodology for FWI calibration based on the number of fire occurrences and on the burnt area in the transboundary regions of Portugal and Spain, in order to assess the fire risk based on calibrated FWI values, is proposed. As previously mentioned, the cooperative firefighting operations require a common perception of the information shared. Therefore, a common classification of the fire risk for the fire events occurred in the transboundary strip is proposed with the objective of harmonizing this type of information. This work is integrated in the ECHO project SpitFire - Spanish-Portuguese Meteorological Information System for Transboundary Operations in Forest Fires, which aims the development of a web platform for the sharing of information and supporting decision tools to be used in international fire events involving Portugal and Spain.

Keywords: data harmonization, FWI, international collaboration, transboundary wildfires

Procedia PDF Downloads 252
990 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 94
989 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 94
988 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols

Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene

Abstract:

The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon

Procedia PDF Downloads 236
987 Innovation and Entrepreneurship in the South of China

Authors: Federica Marangio

Abstract:

This study looks at the triangle of knowledge: research-education-innovation as growth engine of an inclusive and sustainable society, where the research is the strategic process which allows the acquisition of knowledge, innovation appraises the knowledge acquired and the education is the enabling factor of the human capital to create entrepreneurial capital. Where does Italy and China stand in the global geography of innovation? Europe is calling on a smart, inclusive and sustainable growth through a specializing process that looks at the social and economic challenges, able to understand the characteristics of specific geographic areas. It is easily questionable why it is not as simple as it looks to come up with entrepreneurial ideas in all the geographic areas. Seen that the technology plus the human capital should be the means through which is possible to innovate and contribute to the boost of innovation culture, then the young educated people can be seen as the society changing agents and it becomes clear the importance of investigating the skills and competencies that lead to innovation. By starting innovation-based activities, other countries on an international level, are able now to be part of an healthy innovative ecosystem which is the result of a strong growth policy which enables innovation. Analyzing the geography of the innovation on a global scale, comes to light that the innovative entrepreneurship is the process which portrays the competitiveness of the regions in the knowledge-based economy as strategic process able to match intellectual capital and market opportunities. The level of innovative entrepreneurship is not only the result of the endogenous growth ability of the enterprises, but also by significant relations with other enterprises, universities, other centers of education and institutions. To obtain more innovative entrepreneurship is necessary to stimulate more synergy between all these territory actors in order to create, access and value existing and new knowledge ready to be disseminate. This study focuses on individual’s lived experience and the researcher believed that she can’t understand the human actions without understanding the meaning that they attribute to their thoughts, feelings, beliefs and so given she needed to understand the deeper perspectives captured through face-to face interaction. A case study approach will contribute to the betterment of knowledge in this field. This case study will represent a picture of the innovative ecosystem and the entrepreneurial mindset as a key ingredient of endogenous growth and a must for sustainable local and regional development and social cohesion. The case study will be realized analyzing two Chinese companies. A structured set of questions will be asked in order to gain details on what generated success or failure in the different situations with the past and at the moment of the research. Everything will be recorded not to lose important information during the transcription phase. While this work is not geared toward testing a priori hypotheses, it is nevertheless useful to examine whether the projects undertaken by the companies, were stimulated by enabling factors that, as result, enhanced or hampered the local innovation culture.

Keywords: Entrepreneurship, education, geography of innovation, education.

Procedia PDF Downloads 418
986 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 83
985 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management

Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide

Abstract:

This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.

Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis

Procedia PDF Downloads 11
984 Climate Change as Wicked Problems towards Sustainable Development

Authors: Amin Padash, Mehran Khodaparast, Saadat Khodaparast

Abstract:

Climate change is a significant and lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Climate change is caused by factors such as biotic processes, variations in solar radiation received by Earth, plate tectonics, and volcanic eruptions. Certain human activities have also been identified as significant causes of recent climate change, often referred to as “Global Warming”. The ultimate goal of this paper is to determine how climate change affects the style of life and all of our activities. The paper focuses on what the effects of humans are on climate change and how communities can achieve sustainable development and use resources in a way that is good for the ecosystem and public. We opine Climate Change is a vital issue that can be called “Wicked Problem”. This paper attempts to address this wicked problem by COMPRAM Methodology as one of the possible solutions.

Keywords: climate change, COMPRAM, human influences, sustainable development, wicked problems

Procedia PDF Downloads 454
983 Effect of Non-Legume Primary Ecological Successor on Nitrogen Content of Soil

Authors: Vikas Baliram Kalyankar

Abstract:

Study of ecology is important as it plays role in development of environment engineering. With the advent of technologies the study of ecosystem structure and changes in it are remaining unnoticed. The ecological succession is the sequential replacement of plant species following changes in the environment. The present study depicts the primary ecological succession in an area leveled up to the height of five feet with no signs of plant life on it. The five quadrates of 1 meter square size were observed during the study period of six months. Rain water being the only source of water in the area increased its ecological importance. The primary successor was non- leguminous plant Balonites roxburgii during the peak drought periods in the region of the summer 2013-14. The increased nitrogen content of soil after the plant implied its role in atmospheric nitrogen fixation.

Keywords: succession, Balonites roxburgii, non-leguminous plant, ecology

Procedia PDF Downloads 488
982 Pioneering Conservation of Aquatic Ecosystems under Australian Law

Authors: Gina M. Newton

Abstract:

Australia’s Environment Protection and Biodiversity Conservation Act (EPBC Act) is the premiere, national law under which species and 'ecological communities' (i.e., like ecosystems) can be formally recognised and 'listed' as threatened across all jurisdictions. The listing process involves assessment against a range of criteria (similar to the IUCN process) to demonstrate conservation status (i.e., vulnerable, endangered, critically endangered, etc.) based on the best available science. Over the past decade in Australia, there’s been a transition from almost solely terrestrial to the first aquatic threatened ecological community (TEC or ecosystem) listings (e.g., River Murray, Macquarie Marshes, Coastal Saltmarsh, Salt-wedge Estuaries). All constitute large areas, with some including multiple state jurisdictions. Development of these conservation and listing advices has enabled, for the first time, a more forensic analysis of three key factors across a range of aquatic and coastal ecosystems: -the contribution of invasive species to conservation status, -how to demonstrate and attribute decline in 'ecological integrity' to conservation status, and, -identification of related priority conservation actions for management. There is increasing global recognition of the disproportionate degree of biodiversity loss within aquatic ecosystems. In Australia, legislative protection at Commonwealth or State levels remains one of the strongest conservation measures. Such laws have associated compliance mechanisms for breaches to the protected status. They also trigger the need for environment impact statements during applications for major developments (which may be denied). However, not all jurisdictions have such laws in place. There remains much opposition to the listing of freshwater systems – for example, the River Murray (Australia's largest river) and Macquarie Marshes (an internationally significant wetland) were both disallowed by parliament four months after formal listing. This was mainly due to a change of government, dissent from a major industry sector, and a 'loophole' in the law. In Australia, at least in the immediate to medium-term time frames, invasive species (aliens, native pests, pathogens, etc.) appear to be the number one biotic threat to the biodiversity and ecological function and integrity of our aquatic ecosystems. Consequently, this should be considered a current priority for research, conservation, and management actions. Another key outcome from this analysis was the recognition that drawing together multiple lines of evidence to form a 'conservation narrative' is a more useful approach to assigning conservation status. This also helps to addresses a glaring gap in long-term ecological data sets in Australia, which often precludes a more empirical data-driven approach. An important lesson also emerged – the recognition that while conservation must be underpinned by the best available scientific evidence, it remains a 'social and policy' goal rather than a 'scientific' goal. Communication, engagement, and 'politics' necessarily play a significant role in achieving conservation goals and need to be managed and resourced accordingly.

Keywords: aquatic ecosystem conservation, conservation law, ecological integrity, invasive species

Procedia PDF Downloads 132
981 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 154
980 Internal Concept of Integrated Health by Agrarian Society in Malagasy Highlands for the Last Century

Authors: O. R. Razanakoto, L. Temple

Abstract:

Living in a least developed country, the Malagasy society has a weak capacity to internalize progress, including health concerns. Since the arrival in the fifteenth century of Arabic script, called Sorabe, that was mainly dedicated to the aristocracy, until the colonial era beginning at the end of the nineteenth century and that has popularized the current usual script of the occidental civilization, the upcoming manuscripts that deal with apparent scientific or at least academic issue have been slowly established. So that, the Malagasy communities’ way of life is not well documented yet to allow a precise understanding of the major concerns, reason, and purpose of the existence of the farmers that compose them. A question arises, according to literature, how does Malagasy community that is dominated by agrarian society conceive the conservation of its wellbeing? This study aims to emphasize the scope and the limits of the « One Health » concept or of the Health Integrated Approach (HIA) that evolves at global scale, with regard to the specific context of local Malagasy smallholder farms. It is expected to identify how this society represents linked risks and the mechanisms between human health, animal health, plant health, and ecosystem health within the last 100 years. To do so, the framework to conduct systematic review for agricultural research has been deployed to access available literature. This task has been coupled with the reading of articles that are not indexed by online scientific search engine but that mention part of a history of agriculture and of farmers in Madagascar. This literature review has informed the interactions between human illnesses and those affecting animals and plants (breeded or wild) with any unexpected event (ecological or economic) that has modified the equilibrium of the ecosystem, or that has disturbed the livelihoods of agrarian communities. Besides, drivers that may either accentuate or attenuate the devasting effects of these illnesses and changes were revealed. The study has established that the reasons of human worries are not only physiological. Among the factors that regulate global health, food system and contemporary medicine have helped to the improvement of life expectancy from 55 to 63 years in Madagascar during the last 50 years. However, threats to global health are still occurring. New human or animal illnesses and livestock / plant pathology or enemies may also appear, whereas ancient illnesses that are supposed to have disappeared may be back. This study has highlighted how much important are the risks associated to the impact of unmanaged externalities that weaken community’s life. Many risks, and also solutions, come from abroad and have long term effects even though those happen as punctual event. Thus, a constructivist strategy is suggested to the « One Health » global concept throughout the record of local facts. This approach should facilitate the exploration of methodological pathways and the identification of relevant indicators for research related to HIA.

Keywords: agrarian system, health integrated approach, history, madagascar, resilience, risk

Procedia PDF Downloads 109
979 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
978 Using Human-Centred Service Design and Partnerships as a Model to Promote Cross-Sector Social Responsibility in Disaster Resilience: An Australian Case Study

Authors: Keith Diamond, Tracy Collier, Ciara Sterling, Ben Kraal

Abstract:

The increased frequency and intensity of disaster events in the Asia-Pacific region is likely to require organisations to better understand how their initiatives, and the support they provide to their customers, intersect with other organisations aiming to support communities in achieving disaster resilience. While there is a growing awareness that disaster response and recovery rebuild programmes need to adapt to more integrated, community-led approaches, there is often a discrepancy between how programmes intend to work and how they are collectively experienced in the community, creating undesired effects on community resilience. Following Australia’s North Queensland Monsoon Disaster of 2019, this research set out to understand and evaluate how the service and support ecosystem impacted on the local community’s experience and influenced their ability to respond and recover. The purpose of this initiative was to identify actionable, cross-sector, people-centered improvements that support communities to recover and thrive when faced with disaster. The challenge arose as a group of organisations, including utility providers, banks, insurers, and community organisations, acknowledged that improving their own services would have limited impact on community wellbeing unless the other services people need are also improved and aligned. The research applied human-centred service design methods, typically applied to single products or services, to design a new way to understand a whole-of-community journey. Phase 1 of the research conducted deep contextual interviews with residents and small business owners impacted by the North Queensland Monsoon and qualitative data was analysed to produce community journey maps that detailed how individuals navigated essential services, such as accommodation, finance, health, and community. Phase 2 conducted interviews and focus groups with frontline workers who represented industries that provided essential services to assist the community. Data from Phase 1 and Phase 2 of the research was analysed and combined to generate a systems map that visualised the positive and negative impacts that occurred across the disaster response and recovery service ecosystem. Insights gained from the research has catalysed collective action to address future Australian disaster events. The case study outlines a transformative way for sectors and industries to rethink their corporate social responsibility activities towards a cross-sector partnership model that shares responsibility and approaches disaster response and recovery as a single service that can be designed to meet the needs of communities.

Keywords: corporate social responsibility, cross sector partnerships, disaster resilience, human-centred design, service design, systems change

Procedia PDF Downloads 154
977 Treatment of Leaden Sludge of Algiers Refinery by Electrooxidation

Authors: K. Ighilahriz, M. Taleb Ahmed, R. Maachi

Abstract:

Oil industries are responsible for most cases of contamination of our ecosystem by oil and heavy metals. They are toxic and considered carcinogenic and dangerous even when they exist in trace amounts. At Algiers refinery, production, transportation, and refining of crude oil generate considerable waste in storage tanks; these residues result from the gravitational settling. The composition of these residues is essentially a mixture of hydrocarbon and lead. We propose in this work the application of electrooxidation treatment for the leachate of the leaden sludge. The effect of pH, current density and the electrolysis time were studied, the effectiveness of the processes is evaluated by measuring the chemical oxygen demand (COD). The dissolution is the best way to mobilize pollutants from leaden mud, so we conducted leaching before starting the electrochemical treatment. The process was carried out in batch mode using graphite anode and a stainless steel cathode. The results clearly demonstrate the compatibility of the technique used with the type of pollution studied. In fact, it allowed COD removal about 80%.

Keywords: electrooxidation, leaching, leaden sludge, oil industry

Procedia PDF Downloads 228
976 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction

Procedia PDF Downloads 407
975 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand

Authors: Waraporn Wimuktalop

Abstract:

This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.

Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding

Procedia PDF Downloads 233
974 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 125
973 Near Bottom Concentrations of Krill in Two Arctic Fjords, Spitsbergen

Authors: Kajetan Deja, Katarzyna Draganska-Deja, Mateusz Ormanczyk, Michał Procajlo

Abstract:

Two glaciated fjords on Spitsbergen (Hornsund 77°N) and Kongsfjorden (79°N) were studied for the occurrence of macroplankton (mostly euphausids, hyperiids, chaetognaths) with the use of drop down the camera. The underwater imagery demonstrates that closer to the glacier front, where turbid and freshwater occurs, most of the macroplankters leave the upper water column and descends to the bottom (about 100m depth). Concentrations of macroplankton in the immediate vicinity of the sediment reach over 500 specimens per m² - what corresponds to the biomass of 10g C/m³. Such concentrations of macroplankton are of prime interest for fish, seals and other carnivores. Conditions in the near-bottom waters are in many respects better than in the upper water column- better oxygenated, cold, fully saline and transparent waters with rich food deposited on the seabed from the surface (sinking microplankton). We suggest that near bottom occurrence of macroplankton is related to the increase of glacier melt and freshwater discharge intensity.

Keywords: arctic, ecosystem, fjords, Krill

Procedia PDF Downloads 265
972 Energy Recovery from Swell with a Height Inferior to 1.5 m

Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland

Abstract:

Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.

Keywords: small scale wave, potential energy, optimized energy recovery, auto-adaptive system

Procedia PDF Downloads 259
971 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 6
970 Evaluation Of A Start Up Business Strategy In Movie Industry: Case Study Of Visinema

Authors: Stacia E. H. Sitohang, S.Mn., Socrates Rudy Sirait

Abstract:

The first movie theater in Indonesia was established in December 1900. The movie industry started with international movie penetration. After a while, local movie producers started to rise and created local Indonesian movies. The industry is growing through ups and downs in Indonesia. In 2008, Visinema was founded in Jakarta, Indonesia, by AnggaDwimasSasongko, one of the most respected movie director in Indonesia. After getting achievements and recognition, Visinema chose to grow the company horizontally as opposed to only grow vertically and gain another similar achievement. Visinemachose to build the ecosystem that enables them to obtain many more opportunities and generatebusiness sustainability. The company proceed as an agile company. They created several business subsidiaries to support the company’s Intellectual Property (IP) development. This research was done through interview with the key persons in the company and questionnaire to get market insights regarding Visinema. The is able to transform their IP that initially started from movies to different kinds of business model. Interestingly, Angga chose to use the start up approach to create Visinema. In 2019, the company successfully gained Series A funding from Intudo Ventures and got other various investment schemes to support the business. In early 2020, Covid-19 pandemic negatively impacted many industries in Indonesia, especially the entertainment and leisure businesses. Fortunately, Visinema did not face any significant problem regarding survival during the pandemic, there were nolay-offs nor work hour reductions. Instead, they were thinking of much bigger opportunities and problems. While other companies suffer during the pandemic, Visinema created the first focused Transactional Video On Demand (TVOD) in Indonesia named Bioskop Online. The platform was created to keep the company innovating and adapting with the new online market as the result of the Covid-19 pandemic. Other than a digital platform, Visinemainvested heavily in animation to target kids and family business. They believed that penetrating the technology and animation market is going to be the biggest opportunity in Visinema’s road map. Besides huge opportunities, Visinema is also facing problems. The first is company brand positioning. Angga, as the founder, felt the need to detach his name from the brand image of Visinema to create system sustainability and scalability. Second, the company has to create a strategy to refocus in a particular business area to maintain and improve the competitive advantages. The third problem, IP piracy is a huge structural problem in Indonesia, the company considers IP thieves as their biggest competitors as opposed to other production company. As the recommendation, we suggest a set of branding and management strategy to detach the founder’s name from Visinema’s brand and improve the competitive advantages. We also suggest Visinema invest in system building to prevent IP piracy in the entertainment industry, which later can be another business subsidiary of Visinema.

Keywords: business ecosystem, agile, sustainability, scalability, start Up, intellectual property, digital platform

Procedia PDF Downloads 137
969 Transformable Lightweight Structures for Short-term Stay

Authors: Anna Daskalaki, Andreas Ashikalis

Abstract:

This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.

Keywords: lightweight structures, timber, transformable, tent

Procedia PDF Downloads 169
968 Wildlife Communities in the Service of Extensively Managed Fishpond Systems – Advantages of a Symbiotic Relationship

Authors: Peter Palasti, Eva Kerepeczki

Abstract:

Extensive fish farming is one of the most traditional forms of aquaculture in Europe, usually practiced in large pond systems with earthen beds, where the growth of fish is based on natural feed and supplementary foraging. These farms have semi-natural environmental conditions, sustaining diverse wildlife communities that have complex effects on fish production and also provide a livelihood for many wetland related taxa. Based on their characteristics, these communities could be sources of various ecosystem services (ESs), that could also enhance the value and enable the multifunctional use of these artificially constructed and maintained production zones. To identify and estimate the whole range of wildlife’s contribution we have conducted an integrated assessment in an extensively managed pond system in Biharugra, Hungary, where we studied 14 previously revealed ESs: fish and reed production, water storage, water and air quality regulation, CO2 absorption, groundwater recharge, aesthetics, recreational activities, inspiration, education, scientific research, presence of semi-natural habitats and useful/protected species. ESs were collected through structured interviews with the local experts of all major stakeholder groups, where we have also gathered information about the known forms, levels (none, low, high) and orientations (positive, negative) of the contributions of the wildlife community. After that, a quantitative analysis was carried out: we calculated the total mean value of the services being used between 2014-16, then we estimated the value and percentage of contributions. For the quantification, we mainly used biophysical indicators with the available data and empirical knowledge of the local experts. During the interviews, 12 of the previously listed services (85%) were mentioned to be related to wildlife community, consisting of 5 fully (e.g., recreation, reed production) and seven partially dependent ESs (e.g., inspiration, CO2 absorption) from our list. The orientation of the contributions was said to be positive almost every time; however, in the case of fish production, the feeding habit of some wild species (Phalacrocorax carbo, Lutra lutra) caused significant losses in fish stocks in the study period. During the biophysical assessment, we calculated the total mean value of the services and quantified the aid of wildlife community at the following services: fish and reed production, recreation, CO2 absorption, and the presence of semi-natural habitats and wild species. The combined results of our interviews and biophysical evaluations showed that the presence of wildlife community not just greatly increased the productivity of the fish farms in Biharugra (with ~53% of natural yield generated by planktonic and benthic communities) but also enhanced the multifunctionality of the system through expanding the quality and number of its services. With these abilities, extensively managed fishponds could play an important role in the future as refugia for wetland related services and species threatened by the effects of global warming.

Keywords: ecosystem services, fishpond systems, integrated assessment, wildlife community

Procedia PDF Downloads 115