Search results for: equivalent linear
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4183

Search results for: equivalent linear

3403 A Linear Autoregressive and Non-Linear Regime Switching Approach in Identifying the Structural Breaks Caused by Anti-Speculation Measures: The Case of Hong Kong

Authors: Mengna Hu

Abstract:

This paper examines the impact of an anti-speculation tax policy on the trading activities and home price movements in the housing market in Hong Kong. The study focuses on the secondary residential property market where transactions dominate. The policy intervention substantially raised the transaction cost to speculators as well as genuine homeowners who dispose their homes within a certain period. Through the demonstration of structural breaks, our empirical results show that the rise in transaction cost effectively reduced speculative trading activities. However, it accelerated price increase in the small-sized segment by vastly demotivating existing homeowners from trading up to better homes, causing congestion in the lower-end market where the demand from first-time buyers is still strong. Apart from that, by employing regime switching approach, we further show that the unintended consequences are likely to be persistent due to this policy together with other strengthened cooling measures.

Keywords: transaction costs, housing market, structural breaks, regime switching

Procedia PDF Downloads 266
3402 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data

Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone

Abstract:

This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.

Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression

Procedia PDF Downloads 144
3401 Spatially Downscaling Land Surface Temperature with a Non-Linear Model

Authors: Kai Liu

Abstract:

Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.

Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature

Procedia PDF Downloads 333
3400 Generic Model for Timetabling Problems by Integer Linear Programmimg Approach

Authors: Nur Aidya Hanum Aizam, Vikneswary Uvaraja

Abstract:

The agenda of showing the scheduled time for performing certain tasks is known as timetabling. It widely used in many departments such as transportation, education, and production. Some difficulties arise to ensure all tasks happen in the time and place allocated. Therefore, many researchers invented various programming model to solve the scheduling problems from several fields. However, the studies in developing the general integer programming model for many timetabling problems are still questionable. Meanwhile, this thesis describe about creating a general model which solve different types of timetabling problems by considering the basic constraints. Initially, the common basic constraints from five different fields are selected and analyzed. A general basic integer programming model was created and then verified by using the medium set of data obtained randomly which is much similar to realistic data. The mathematical software, AIMMS with CPLEX as a solver has been used to solve the model. The model obtained is significant in solving many timetabling problems easily since it is modifiable to all types of scheduling problems which have same basic constraints.

Keywords: AIMMS mathematical software, integer linear programming, scheduling problems, timetabling

Procedia PDF Downloads 442
3399 Investigation of the Composition and Structure of Tar by Lignite Pyrolysis Using Thermogravimetry, Gas Chromatography and Mass Spectrum Coupled Instrument System

Authors: Li Feng, Cheng Zhang, Chuanzhou Yuang

Abstract:

Understanding the macromolecular structure of low-rank coal is very important for its gasification and liquefaction. The pyrolysis is one of the methods of analyzing the macromolecular structure of coal. The gaseous products decomposed directly by the raw lignite at 500 °C and indirectly by tar products from raw lignite pyrolysis at 500 °C were investigated and compared by thermogravimetry, gas chromatography and mass spectrum coupled instrument system (TG/GC/MS) in this paper. The results show that 52 kinds of products were found from the raw lignite and 70 kinds of products from the tar. The pyrolysis products directly from the lignite appear more monocyclic aromatic hydrocarbons and less substituent groups or branch chain, compared with the products from the tar. There is less linear chain and double bonds structure in the tar, which can be speculated that linear chain and double bonds structure took part in the generation of condensed rings and other reactions. There are more kinds of phenol and furan in the tar, which indicate that these products may be generated from the secondary reaction. The formation process of phenol, phenol naphthalene, naphthene and furan are discussed.

Keywords: composition and structure, lignite, pyrolysis of coal, tar, TG/GC/MS

Procedia PDF Downloads 148
3398 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models

Authors: Nada Slimane, Foued Theljani, Faouzi Bouani

Abstract:

The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.

Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression

Procedia PDF Downloads 185
3397 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, faryab, surface runoff

Procedia PDF Downloads 181
3396 VaR or TCE: Explaining the Preferences of Regulators

Authors: Silvia Faroni, Olivier Le Courtois, Krzysztof Ostaszewski

Abstract:

While a lot of research concentrates on the merits of VaR and TCE, which are the two most classic risk indicators used by financial institutions, little has been written on explaining why regulators favor the choice of VaR or TCE in their set of rules. In this paper, we investigate the preferences of regulators with the aim of understanding why, for instance, a VaR with a given confidence level is ultimately retained. Further, this paper provides equivalence rules that explain how a given choice of VaR can be equivalent to a given choice of TCE. Then, we introduce a new risk indicator that extends TCE by providing a more versatile weighting of the constituents of probability distribution tails. All of our results are illustrated using the generalized Pareto distribution.

Keywords: generalized pareto distribution, generalized tail conditional expectation, regulator preferences, risk measure

Procedia PDF Downloads 175
3395 Structural Fluxionality of Luminescent Coordination Compounds with Lanthanide Ions

Authors: Juliana A. B. Silva, Caio H. T. L. Albuquerque, Leonardo L. dos Santos, Cristiane K. Oliveira, Ivani Malvestiti, Fernando Hallwass, Ricardo L. Longo

Abstract:

Complexes with lanthanide ions have been extensively studied due to their applications as luminescent, magnetic and catalytic materials as molecular or extended crystals, thin films, glasses, polymeric matrices, ionic liquids, and in solution. NMR chemical shift data in solution have been reported and suggest fluxional structures in a wide range of coordination compounds with rare earth ions. However, the fluxional mechanisms for these compounds are still not established. This structural fluxionality may affect the photophysical, catalytic and magnetic properties in solution. Thus, understanding the structural interconversion mechanisms may aid the design of coordination compounds with, for instance, improved (electro)luminescence, catalytic and magnetic behaviors. The [Eu(btfa)₃bipy] complex, where btfa= 4,4,4-trifluoro-1-phenyl-1,3-butanedionate and bipy= 2,2’-bipiridyl, has a well-defined X-ray crystallographic structure and preliminary 1H NMR data suggested a structural fluxionality. Thus, we have investigated a series of coordination compounds with lanthanide ions [Ln(btfa)₃L], where Ln = La, Eu, Gd or Yb and L= bipy or phen (phen=1,10-phenanthroline) using a combined theoretical-experimental approach. These complexes were synthesized and fully characterized, and detailed NMR measurements were obtained. They were also studied by quantum chemical computational methods (DFT-PBE0). The aim was to determine the relevant factors in the structure of these compounds that favor or not the fluxional behavior. Measurements of the 1H NMR signals at variable temperature in CD₂Cl₂ of the [Eu(btfa)₃L] complexes suggest that these compounds have a fluxional structure, because the crystal structure has non-equivalent btfa ligands that should lead to non-equivalent hydrogen atoms and thus to more signals in the NMR spectra than those obtained at room temperature, where all hydrogen atoms of the btfa ligands are equivalent, and phen ligand has an effective vertical symmetry plane. For the [Eu(btfa)₃bipy] complex, the broadening of the signals at –70°C provides a lower bound for the coalescence temperature, which indicates the energy barriers involved in the structural interconversion mechanisms are quite small. These barriers and, consequently, the coalescence temperature are dependent upon the radii of the lanthanide ion as well as to their paramagnetic effects. The PBE0 calculated structures are in very good agreement with the crystallographic data and, for the [Eu(btfa)₃bipy] complex, this method provided several distinct structures with almost the same energy. However, the energy barrier for structural interconversion via dissociative pathways were found to be quite high and could not explain the experimental observations. Whereas the pseudo-rotation pathways, involving the btfa and bipy ligands, have very small activation barriers, in excellent agreement with the NMR data. The results also showed an increase in the activation barrier along the lanthanide series due to the decrease of the ionic radii and consequent increase of the steric effects. TD-DFT calculations showed a dependence of the ligand donor state energy with different structures of the complex [Eu(btfa)₃phen], which can affect the energy transfer rates and the luminescence. The energy required to promote the structural fluxionality may also enhance the luminescence quenching in solution. These results can aid in the design of more luminescent compounds and more efficient devices.

Keywords: computational chemistry, lanthanide-based compounds, NMR, structural fluxionality

Procedia PDF Downloads 201
3394 Evidence of Climate Change from Statistical Analysis of Temperature and Rainfall Data of Kaduna State, Nigeria

Authors: Iliya Bitrus Abaje

Abstract:

This study examines the evidence of climate change scenario in Kaduna State from the analysis of temperature and rainfall data (1976-2015) from three meteorological stations along a geographic transect from the southern part to the northern part of the State. Different statistical methods were used in determining the changes in both the temperature and rainfall series. The result of the linear trend lines revealed a mean increase in average temperature of 0.73oC for the 40 years period of study in the State. The plotted standard deviation for the temperature anomalies generally revealed that years of temperatures above the mean standard deviation (hotter than the normal conditions) in the last two decades (1996-2005 and 2006-2015) were more than those below (colder than the normal condition). The Cramer’s test and student’s t-test generally revealed an increasing temperature trend in the recent decades. The increased in temperature is an evidence that the earth’s atmosphere is getting warmer in recent years. The linear trend line equation of the annual rainfall for the period of study showed a mean increase of 316.25 mm for the State. Findings also revealed that the plotted standard deviation for the rainfall anomalies, and the 10-year non-overlapping and 30-year overlapping sub-periods analysis in all the three stations generally showed an increasing trend from the beginning of the data to the recent years. This is an evidence that the study area is now experiencing wetter conditions in recent years and hence climate change. The study recommends diversification of the economic base of the populace with emphasis on moving away from activities that are sensitive to temperature and rainfall extremes Also, appropriate strategies to ameliorate the scourge of climate change at all levels/sectors should always take into account the recent changes in temperature and rainfall amount in the area.

Keywords: anomalies, linear trend, rainfall, temperature

Procedia PDF Downloads 322
3393 Linear Stability Analysis of a Regularized Two-Fluid Model for Unstable Gas-Liquid Flows in Long Hilly Terrain Pipelines

Authors: David Alejandro Lazo-Vasquez, Jorge Luis Balino

Abstract:

In the petroleum industry, multiphase flow occurs when oil, gas, and water are transported in the same pipe through large pipeline systems. The flow can take different patterns depending on parameters like fluid velocities, pipe diameter, pipe inclination, and fluid properties. Mainly, intermittent flow is produced by the natural propagation of short and long waves, according to the Kelvin-Helmholtz Stability Theory. To model stratified flow and the onset of intermittent flow, it is crucial to have knowledge of short and long waves behavior. The two-fluid model, frequently employed for characterizing multiphase systems, becomes ill-posed for high liquid and gas velocities and large inclination angles, for short waves can develop infinite growth rates. We are interested in focusing attention on long-wave instability, which leads to the production of roll waves that may grow and result in the transition from stratified flow to intermittent flow. In this study, global and local linear stability analyses for dynamic and kinematic stability criteria predict the regions of stability of the flow for different pipe inclinations and fluid velocities in regularized and non-regularized systems, concurrently. It was possible to distinguish when: wave growth rates are absolutely bounded (stable stratified smooth flow), waves have finite growth rates (unstable stratified wavy flow), and when the equation system becomes elliptic and hyperbolization is needed. In order to bound short wave growth rates and regularize the equation system, we incorporated some lower and higher-order terms like interfacial drag and surface tension, respectively.

Keywords: linear stability analysis, multiphase flow, onset of slugging, two-fluid model regularization

Procedia PDF Downloads 138
3392 The Non-Linear Analysis of Brain Response to Visual Stimuli

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to visual stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to visual stimuli but provide us with very good recommendations for clinical purposes.

Keywords: visual stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 565
3391 Factors Related with Self-Care Behaviors among Iranian Type 2 Diabetic Patients: An Application of Health Belief Model

Authors: Ali Soroush, Mehdi Mirzaei Alavijeh, Touraj Ahmadi Jouybari, Fazel Zinat-Motlagh, Abbas Aghaei, Mari Ataee

Abstract:

Diabetes is a disease with long cardiovascular, renal, ophthalmic and neural complications. It is prevalent all around the world including Iran, and its prevalence is increasing. The aim of this study was to determine the factors related to self-care behavior based on health belief model among sample of Iranian diabetic patients. This cross-sectional study was conducted among 301 type 2 diabetic patients in Gachsaran, Iran. Data collection was based on an interview and the data were analyzed by SPSS version 20 using ANOVA, t-tests, Pearson correlation, and linear regression statistical tests at 95% significant level. Linear regression analyses showed the health belief model variables accounted for 29% of the variation in self-care behavior; and perceived severity and perceived self-efficacy are more influential predictors on self-care behavior among diabetic patients.

Keywords: diabetes, patients, self-care behaviors, health belief model

Procedia PDF Downloads 471
3390 Analytical and Numerical Studies on the Behavior of a Freezing Soil Layer

Authors: X. Li, Y. Liu, H. Wong, B. Pardoen, A. Fabbri, F. McGregor, E. Liu

Abstract:

The target of this paper is to investigate how saturated poroelastic soils subject to freezing temperatures behave and how different boundary conditions can intervene and affect the thermo-hydro-mechanical (THM) responses, based on a particular but classical configuration of a finite homogeneous soil layer studied by Terzaghi. The essential relations on the constitutive behavior of a freezing soil are firstly recalled: ice crystal - liquid water thermodynamic equilibrium, hydromechanical constitutive equations, momentum balance, water mass balance, and the thermal diffusion equation, in general, non-linear case where material parameters are state-dependent. The system of equations is firstly linearized, assuming all material parameters to be constants, particularly the permeability of liquid water, which should depend on the ice content. Two analytical solutions solved by the classic Laplace transform are then developed, accounting for two different sets of boundary conditions. Afterward, the general non-linear equations with state-dependent parameters are solved using a commercial code COMSOL based on finite elements method to obtain numerical results. The validity of this numerical modeling is partially verified using the analytical solution in the limiting case of state-independent parameters. Comparison between the results given by the linearized analytical solutions and the non-linear numerical model reveals that the above-mentioned linear computation will always underestimate the liquid pore pressure and displacement, whatever the hydraulic boundary conditions are. In the nonlinear model, the faster growth of ice crystals, accompanying the subsequent reduction of permeability of freezing soil layer, makes a longer duration for the depressurization of water liquid and slower settlement in the case where the ground surface is swiftly covered by a thin layer of ice, as well as a bigger global liquid pressure and swelling in the case of the impermeable ground surface. Nonetheless, the analytical solutions based on linearized equations give a correct order-of-magnitude estimate, especially at moderate temperature variations, and remain a useful tool for preliminary design checks.

Keywords: chemical potential, cryosuction, Laplace transform, multiphysics coupling, phase transformation, thermodynamic equilibrium

Procedia PDF Downloads 84
3389 Blood Pressure and Anthropometric Measurements: A Correlational Study

Authors: Abdul-Monim Batiha, Manar AlAzzam, Mohammed ALBashtawy, Loai Tawalbeh, Ahmad Tubaishat, Fadwa N. Alhalaiqa

Abstract:

Background: Obesity is the major modifiable risk factor for many chronic illnesses especially high blood pressure. Objectives: To evaluate the relationship between anthropometric indices and high blood pressure, and which one was most strongly correlated with high blood pressure in Jordanian population. Methods: A cross-sectional study was conducted with a total 622 students and workers from three Jordanian universities. Results: Nearly half of the participant are overweight (34.7%) and obese (15.4%) and hypertension was detected among 138 (22.2%) of the participants. Linear correlation was significant (p<0.01) between both systolic blood pressure and diastolic blood pressure for all anthropometric indices, except for A body shape index and diastolic blood pressure was significant at p< 0.05. Stepwise multiple linear regression analysis was used to assess the influence of age and anthropometric measurements. Conclusions: The waist circumference was the only independent predictor of hypertension, showing that this simple measurement may be an importance marker of high blood pressure in Jordanian population.

Keywords: anthropometric indices, Jordan, blood pressure, cross-sectional study, obesity, hypertension, waist circumference

Procedia PDF Downloads 291
3388 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 115
3387 Effect of Adding Horizontal Steel Bracing System to Ordinary Moment Steel Frames Subjected to Wind Load

Authors: Yousef Al-Qaryouti, Besan Alagawani

Abstract:

The main concern of this study is to evaluate the effect of adding horizontal steel bracing system to ordinary moment resisting steel frames subjected to wind load. Similar frames without bracing systems are also to be compared. A general analytical study was carried out to obtain the influence of such system in resisting wind load. Linear static analysis has been carried out using ETABS software by applying fixed wind load defined according to ASCE7-10 for three-, six-, nine-, and twelve-story ordinary moment steel frame buildings including and not including horizontal steel bracing system. The results showed that the lateral drift due to wind load decreased by adding horizontal bracing system. Also, the results show that effect of such system is more efficient to low-rise buildings.

Keywords: horizontal bracing system, steel moment frames, wind load resisting system, linear static analysis

Procedia PDF Downloads 291
3386 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou

Abstract:

Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 233
3385 The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes.

Keywords: auditory stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 536
3384 Effects of Viscous Dissipation and Concentration Based Internal Heat Source on Convective Instability in A Porous Medium with Throughflow

Authors: N. Deepika, P. A. L. Narayana

Abstract:

Linear stability analysis of double diffusive convection in a horizontal porous layer saturated with fluid is examined by considering the effects of viscous dissipation, concentration based internal heat source and vertical throughflow. The basic steady state solution for Governing equations is computed. Linear stability analysis has been implemented numerically by using Runge-kutta method. Critical thermal Rayleigh number Rac is obtained for various values of solutal Rayleigh number Sa, vertical Peclet number Pe, Gebhart number Ge, Lewis number Le and measure of concentration based internal heat source $\gamma$. It is observed that Ge has destabilizing effect for upward throughflow and stabilizing effect for downward throughflow. For sufficient value of Pe, $\gamma$ has considerable destabilizing effect for upward throughflow, insignificant destabilizing effect for downward throughflow.

Keywords: porous medium, concentration based internal heat source, vertical throughflow, viscous dissipation

Procedia PDF Downloads 463
3383 Nonlinear Finite Element Modeling of Reinforced Concrete Flat Plate-Inclined Column Connection

Authors: Rabab Allouzi, Amer Alkloub

Abstract:

As the complex shaped buildings become a popular trend for architects, this paper is presented to investigate the performance of reinforced concrete flat plate-inclined column connection. The studies on the inclined column and flat plate connections are not sufficient in comparison to those on the conventional structures. The effect of column angle of inclination on the punching shear strength is found significant and studied herein. This paper presents a non-linear finite element based modeling approach to estimate behavior of RC flat plate inclined column connection. Results from simulations of RC flat plate-straight column connection show good agreement with experimental response of specimens tested by other researchers. The model is further used to study the response of inclined columns to punching at various ranges of inclination angles. The inclination angle can be included in the punching shear strength provisions provided by ACI 318-14 to account for the effect of column inclination.

Keywords: punching shear, non-linear finite element, inclined columns, reinforced concrete connection

Procedia PDF Downloads 251
3382 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia

Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes

Abstract:

Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.

Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling

Procedia PDF Downloads 57
3381 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 391
3380 Multi-Fidelity Fluid-Structure Interaction Analysis of a Membrane Wing

Authors: M. Saeedi, R. Wuchner, K.-U. Bletzinger

Abstract:

In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the numerical solution of the Navier-Stokes equations and the vortex panel method. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.

Keywords: CFD, FSI, Membrane wing, Vortex panel method

Procedia PDF Downloads 488
3379 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load

Procedia PDF Downloads 152
3378 Classifying Time Independent Plane Symmetric Spacetime through Noether`s Approach

Authors: Nazish Iftikhar, Adil Jhangeer, Tayyaba Naz

Abstract:

The universe is expanding at an accelerated rate. Symmetries are useful in understanding universe’s behavior. Emmy Noether reported the relation between symmetries and conservation laws. These symmetries are known as Noether symmetries which correspond to a conserved quantity. In differential equations, conservation laws play an important role. Noether symmetries are helpful in modified theories of gravity. Time independent plane symmetric spacetime was classified by Noether`s theorem. By using Noether`s theorem, set of linear partial differential equations was obtained having A(r), B(r) and F(r) as unknown radial functions. The Lagrangian corresponding to considered spacetime in the Noether equation was used to get Noether operators. Different possibilities of radial functions were considered. Firstly, all functions were same. All the functions were considered as non-zero constant, linear, reciprocal and exponential respectively. Secondly, two functions were proportional to each other keeping third function different. Second case has four subcases in which four different relationships between A(r), B(r) and F(r) were discussed. In all cases, we obtained nontrivial Noether operators including gauge term. Conserved quantities for each Noether operators were also presented.

Keywords: Noether gauge symmetries, radial function, Noether operator, conserved quantities

Procedia PDF Downloads 233
3377 Analysis of Path Nonparametric Truncated Spline Maximum Cubic Order in Farmers Loyalty Modeling

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

Path analysis tests the relationship between variables through cause and effect. Before conducting further tests on path analysis, the assumption of linearity must be met. If the shape of the relationship is not linear and the shape of the curve is unknown, then use a nonparametric approach, one of which is a truncated spline. The purpose of this study is to estimate the function and get the best model on the nonparametric truncated spline path of linear, quadratic, and cubic orders with 1 and 2-knot points and determine the significance of the best function estimator in modeling farmer loyalty through the jackknife resampling method. This study uses secondary data through questionnaires to farmers in Sumbawa Regency who use SP-36 subsidized fertilizer products as many as 100 respondents. Based on the results of the analysis, it is known that the best-truncated spline nonparametric path model is the quadratic order of 2 knots with a coefficient of determination of 85.50%; the significance of the best-truncated spline nonparametric path estimator shows that all exogenous variables have a significant effect on endogenous variables.

Keywords: nonparametric path analysis, farmer loyalty, jackknife resampling, truncated spline

Procedia PDF Downloads 52
3376 Hydrogeochemical Assessment, Evaluation and Characterization of Groundwater Quality in Ore, South-Western, Nigeria

Authors: Olumuyiwa Olusola Falowo

Abstract:

One of the objectives of the Millennium Development Goals is to have sustainable access to safe drinking water and basic sanitation. In line with this objective, an assessment of groundwater quality was carried out in Odigbo Local Government Area of Ondo State in November – February, 2019 to assess the drinking, domestic and irrigation uses of the water. Samples from 30 randomly selected ground water sources; 16 shallow wells and 14 from boreholes and analyzed using American Public Health Association method for the examination of water and wastewater. Water quality index calculation, and diagrams such as Piper diagram, Gibbs diagram and Wilcox diagram have been used to assess the groundwater in conjunction with irrigation indices such as % sodium, sodium absorption ratio, permeability index, magnesium ratio, Kelly ratio, and electrical conductivity. In addition statistical Principal component analysis were used to determine the homogeneity and source(s) influencing the chemistry of the groundwater. The results show that all the parameters are within the permissible limit of World Health Organization. The physico-chemical analysis of groundwater samples indicates that the dominant major cations are in decreasing order of Na+, Ca2+, Mg2+, K+ and the dominant anions are HCO-3, Cl-, SO-24, NO-3. The values of water quality index varies suggest a Good water (WQI of 50-75) accounts for 70% of the study area. The dominant groundwater facies revealed in this study are the non-carbonate alkali (primary salinity) exceeds 50% (zone 7); and transition zone with no one cation-anion pair exceeds 50% (zone 9), while evaporation; rock–water interaction, and precipitation; and silicate weathering process are the dominant processes in the hydrogeochemical evolution of the groundwater. The study indicates that waters were found within the permissible limits of irrigation indices adopted, and plot on excellent category on Wilcox plot. In conclusion, the water in the study area are good/suitable for drinking, domestic and irrigation purposes with low equivalent salinity concentrate and moderate electrical conductivity.

Keywords: equivalent salinity concentration, groundwater quality, hydrochemical facies, principal component analysis, water-rock interaction

Procedia PDF Downloads 153
3375 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –

Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz

Abstract:

In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.

Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method

Procedia PDF Downloads 104
3374 Measurement Errors and Misclassifications in Covariates in Logistic Regression: Bayesian Adjustment of Main and Interaction Effects and the Sample Size Implications

Authors: Shahadut Hossain

Abstract:

Measurement errors in continuous covariates and/or misclassifications in categorical covariates are common in epidemiological studies. Regression analysis ignoring such mismeasurements seriously biases the estimated main and interaction effects of covariates on the outcome of interest. Thus, adjustments for such mismeasurements are necessary. In this research, we propose a Bayesian parametric framework for eliminating deleterious impacts of covariate mismeasurements in logistic regression. The proposed adjustment method is unified and thus can be applied to any generalized linear and non-linear regression models. Furthermore, adjustment for covariate mismeasurements requires validation data usually in the form of either gold standard measurements or replicates of the mismeasured covariates on a subset of the study population. Initial investigation shows that adequacy of such adjustment depends on the sizes of main and validation samples, especially when prevalences of the categorical covariates are low. Thus, we investigate the impact of main and validation sample sizes on the adjusted estimates, and provide a general guideline about these sample sizes based on simulation studies.

Keywords: measurement errors, misclassification, mismeasurement, validation sample, Bayesian adjustment

Procedia PDF Downloads 415