Search results for: deep excavation
1443 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction
Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage
Abstract:
Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention
Procedia PDF Downloads 731442 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework
Authors: Abbas Raza Ali
Abstract:
Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation
Procedia PDF Downloads 1761441 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 1901440 Arabic Light Word Analyser: Roles with Deep Learning Approach
Authors: Mohammed Abu Shquier
Abstract:
This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN
Procedia PDF Downloads 441439 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 1031438 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 971437 Aire-Dependent Transcripts have Shortened 3’UTRs and Show Greater Stability by Evading Microrna-Mediated Repression
Authors: Clotilde Guyon, Nada Jmari, Yen-Chin Li, Jean Denoyel, Noriyuki Fujikado, Christophe Blanchet, David Root, Matthieu Giraud
Abstract:
Aire induces ectopic expression of a large repertoire of tissue-specific antigen (TSA) genes in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in maturing T cells. Although important mechanisms of Aire-induced transcription have recently been disclosed through the identification and the study of Aire’s partners, the fine transcriptional functions underlied by a number of them and conferred to Aire are still unknown. Alternative cleavage and polyadenylation (APA) is an essential mRNA processing step regulated by the termination complex consisting of 85 proteins, 10 of them have been related to Aire. We evaluated APA in MECs in vivo by microarray analysis with mRNA-spanning probes and RNA deep sequencing. We uncovered the preference of Aire-dependent transcripts for short-3’UTR isoforms and for proximal poly(A) site selection marked by the increased binding of the cleavage factor Cstf-64. RNA interference of the 10 Aire-related proteins revealed that Clp1, a member of the core termination complex, exerts a profound effect on short 3’UTR isoform preference. Clp1 is also significantly upregulated in the MECs compared to 25 mouse tissues in which we found that TSA expression is associated with longer 3’UTR isoforms. Aire-dependent transcripts escape a global 3’UTR lengthening associated with MEC differentiation, thereby potentiating the repressive effect of microRNAs that are globally upregulated in mature MECs. Consistent with these findings, RNA deep sequencing of actinomycinD-treated MECs revealed the increased stability of short 3’UTR Aire-induced transcripts, resulting in TSA transcripts accumulation and contributing for their enrichment in the MECs.Keywords: Aire, central tolerance, miRNAs, transcription termination
Procedia PDF Downloads 3831436 Characteristics and Challenges of Post-Burn Contractures in Adults and Children: A Descriptive Study
Authors: Hardisiswo Soedjana, Inne Caroline
Abstract:
Deep dermal or full thickness burns are inevitably lead to post-burn contractures. These contractures remain to be one of the most concerning late complications of burn injuries. Surgical management includes releasing the contracture followed by resurfacing the defect accompanied by post-operative rehabilitation. Optimal treatment of post-burn contractures depends on the characteristics of the contractures. This study is aimed to describe clinical characteristics, problems, and management of post-burn contractures in adults and children. A retrospective analysis was conducted from medical records of patients suffered from contractures after burn injuries admitted to Hasan Sadikin general hospital between January 2016 and January 2018. A total of 50 patients with post burn contractures were included in the study. There were 17 adults and 33 children. Most patients were male, whose age range within 15-59 years old and 5-9 years old. Educational background was mostly senior high school among adults, while there was only one third of children who have entered school. Etiology of burns was predominantly flame in adults (82.3%); whereas flame and scald were the leading cause of burn injury in children (11%). Based on anatomical regions, hands were the most common affected both in adults (35.2%) and children (48.5%). Contractures were identified in 6-12 months since the initial burns. Most post-burn hand contractures were resurfaced with full-thickness skin graft (FTSG) both in adults and children. There were 11 patients who presented with recurrent contracture after previous history of contracture release. Post-operative rehabilitation was conducted for all patients; however, it is important to highlight that it is still challenging to control splinting and exercise when patients are discharged and especially the compliance in children. In order to improve quality of life in patients with history of deep burn injuries, prevention of contractures should begin right after acute care has been established. Education for the importance of splinting and exercise should be administered as comprehensible as possible for adult patients and parents of pediatric patients.Keywords: burn, contracture, education, exercise, splinting
Procedia PDF Downloads 1301435 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging
Authors: Balakrishna Shetty
Abstract:
Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.Keywords: stem cells, imaging, DWI, peripheral vascular disease
Procedia PDF Downloads 741434 Genomics Approach for Excavation of NAS Genes from Nutri Rich Minor Millet Crops: Transforming Perspective from Orphan Plants to Future Food Crops
Authors: Mahima Dubey, Girish Chandel
Abstract:
Minor millets are highly nutritious and climate resilient cereal crops. These features make them ideal candidates to excavate the physiology of the underlying mechanism. In an attempt to understand the basis of mineral nutrition in minor millets, a set of five Barnyard millet genotypes were analyzed for grain Fe and Zn content under contrasting Fe-Zn supply to identify genotypes proficient in tolerating mineral deficiency. This resulted in the identification of Melghat-1 genotype to be nutritionally superior with better ability to withstand deficiency. Expression analysis of several Nicotianamine synthase (NAS) genes showed that HvNAS1 and OsNAS2 genes were prominent in positively mediating mineral deficiency response in Barnyard millet. Further, strategic efforts were employed for fast-track identification of more effective orthologous NAS genes from Barnyard millet. This resulted in the identification of two genes namely EfNAS1 (orthologous to HvNAS1 of barley) and EfNAS2 (orthologous to OsNAS2 gene of rice). Sequencing and thorough characterization of these sequences revealed the presence of intact NAS domain and signature tyrosine and di-leucine motifs in their predicted proteins and thus established their candidature as functional NAS genes in Barnyard millet. Moreover, EfNAS1 showed structural superiority over previously known NAS genes and is anticipated to have role in more efficient metal transport. Findings of the study provide insight into Fe-Zn deficiency response and mineral nutrition in millets. This provides millets with a physiological edge over micronutrient deficient staple cereals such as rice in withstanding Fe-Zn deficiency and subsequently accumulating higher levels of Fe and Zn in millet grains.Keywords: gene expression, micronutrient, millet, ortholog
Procedia PDF Downloads 2321433 Identification of Deposition Sequences of the Organic Content of Lower Albian-Cenomanian Age in Northern Tunisia: Correlation between Molecular and Stratigraphic Fossils
Authors: Tahani Hallek, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer
Abstract:
The present work is an organic geochemical study of the Fahdene Formation outcrops at the Mahjouba region belonging to the Eastern part of the Kalaat Senan structure in northwestern Tunisia (the Kef-Tedjerouine area). The analytical study of the organic content of the samples collected, allowed us to point out that the Formation in question is characterized by an average to good oil potential. This fossilized organic matter has a mixed origin (type II and III), as indicated by the relatively high values of hydrogen index. This origin is confirmed by the C29 Steranes abundance and also by tricyclic terpanes C19/(C19+C23) and tetracyclic terpanes C24/(C24+C23) ratios, that suggest a marine environment of deposit with high plants contribution. We have demonstrated that the heterogeneity of organic matter between the marine aspect, confirmed by the presence of foraminifera, and the continental contribution, is the result of an episodic anomaly in relation to the sequential stratigraphy. Given that the study area is defined as an outer platform forming a transition zone between a stable continental domain to the south and a deep basin to the north, we have explained the continental contribution by successive forced regressions, having blocked the albian transgression, allowing the installation of the lowstand system tracts. This aspect is represented by the incised valleys filling, in direct contact with the pelagic and deep sea facies. Consequently, the Fahdene Formation, in the Kef-Tedjerouine area, consists of transgressive system tracts (TST) brutally truncated by extras of continental progradation; resulting in a mixed influence deposition having retained a heterogeneous organic material.Keywords: molecular geochemistry, biomarkers, forced regression, deposit environment, mixed origin, Northern Tunisia
Procedia PDF Downloads 2501432 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method
Authors: Rui Wu
Abstract:
In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning
Procedia PDF Downloads 1081431 Closed Incision Negative Pressure Therapy Dressing as an Approach to Manage Closed Sternal Incisions in High-Risk Cardiac Patients: A Multi-Centre Study in the UK
Authors: Rona Lee Suelo-Calanao, Mahmoud Loubani
Abstract:
Objective: Sternal wound infection (SWI) following cardiac operation has a significant impact on patient morbidity and mortality. It also contributes to longer hospital stays and increased treatment costs. SWI management is mainly focused on treatment rather than prevention. This study looks at the effect of closed incision negative pressure therapy (ciNPT) dressing to help reduce the incidence of superficial SWI in high-risk patients after cardiac surgery. The ciNPT dressing was evaluated at 3 cardiac hospitals in the United Kingdom". Methods: All patients who had cardiac surgery from 2013 to 2021 were included in the study. The patients were classed as high risk if they have two or more of the recognised risk factors: obesity, age above 80 years old, diabetes, and chronic obstructive pulmonary disease. Patients receiving standard dressing (SD) and patients using ciNPT were propensity matched, and the Fisher’s exact test (two-tailed) and unpaired T-test were used to analyse categorical and continuous data, respectively. Results: There were 766 matched cases in each group. Total SWI incidences are lower in the ciNPT group compared to the SD group (43 (5.6%) vs 119 (15.5%), P=0.0001). There are fewer deep sternal wound infections (14(1.8%) vs. 31(4.04%), p=0.0149) and fewer superficial infections (29(3.7%) vs. 88 (11.4%), p=0.0001) in the ciNPT group compared to the SD group. However, the ciNPT group showed a longer average length of stay (11.23 ± 13 days versus 9.66 ± 10 days; p=0.0083) and higher mean logistic EuroSCORE (11.143 ± 13 versus 8.094 ± 11; p=0.0001). Conclusion: Utilization of ciNPT as an approach to help reduce the incidence of superficial and deep SWI may be effective in high-risk patients requiring cardiac surgery.Keywords: closed incision negative pressure therapy, surgical wound infection, cardiac surgery complication, high risk cardiac patients
Procedia PDF Downloads 971430 New Stratigraphy Profile of Classic Nihewan Basin Beds, Hebei, Northern China
Authors: Arya Farjand
Abstract:
The Nihewan Basin is a critical region in order to understand the Plio-Pleistocene paleoenvironment and its fauna in Northern China. The rich fossiliferous, fluvial-lacustrine sediments around the Nihewan Village hosted the specimens known as the Classic Nihewan Fauna. The primary excavations in the early 1920-30s produced more than 2000 specimens housed in Tianjin and Paris Museum. Nevertheless, the exact locality of excavations, fossil beds, and the reliable ages remained ambiguous until recent paleomagnetic studies and extensive work in conjunction sites. In this study, for the first time, we successfully relocated some of the original excavation sites. We reexamined more than 1500 specimens held in Tianjin Museum and cited their locality numbers and properties. During the field-season of 2017-2019, we visited the Xiashagou Valley. By reading the descriptions of the original site, utilization of satellite pictures, and comparing them with the current geomorphology of the area, we ensured the exact location of 26 of these sites and 17 fossil layers. Furthermore, by applying the latest technologies, such as GPS, Compass, digital barometers, laser measurer, and Abney level, we ensured the accuracy of the measurement. We surveyed 133-meter thickness of the deposits. Ultimately by applying the available Paleomagnetic data for this section, we estimated the ages of different horizons. The combination of our new data and previously published researches present a unique age control for the Classic Nihewan Fauna. These findings prove the hypothesis in which the Classic Nihewan Fauna belongs to different horizons, ranging from before Reunion up to after Olduvai earth geomagnetic field excursion (2.2-1.7 Mya).Keywords: classic Nihewan basin fauna, Olduvai excursion, Pleistocene, stratigraphy
Procedia PDF Downloads 1431429 Case Report: Massive Deep Venous Thrombosis in a Young Female: A Rare and Fatal Presentation of May-Thurner Syndrome
Authors: Mahmoud Eldeeb, Yousri Mohamed
Abstract:
Background: May-Thurner Syndrome (MTS) is a rare vascular condition caused by the compression of the left common iliac vein by the overlying right common iliac artery, leading to venous stasis and an increased risk of deep vein thrombosis (DVT). While MTS typically presents in young adults, its diagnosis is often delayed due to its nonspecific presentation, which can lead to catastrophic complications like massive pulmonary embolism (PE). Early recognition and intervention are paramount to prevent fatal outcomes. Objectives: Highlight the importance of early recognition and management of critically ill patients presenting with life- and limb-threatening conditions. Raise awareness of May-Thurner Syndrome as a rare but significant cause of extensive DVT in young adults. Emphasize the necessity of a multidisciplinary approach to managing complex vascular emergencies. Methodology: A 21-year-old female presented with a 7-day history of progressive left leg swelling, pain, and skin discoloration following immobilization due to gastroenteritis. Clinical suspicion for massive DVT and compartment syndrome prompted immediate initiation of a heparin bolus and referrals to vascular and orthopedic surgery teams. Bedside Doppler ultrasound confirmed extensive DVT, and subsequent CT venography revealed thrombi extending to the inferior vena cava, consistent with MTS. Despite anticoagulation therapy, angioplasty and stenting were required to restore venous patency. Tragically, the patient experienced a massive PE during the procedure, requiring cardiopulmonary resuscitation (CPR) and transfer to a tertiary center for cardiothoracic intervention. Results: The case highlights the aggressive and life-threatening progression of MTS. The patient’s presentation was characterized by massive DVT with severe pain and discoloration, rapidly culminating in a PE during intervention. The combination of bedside imaging and CT venography facilitated an accurate diagnosis. Despite timely management, the patient’s course underscores the high mortality risk associated with MTS-related thromboembolism. Conclusion: May-Thurner Syndrome, though rare, can lead to devastating complications in young adults if not promptly recognized and treated. This case emphasizes the need for a high index of suspicion in patients presenting with unexplained extensive DVT, especially in the context of limited mobility or other precipitating factors. Multidisciplinary collaboration, including vascular imaging, anticoagulation, and interventional procedures, is critical to optimize outcomes. Urgent recognition and treatment of MTS are vital to prevent progression to massive PE and death.Keywords: may-thurner syndrome, deep venous thrombosis, pulmonary embolism, vascular emergency, iliac vein compression syndrome
Procedia PDF Downloads 101428 The Evaluation of Superiority of Foot Local Anesthesia Method in Dairy Cows
Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage
Abstract:
Background: Nowadays, bovine limb interventions, especially any claw surgeries, raises selection of the most qualified and appropriate local anesthesia technique applicable for any superficial or deep interventions of the limbs. Currently, two local anesthesia methods of Intravenous Regional Anesthesia (IVRA), as well as Nerve Blocks, have been routine to apply. However, the lack of studies investigating the quality and duration as well as quantity and onset of full (complete) local anesthesia, is noticeable. Therefore, the aim of our study was comparing the onset and quality of both IVRA and our modified NBA at the hind limb of dairy cows. For this abstract, only the onset of full local anesthesia would be consider. Materials and Methods: For that reason, we used six healthy non pregnant non lactating Holestein Frisian cows in a cross-over study design. Those cows divided into two groups to receive IVRA and our modified four-point NBA. For IVRA, 20 ml procaine without epinephrine was injected into the vein digitalis dorsalis communis III and for our modified four-point NBA, 10-15 ml procaine without epinephrine preneurally to the nerves, superficial and deep peroneal as well as lateral and medial branches of metatarsal nerves. For pain stimulation, electrical stimulator Grass S48 was applied. Results: The results of electrical stimuli revealed the faster onset of full local anesthesia (p < 0.05) by application of our modified NBA in comparison to IVRA about 10 minutes. Conclusion and discussion: Despite of available references showing faster onset of foot local anesthesia of IVRA, our study demonstrated that our modified four point NBA not only can be well known as a standard foot local anesthesia method applicable to desensitize the hind limb of dairy cows, but also, selection of this modified validated local anesthesia method can lead to have a faster start of complete desensitization of distal hind limb that is remarkable in any bovine limb interventions under time constraint.Keywords: IVRA, four point NBA, dairy cow, hind limb, full onset
Procedia PDF Downloads 1511427 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations
Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang
Abstract:
Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.Keywords: source identification, ordinary differential equations, label propagation, complex networks
Procedia PDF Downloads 221426 Risk Assessment Tools Applied to Deep Vein Thrombosis Patients Treated with Warfarin
Authors: Kylie Mueller, Nijole Bernaitis, Shailendra Anoopkumar-Dukie
Abstract:
Background: Vitamin K antagonists particularly warfarin is the most frequently used oral medication for deep vein thrombosis (DVT) treatment and prophylaxis. Time in therapeutic range (TITR) of the international normalised ratio (INR) is widely accepted as a measure to assess the quality of warfarin therapy. Multiple factors can affect warfarin control and the subsequent adverse outcomes including thromboembolic and bleeding events. Predictor models have been developed to assess potential contributing factors and measure the individual risk of these adverse events. These predictive models have been validated in atrial fibrillation (AF) patients, however, there is a lack of literature on whether these can be successfully applied to other warfarin users including DVT patients. Therefore, the aim of the study was to assess the ability of these risk models (HAS BLED and CHADS2) to predict haemorrhagic and ischaemic incidences in DVT patients treated with warfarin. Methods: A retrospective analysis of DVT patients receiving warfarin management by a private pathology clinic was conducted. Data was collected from November 2007 to September 2014 and included demographics, medical and drug history, INR targets and test results. Patients receiving continuous warfarin therapy with an INR reference range between 2.0 and 3.0 were included in the study with mean TITR calculated using the Rosendaal method. Bleeding and thromboembolic events were recorded and reported as incidences per patient. The haemorrhagic risk model HAS BLED and ischaemic risk model CHADS2 were applied to the data. Patients were then stratified into either the low, moderate, or high-risk categories. The analysis was conducted to determine if a correlation existed between risk assessment tool and patient outcomes. Data was analysed using GraphPad Instat Version 3 with a p value of <0.05 considered to be statistically significant. Patient characteristics were reported as mean and standard deviation for continuous data and categorical data reported as number and percentage. Results: Of the 533 patients included in the study, there were 268 (50.2%) female and 265 (49.8%) male patients with a mean age of 62.5 years (±16.4). The overall mean TITR was 78.3% (±12.7) with an overall haemorrhagic incidence of 0.41 events per patient. For the HAS BLED model, there was a haemorrhagic incidence of 0.08, 0.53, and 0.54 per patient in the low, moderate and high-risk categories respectively showing a statistically significant increase in incidence with increasing risk category. The CHADS2 model showed an increase in ischaemic events according to risk category with no ischaemic events in the low category, and an ischaemic incidence of 0.03 in the moderate category and 0.47 high-risk categories. Conclusion: An increasing haemorrhagic incidence correlated to an increase in the HAS BLED risk score in DVT patients treated with warfarin. Furthermore, a greater incidence of ischaemic events occurred in patients with an increase in CHADS2 category. In an Australian population of DVT patients, the HAS BLED and CHADS2 accurately predicts incidences of haemorrhage and ischaemic events respectively.Keywords: anticoagulant agent, deep vein thrombosis, risk assessment, warfarin
Procedia PDF Downloads 2641425 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar
Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto
Abstract:
Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.Keywords: block caving, ground penetrating radar, reflectivity, RQD
Procedia PDF Downloads 1351424 The Advancements in Non-Invasive Brain Stimulation Techniques and Their Application to Parkinson’s Disease
Authors: Izadpanh Shaghayegh, Adli Fateme
Abstract:
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms, including tremors, bradykinesia, rigidity, and freezing of gait (FOG), which arise from degeneration of the basal ganglia. While pharmacological treatments, particularly dopaminergic therapies, remain the primary approach for managing PD, their long-term effectiveness diminishes due to complications such as dyskinesia and motor fluctuations. Deep brain stimulation (DBS) has emerged as an alternative for symptom management but remains invasive, costly, and associated with significant risks. In light of these challenges, non-invasive brain stimulation (NIBS) techniques are gaining attention as promising alternatives for treating PD. These methods, including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and microwave brain stimulation (MBS), offer advantages such as reduced risk and non-invasiveness while providing targeted modulation of brain activity. Recent innovations, such as hemispherical antenna arrays for focused stimulation and advanced signal patterns like high-frequency prime harmonics and temporal interference (TI), have further enhanced the precision and efficacy of NIBS. These techniques have shown potential in modulating neuronal excitability, improving gait, and reducing motor symptoms in PD patients, with some approaches demonstrating effectiveness in treating FOG. Despite promising results, continued research is necessary to refine these technologies, optimize treatment protocols, and evaluate their long-term impact on PD progression. This review highlights recent advances in non-invasive brain stimulation for PD and discusses their potential as adjunctive therapies for managing motor symptoms and improving quality of life in PD patients.Keywords: Parkinson’s disease, non-invasive brain stimulation, deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, freezing of gait, microwave brain stimulation, neuromodulation
Procedia PDF Downloads 01423 Management Methods of Food Losses in Polish Processing Plants
Authors: Beata Bilska, Marzena Tomaszewska, Danuta Kolozyn-Krajewska
Abstract:
Food loss and food waste are a global problem of the modern economy. The research undertaken aimed to analyze how food is handled in catering establishments when it comes to food waste and to demonstrate the main ways of management with foods/dishes not served to consumers. A survey study was conducted from January to June 2019. The selection of catering establishments participating in the study was deliberate. The study included establishments located only in Mazowieckie Voivodeship (Poland). Forty-two completed questionnaires were collected. In some questions, answers were based on a 5-point scale of 1 to 5 (from "always" / "every day" to "never"). The survey also included closed questions with a suggested cafeteria of answers. The respondents stated that in their workplaces, dishes served cold and hot ready meals are discarded every day or almost every day (23.7% and 20.5% of answers respectively). A procedure most frequently used for dealing with dishes not served to consumers on a given day is their storage at a cool temperature until the following day. In the research, 1/5 of respondents admitted that consumers "always" or "usually" leave uneaten meals on their plates, and over 41% "sometimes" do so. It was found additionally that food not used in the foodservice sector is most often thrown into a public container for rubbish. Most often thrown into the public container (with communal trash) were: expired products (80.0%), plate waste (80.0%) and inedible products (fruit and vegetable peels, eggshells) (77.5%). Most frequently into the container dedicated only to food waste were thrown out used deep-frying oil (62.5%). 10% of respondents indicated that inedible products in their workplaces are allocated for animal feeds. Food waste in the foodservice sector remains an insufficiently studied issue, as owners of these objects are often unwilling to disclose data about the subject. Incorrect ways of management with foods not served to consumers were observed. There is a need to develop educational activities for employees and management in the context of food waste management in the foodservice sector.Keywords: food waste, inedible products, plate waste, used deep-frying oil
Procedia PDF Downloads 1271422 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box
Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar
Abstract:
To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection
Procedia PDF Downloads 1311421 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project
Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen
Abstract:
This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project
Procedia PDF Downloads 1681420 Geological and Geotechnical Approach for Stabilization of Cut-Slopes in Power House Area of Luhri HEP Stage-I (210 MW), India
Authors: S. P. Bansal, Mukesh Kumar Sharma, Ankit Prabhakar
Abstract:
Luhri Hydroelectric Project Stage-I (210 MW) is a run of the river type development with a dam toe surface powerhouse (122m long, 50.50m wide, and 65.50m high) on the right bank of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and higher Himalaya in the north in the seismically active region. At the project, the location river is confined within narrow V-shaped valleys with little or no flat areas close to the river bed. Nearly 120m high cut slopes behind the powerhouse are proposed from the powerhouse foundation level of 795m to ± 915m to accommodate the surface powerhouse. The stability of 120m high cut slopes is a prime concern for the reason of risk involved. The slopes behind the powerhouse will be excavated in mainly in augen gneiss, fresh to weathered in nature, and biotite rich at places. The foliation joints are favorable and dipping inside the hill. Two valleys dipping steeper joints will be encountered on the slopes, which can cause instability during excavation. Geological exploration plays a vital role in designing and optimization of cut slopes. SWEDGE software has been used to analyze the geometry and stability of surface wedges in cut slopes. The slopes behind powerhouse have been analyzed in three zones for stability analysis by providing a break in the continuity of cut slopes, which shall provide quite substantial relief for slope stabilization measure. Pseudo static analysis has been carried out for the stabilization of wedges. The results indicate that many large wedges are forming, which have a factor of safety less than 1. The stability measures (support system, bench width, slopes) have been planned so that no wedge failure may occur in the future.Keywords: cut slopes, geotechnical investigations, Himalayan geology, surface powerhouse, wedge failure
Procedia PDF Downloads 1181419 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model
Authors: Gholba Niranjan Dilip, Anil Kumar
Abstract:
Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector
Procedia PDF Downloads 1611418 A CORDIC Based Design Technique for Efficient Computation of DCT
Authors: Deboraj Muchahary, Amlan Deep Borah Abir J. Mondal, Alak Majumder
Abstract:
A discrete cosine transform (DCT) is described and a technique to compute it using fast Fourier transform (FFT) is developed. In this work, DCT of a finite length sequence is obtained by incorporating CORDIC methodology in radix-2 FFT algorithm. The proposed methodology is simple to comprehend and maintains a regular structure, thereby reducing computational complexity. DCTs are used extensively in the area of digital processing for the purpose of pattern recognition. So the efficient computation of DCT maintaining a transparent design flow is highly solicited.Keywords: DCT, DFT, CORDIC, FFT
Procedia PDF Downloads 4811417 Simulations in Structural Masonry Walls with Chases Horizontal Through Models in State Deformation Plan (2D)
Authors: Raquel Zydeck, Karina Azzolin, Luis Kosteski, Alisson Milani
Abstract:
This work presents numerical models in plane deformations (2D), using the Discrete Element Method formedbybars (LDEM) andtheFiniteElementMethod (FEM), in structuralmasonrywallswith horizontal chasesof 20%, 30%, and 50% deep, located in the central part and 1/3 oftheupperpartofthewall, withcenteredandeccentricloading. Differentcombinationsofboundaryconditionsandinteractionsbetweenthemethodswerestudied.Keywords: chases in structural masonry walls, discrete element method formed by bars, finite element method, numerical models, boundary condition
Procedia PDF Downloads 1691416 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 2521415 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration
Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad
Abstract:
In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands
Procedia PDF Downloads 651414 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle
Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.
Abstract:
In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.
Procedia PDF Downloads 74