Search results for: abnormal activity detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9845

Search results for: abnormal activity detection

9065 Production of Hydroxy Marilone C as a Bioactive Compound from Streptomyces badius

Authors: Osama H. Elsayed, Mohsen M. S. Asker, Mahmoud A. Swelim, Ibrahim H. Abbas, Aziza I. Attwa, Mohamed E. El Awady

Abstract:

Hydroxy marilone C is a bioactive metabolite was produced from the culture broth of Streptomyces badius isolated from Egyptian soil. hydroxy marilone C was purified and fractionated by silica gel column with a gradient mobile phase dicloromethane (DCM) : Methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many instruments as Infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy to the elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8 % at 3000 µg/ml after 90 min. and the IC50 value against DPPH radical found about 1500 µg/ml after 60 min. By Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells were 443 µg/ml and 147.9 µg/ml, respectively. While for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1µg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 µg/ml. This results indicated that the hydroxy marilone C has a potential antitumor and antiviral activities.

Keywords: hydroxy marilone C, production, bioactive compound, Streptomyces badius

Procedia PDF Downloads 253
9064 The Effect of Additives on Characterization and Photocatalytic Activity of Ag-TiO₂ Nanocomposite Prepared via Sol-Gel Process

Authors: S. Raeis Farshid, B. Raeis Farshid

Abstract:

Ag-TiO₂ nanocomposites were prepared by the sol-gel method with and without additives such as carboxy methyl cellulose (CMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), and hydroxyl propyl cellulose (HPC). The characteristics of the prepared Ag-TiO₂ nanocomposites were identified by Fourier Transform Infra-Red spectroscopy (FTIR), X-Ray Diffraction (XRD), and scanning electron microscopy (SEM) methods. The additives have a significant effect on the particle size distribution and photocatalytic activity of Ag-TiO₂ nanocomposites. SEM images have shown that the particle size distribution of Ag-TiO₂ nanocomposite in the presence of HPC was the best in comparison to the other samples. The photocatalytic activity of the synthesized nanocomposites was investigated for decolorization of methyl orange (MO) in water under UV-irradiation in a batch reactor, and the results showed that the photocatalytic activity of the nanocomposites had been increased by CMC, PEG, PVP, and HPC, respectively.

Keywords: sol-gel method, Ag-TiO₂, decolorization, photocatalyst, nanocomposite

Procedia PDF Downloads 80
9063 Off-Topic Text Detection System Using a Hybrid Model

Authors: Usama Shahid

Abstract:

Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.

Keywords: off topic, text detection, eco state network, machine learning

Procedia PDF Downloads 88
9062 Application of IoTs Based Multi-Level Air Quality Sensing for Advancing Environmental Monitoring in Pingtung County

Authors: Men An Pan, Hong Ren Chen, Chih Heng Shih, Hsing Yuan Yen

Abstract:

Pingtung County is located in the southernmost region of Taiwan. During the winter season, pollutants due to insufficient dispersion caused by the downwash of the northeast monsoon lead to the poor air quality of the County. Through the implementation of various control methods, including the application of permits of air pollution, fee collection of air pollution, control oil fume of catering sectors, smoke detection of diesel vehicles, regular inspection of locomotives, and subsidies for low-polluting vehicles. Moreover, to further mitigate the air pollution, additional alternative controlling strategies are also carried out, such as construction site control, prohibition of open-air agricultural waste burning, improvement of river dust, and strengthening of road cleaning operations. The combined efforts have significantly reduced air pollutants in the County. However, in order to effectively and promptly monitor the ambient air quality, the County has subsequently deployed micro-sensors, with a total of 400 IoTs (Internet of Things) micro-sensors for PM2.5 and VOC detection and 3 air quality monitoring stations of the Environmental Protection Agency (EPA), covering 33 townships of the County. The covered area has more than 1,300 listed factories and 5 major industrial parks; thus forming an Internet of Things (IoTs) based multi-level air quality monitoring system. The results demonstrate that the IoTs multi-level air quality sensors combined with other strategies such as “sand and gravel dredging area technology monitoring”, “banning open burning”, “intelligent management of construction sites”, “real-time notification of activation response”, “nighthawk early bird plan with micro-sensors”, “unmanned aircraft (UAV) combined with land and air to monitor abnormal emissions”, and “animal husbandry odour detection service” etc. The satisfaction improvement rate of air control, through a 2021 public survey, reached a high percentage of 81%, an increase of 46% as compared to 2018. For the air pollution complaints for the whole year of 2021, the total number was 4213 in contrast to 7088 in 2020, a reduction rate reached almost 41%. Because of the spatial-temporal features of the air quality monitoring IoTs system by the application of microsensors, the system does assist and strengthen the effectiveness of the existing air quality monitoring network of the EPA and can provide real-time control of the air quality. Therefore, the hot spots and potential pollution locations can be timely determined for law enforcement. Hence, remarkable results were obtained for the two years. That is, both reduction of public complaints and better air quality are successfully achieved through the implementation of the present IoTs system for real-time air quality monitoring throughout Pingtung County.

Keywords: IoT, PM, air quality sensor, air pollution, environmental monitoring

Procedia PDF Downloads 75
9061 PathoPy2.0: Application of Fractal Geometry for Early Detection and Histopathological Analysis of Lung Cancer

Authors: Rhea Kapoor

Abstract:

Fractal dimension provides a way to characterize non-geometric shapes like those found in nature. The purpose of this research is to estimate Minkowski fractal dimension of human lung images for early detection of lung cancer. Lung cancer is the leading cause of death among all types of cancer and an early histopathological analysis will help reduce deaths primarily due to late diagnosis. A Python application program, PathoPy2.0, was developed for analyzing medical images in pixelated format and estimating Minkowski fractal dimension using a new box-counting algorithm that allows windowing of images for more accurate calculation in the suspected areas of cancerous growth. Benchmark geometric fractals were used to validate the accuracy of the program and changes in fractal dimension of lung images to indicate the presence of issues in the lung. The accuracy of the program for the benchmark examples was between 93-99% of known values of the fractal dimensions. Fractal dimension values were then calculated for lung images, from National Cancer Institute, taken over time to correctly detect the presence of cancerous growth. For example, as the fractal dimension for a given lung increased from 1.19 to 1.27 due to cancerous growth, it represents a significant change in fractal dimension which lies between 1 and 2 for 2-D images. Based on the results obtained on many lung test cases, it was concluded that fractal dimension of human lungs can be used to diagnose lung cancer early. The ideas behind PathoPy2.0 can also be applied to study patterns in the electrical activity of the human brain and DNA matching.

Keywords: fractals, histopathological analysis, image processing, lung cancer, Minkowski dimension

Procedia PDF Downloads 179
9060 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques

Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar

Abstract:

This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.

Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI

Procedia PDF Downloads 95
9059 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 575
9058 Microstructural Origin of Morphotropic Phase Boundary and Magnetic Ordering in the Multiferroic BiFeO3-PbTiO3

Authors: Bastola Narayan, Rajeev Ranjan

Abstract:

The morphotropic phase boundary (MPB) in the magnetoelectric (1-x)BiFeO3-(x)PbTiO3 has remained a matter of controversy ever since its discovery in 1964. The nature of the phase stabilized (single phase tetragonal or coexistence of tetragonal and rhombohedral phases) is very sensitive to the slight changes in the synthesis conditions. It thus remained an enigma as to what is the essential physical factor which is controlled by the slight difference in the synthesis conditions that finally determines, whether the phase formed will be single phase or coexistence of phases. In this paper, we demonstrate that the nature of the phase stabilized in this system is uniquely dependent on the crystallite size. The system is shown to exhibit features of abnormal grain growth (AGG) during sintering with abrupt increase in the grain size from ~ 1 micron to ~ 10 microns. The 10 micron grains exhibit pure tetragonal phase while the 1 micron grains exhibit coexistence of rhombohedral and tetragonal ferroelectric phases. The Rietveld analysis of powder neutron diffraction shows a paramagnetic to antiferromagnetic order transition inducing with crystalline size reduction from 10 micron to 1 micron. Since tetragonal phase is known to have paramagnetic order and rhombohedral phase has antiferromagnetic order in room temperature, this further strengthens our argument of size induced structure transition.

Keywords: size driven MPB, size driven magnetic ordering, abnormal grain growth, phase formation in BF-PT system

Procedia PDF Downloads 335
9057 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection

Authors: Martin Pumera

Abstract:

Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.

Keywords: graphene, 2D nanomaterials, biosensing, chip design

Procedia PDF Downloads 550
9056 Effect of Hemicellulase on Extraction of Essential Oil from Algerian Artemisia campestris

Authors: Khalida Boutemak, Nasssima Benali, Nadji Moulai-Mostefa

Abstract:

Effect of enzyme on the yield and chemical composition of Artemisia campestris essential oil is reported in the present study. It was demonstrated that enzyme facilitated the extraction of essential oil with increase in oil yield and did not affect any noticeable change in flavour profile of the volatile oil. Essential oil was tested for antibacterial activity using Escherichia coli; which was extremely sensitive against control with the largest inhibition (29mm), whereas Staphylococcus aureus was the most sensitive against essential oil obtained from enzymatic pre-treatment with the largest inhibition zone (25mm). The antioxidant activity of the essential oil with hemicellulase pre-treatment (EO2) and control sample (EO1) was determined through reducing power. It was significantly lower than the standard drug (vitamin C) in this order: vitamin C˃EO2˃EO1.

Keywords: Artemisia campestris, enzyme pre-treatment, hemicellulase, antibacterial activity, antioxidant activity

Procedia PDF Downloads 330
9055 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 128
9054 Physiological Regulation of Lignin-Modifying Enzymes Synthesis by Selected Basidiomycetes

Authors: Ana Tsokilauri

Abstract:

The uppermost factor in the regulation of lignin-cellulose activity of decaying white rot or free rot are the substances serving as carbon and nitrogen nutrition of microorganisms and are considered as the most important factor of generative activity of white rot. The research object was Basidiomycete Fungi, peculiar and common in Georgia, and the separation of 10 of them as pure crops. The unidentified pure crops have tasted in order to be determined the potential of synthesis of lignin-degrading enzymes and the substrate of optimal lignocellulose growth. One of the most important aspects of the research conducted on Basidiomycetes was the use of specific lignocellulosic residues for selecting Fungi as a substrate of their growth. In order to increase lignocellulose with the help of substrate, crops were selected from the screening stage that showed good laccase activity. (Dusheti 1; Dusheti 10; Fshavi 5; Fshavi1; Fshavi 8; Fshavi 32; Manglisi 26; Sabaduri20; Dusheti 7; Sabaduri 1 ), Among the selected cultures, the crops with good laccase activity against the following substances, in particular: Dusheti 1- in this case, the rate of enzymatic activity on bran substrate was -105,6 u/ml, mandarin-96,4 u/ml. In case of corn - 102,9 u/ml. In case of Dusheti 7- the indicators were as follows: bananas-121,7 u/ml, mandarin-125,4 u/ml, corn - 117,1 u/ml. In the case of Sanaduri 32, the laccase activity was as follows: pomegranate- 101,2 u/ml. As a result of conducted experiments, the synthesis and activity rates of enzymes depending on plant substrates varied within a fairly wide range, which is still being under research.

Keywords: Lignocellulosic substrate, Basidiomycetes, white-rot basidiomycetes, Laccase

Procedia PDF Downloads 196
9053 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 68
9052 Determination of the Effect of Kaolin on the Antimicrobial Activity of Metronidazole-Kaolin Interaction

Authors: Omaimah Algohary

Abstract:

Kaolin is one of the principle intestinal adsorbents, has traditionally been used internally in the treatment of various enteric disorders, colitis, enteritis, dysentery, and diarrhea associated with food and alkaloidal poisoning and in traveler’s diarrhea. It binds to and traps bacteria and its toxins and gases in the gut. It also binds to water in the gut, which helps to make the stools firmer, hence giving symptomatic relief. Metronidazole is a synthetic antibacterial agent that is used primarily in the treatment of various anaerobic infections such as intra-abdominal infections, antiprotozoal, and as amebicidal. The need for safe, therapeutically effective antidiarrheal combination continuously lead to effective treatment. Metronidazol used for treatment of anaerobic bacteria and kaolin , when administered simultaneously, Metronidazole–Kaolin interactions have been reported by FDA but not studied. This project is the first to study the effect of Metronidazole–Kaolin interactions on the antimicrobial activity of metronidazole. Agar diffusion method performed to test the antimicrobial activity of metronidazole–kaolin antidiarrheal combination from aqueous solutions at an in-vivo simulated pHs conditions that obtained at 37+0.5 °C on Helicobacter pylori as anaerobic bacteria and E.coli as aerobic bacteria and used as a control for the technique. The antimicrobial activity of metronidazole combination as 1:1 and 1:2 with kaolin was abolished in acidic media as no zones of inhibition shown compared to only metronidazole that used as a control. In alkaline media metronidazole combination as 1:1 and 1:2 with kaolin showed diminutive activity compared to the control. These results proved that the kaolin adsorb metronidazole and abolish its antimicrobial activity and such combination should be avoided.

Keywords: kaolin, metronidazole, interaction, Helicobacter pylori. E. coli, antimicrobial activity

Procedia PDF Downloads 390
9051 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 126
9050 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 53
9049 Compensatory Articulation of Pressure Consonants in Telugu Cleft Palate Speech: A Spectrographic Analysis

Authors: Indira Kothalanka

Abstract:

For individuals born with a cleft palate (CP), there is no separation between the nasal cavity and the oral cavity, due to which they cannot build up enough air pressure in the mouth for speech. Therefore, it is common for them to have speech problems. Common cleft type speech errors include abnormal articulation (compensatory or obligatory) and abnormal resonance (hyper, hypo and mixed nasality). These are generally resolved after palate repair. However, in some individuals, articulation problems do persist even after the palate repair. Such individuals develop variant articulations in an attempt to compensate for the inability to produce the target phonemes. A spectrographic analysis is used to investigate the compensatory articulatory behaviours of pressure consonants in the speech of 10 Telugu speaking individuals aged between 7-17 years with a history of cleft palate. Telugu is a Dravidian language which is spoken in Andhra Pradesh and Telangana states in India. It is a language with the third largest number of native speakers in India and the most spoken Dravidian language. The speech of the informants is analysed using single word list, sentences, passage and conversation. Spectrographic analysis is carried out using PRAAT, speech analysis software. The place and manner of articulation of consonant sounds is studied through spectrograms with the help of various acoustic cues. The types of compensatory articulation identified are glottal stops, palatal stops, uvular, velar stops and nasal fricatives which are non-native in Telugu.

Keywords: cleft palate, compensatory articulation, spectrographic analysis, PRAAT

Procedia PDF Downloads 446
9048 The Effects of Acid Rain, Smog Cars on Antioxidant Systems, Associated Enzyme and H⁺-ATPase Activity in Rice Cultivars (Oriza sativa L.)

Authors: Heidarali Malmir

Abstract:

The effects of acid rain (AR), smog’s cars (SC), and combined AR+SC on the antioxidants enzymes, lipid-soluble antioxidants, and water-soluble antioxidants were studied in the two cultivars of rice. The results showed that simulated AR significantly increased the total glutathione (TGSH), thiobarbituric acid (TBA), and α-tocopherol, accompanied by decreases in dry weight and leaves area in the two cultivars, and this change was more obvious in Shirudi cultivar than in Aus cultivar (p≤0.05). Under SC stress cultivar shirudi had higher H+-ATPase, glutathione peroxidase (GSH-px), and catalase (CAT) activities than cultivar Aus. The results of superoxide dismutase (SOD) activity, TGSH, and α-tocopherol levels affected by AR treatments were very different to those of SOD activity, TGSH, and α-tocopherol levels, as shown in SC treatment. It seems that SOD activity coupled with the water-soluble antioxidants and α-tocopherol levels correlated with the lipid-soluble antioxidants. It is suggested that α-tocopherol increases H+-ATPase activity.

Keywords: H+-ATPase, membrane permeability, lipid soluble antioxidants, water soluble antioxidants, associated enzyme

Procedia PDF Downloads 85
9047 Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan

Authors: Mehdi Moradi Sarmeidani, Peyman Keyhani, Hasan Momtaz

Abstract:

Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds.

Keywords: chlamydophila psittaci, psittacine birds, PCR, Isfahan

Procedia PDF Downloads 373
9046 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method

Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a

Abstract:

The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.

Keywords: damage detection, finite element, tapered pipe, vibration characteristics

Procedia PDF Downloads 170
9045 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures

Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski

Abstract:

Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.

Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems

Procedia PDF Downloads 349
9044 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine

Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif

Abstract:

The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.

Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)

Procedia PDF Downloads 373
9043 First Survey of Seasonal Abundance and Daily Activity of Stomoxys calcitrans: In Zaouiet Sousse, the Sahel Area of Tunisia

Authors: Amira Kalifa, Faïek Errouissi

Abstract:

The seasonal changes and the daily activity of Stomoxys calcitrans (Diptera: Muscidae) were examined, using Vavoua traps, in a dairy cattle farm in Zaouiet Sousse, the Sahel area of Tunisia during May 2014 to October 2014. Over this period, a total of 4366 hematophagous diptera were captured and Stomoxys calcitrans was the most commonly trapped species (96.52%). Analysis of the seasonal activity, showed that S.calcitrans is bivoltine, with two peaks: a significant peak is recorded in May-June, during the dry season, and a second peak at the end of October, which is quite weak. This seasonal pattern would depend on climatic factors, particularly the temperature of the manure and that of the air. The activity pattern of Stomoxys calcitrans was diurnal with seasonal variations. The daily rhythm shows a peak between 11:00 am to 15:00 pm in May and between 11:00 am to 17:00 pm in June. These vector flies are important pests of livestock in Tunisia, where they are known as a mechanical vector of several pathogens and have a considerable economic and health impact on livestock. A better knowledge of their ecology is a prerequisite for more efficient control measures.

Keywords: cattle farm, daily rhythm, Stomoxys calcitrans, seasonal activity

Procedia PDF Downloads 273
9042 The Associations between Self-Determined Motivation and Physical Activity in Patients with Coronary Heart Disease

Authors: I. Hua Chu, Hsiang-Chi Yu, Hsuan Su

Abstract:

Purpose: To examine the associations between self-determined motivation and physical activity in patients with coronary heart disease (CHD) in a longitudinal study. Methods: Patients with CHD were recruited for this study. Their motivations for exercise were measured by the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2). Physical activity was assessed using the 7-day physical activity recall questionnaire. Duration and energy expenditure of moderate to vigorous physical activity (MVPA) were used in data analysis. All outcome measures were assessed at baseline and 12 months follow up. Data were analyzed using Pearson correlation analysis and regression analysis. Results: The results of the 45 participants (mean age 60.24 yr; 90.2% male) revealed that there were significant negative correlations between amotivation at baseline and duration (r=-.295, p=.049) and energy expenditure (r=-.300, p=.045) of MVPA at 12 months. In contrast, there were significant positive correlations between calculated relative autonomy index (RAI) at baseline and duration (r=.377, p=.011) and energy expenditure (r=.382, p=.010) of MVPA at 12 months. There was no significant correlation between other subscales of the BREQ-2 and duration or energy expenditure of MVPA. Regression analyses revealed that RAI was a significant predictor of duration (p=.011) and energy expenditure (p=.010) of MVPA at 12 months follow-up. Conclusions: These results suggest that the relative degree of self-determined motivation could predict long-term MVPA behaviors in CHD patients. Physical activity interventions are recommended to target enhancing one’s identified and intrinsic motivation to increase the likelihood of physical activity participation in this population.

Keywords: self-determined motivation, physical activity, coronary heart disease, relative autonomy index (RAI)

Procedia PDF Downloads 428
9041 An Autopilot System for Static Zone Detection

Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo

Abstract:

Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.

Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement

Procedia PDF Downloads 102
9040 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score

Procedia PDF Downloads 200
9039 Production of Linamarase from Lactobacillus delbrueckii NRRL B-763

Authors: Ogbonnaya Nwokoro, Florence O. Anya

Abstract:

Nutritional factors relating to the production of linamarase from Lactobacillus delbrueckii NRRL B–763 were investigated. The microorganism was cultivated in a medium containing 1% linamarin. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in the presence of salicin (522 U/ml) after 48 h while the lowest yield was observed with CM cellulose (38 U/ml) after 72 h. Enzyme was not produced in the presence of cellobiose. Among a variety of nitrogen substrates tested, peptone supported maximum enzyme production (412 U/ml) after 48 h. Lowest enzyme production was observed with urea (40 U/ml). Organic nitrogen substrates generally supported higher enzyme productivity than inorganic nitrogen substrates. Enzyme activity was observed in the presence of Mn2+ (% relative activity = 216) while Hg2+ was inhibitory (% relative activity = 28). Locally-formulated media were comparable to MRS broth in supporting linamarase production by the bacterium. Higher enzyme activity was produced in media with surfactant than in media without surfactant. The enzyme may be useful in enhanced degradation of cassava cyanide.

Keywords: linamarase, locally formulated media, carbon substrates, nitrogen substrates, metal ions

Procedia PDF Downloads 430
9038 Enzyme Producing Psyhrophilic Pseudomonas app. Isolated from Poultry Meats

Authors: Ali Aydin, Mert Sudagidan, Aysen Coban, Alparslan Kadir Devrim

Abstract:

Pseudomonas spp. (specifically, P. fluorescens and P. fragi) are considered the principal spoilage microorganisms of refrigerated poultry meats. The higher the level psychrophilic spoilage Pseudomonas spp. on carcasses at the end of processing lead to decrease the shelf life of the refrigerated product. The aim of the study was the identification of psychrophilic Pseudomonas spp. having proteolytic and lipolytic activities from poultry meats by 16S rRNA and rpoB gene sequencing, investigation of protease and lipase related genes and determination of proteolytic activity of Pseudomonas spp. In the of isolation procedure, collected chicken meat samples from local markets and slaughterhouses were homogenized and the lysates were incubated on Standard method agar and Skim Milk agar for selection of proteolytic bacteria and tributyrin agar for selection of lipolytic bacteria at +4 °C for 7 days. After detection of proteolytic and lipolytic colonies, the isolates were firstly analyzed by biochemical tests such as Gram staining, catalase and oxidase tests. DNA gene sequencing analysis and comparison with GenBank revealed that 126 strong enzyme Pseudomonas spp. were identified as predominantly P. fluorescens (n=55), P. fragi (n=42), Pseudomonas spp. (n=24), P. cedrina (n=2), P. poae (n=1), P. koreensis (n=1), and P. gessardi (n=1). Additionally, protease related aprX gene was screened in the strains and it was detected in 69/126 strains, whereas, lipase related lipA gene was found in 9 Pseudomonas strains. Protease activity was determined using commercially available protease assay kit and 5 strains showed high protease activity. The results showed that psychrophilic Pseudomonas strains were present in chicken meat samples and they can produce important levels of proteases and lipases for food spoilage to decrease food quality and safety.

Keywords: Pseudomonas, chicken meat, protease, lipase

Procedia PDF Downloads 388
9037 A Clinical Study of Correlation between Pterygium and Dry Eye

Authors: Megha Ramnik Kotecha

Abstract:

To study whether there is any clinical correlation between pterygium and dry eye and to evaluate the status of tear film in patients with pterygium. Methods: 100 eyes with pterygium were compared with 100 control eyes without pterygium. Patients between 20 – 70 years were included in the study. Detailed history was taken and Schirmer’s test and TBUT were performed on all to evaluate the status of dry eye. Schirmer’s test ˂10 mm and TBUT ˂10 seconds was considered abnormal. Results: Maximum number (52) of patients affected with dry eye in both the groups were in the age group 31-40 years which statistically showed age as a significant factor of association for both pterygium and dry eye (P<0.01).Schirmer’s test was slightly reduced in patients with pterygium(18.73±5.69 mm). TBUT was significantly reduced in the case group (12.26±2.24sec).TBUT decreased maximally in 51-60 yrs age group (13.00±2.77sec) with pterygium showing a tear film unstability. On comparision of pterygia and controls with normal and abnormal tear film, Odd’s Ratio was 1.14 showing risk of dry eye in pterygia patients to be 1.14 times higher than controls. Conclusion: Whether tear dysfunction is a precursor to pterygium growth or pterygium causes tear dysfunction is still not clear. Research and clinical evidence, however, suggest that there is a relationship between the two. This study is, therefore, undertaken to investigate the correlation between pterygium and dry eye. The patients with pterygia were compared with normals to evaluate their status regarding dryness. A close relationship exists between ocular irritation symptoms and functional evidence of tear instability. Schirmer’s test and TBUT should routinely be used in the outpatient department to diagnose dry eye in patients with pterygium and these patients should be promptly treated to prevent any sight threatening complications.

Keywords: dry eye, pterygium, Schirmer's test, tear break up time (TBUT)

Procedia PDF Downloads 300
9036 Control of Spoilage Fungi by Lactobacilli

Authors: Laref Nora, Guessas Bettache

Abstract:

Lactic acid bacteria (LAB) have a major potential to be used in biopreservation methods because they are safe to consume (GRAS: generally regarded as safe) and they naturally occurring microflora of many foods. The preservative action of LAB is due to several antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, carbon dioxide, diacetyl, and reuterin. Several studies have focused on the antifungal activity compounds from natural sources for biopreservation in alternatives to chemical use. LAB has an antifungal activity which may inhibit food spoilage fungi. Lactobacillus strains isolated from silage prepared in our laboratory by fermentation of grass in anaerobic condition were screened for antifungal activity with overlay assay against Aspergillus spp. The antifungal compounds were originated from organic acids; inhibitory activity did not change after treatment with proteolytic enzymes. Lactobacillus strains were able also to inhibit Trichoderma spp, Penicillium spp, Fusarium roseum, and Stemphylim spp by confrontation assay. The inhibitory activity could be detected against the mould Aspergillus spp in the apricot juice but not in a bakery product. These antifungal compounds have the potential to be used as food biopreservation to inhibit conidia germination, and mycelia growth of spoilage fungi depending on food type, pH of food especially in heat, and cold processed foods.

Keywords: lactic acid bacteria, Lactobacillus, Aspergillus, antifungal activity

Procedia PDF Downloads 334